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A theory of gravitation is constructed in which all homogeneous and isotropic solutions are nonsingu-
lar, and in which all curvature invariants are bounded. All solutions for which curvature invariants ap-
proach their limiting values approach de Sitter space. The action for this theory is obtained by a
higher-derivative modification of Einstein’s theory. We expect that our model can easily be generalized
to solve the singularity problem also for anisotropic cosmologies.
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I. INTRODUCTION

One of the outstanding problems in the theory of gravi-
tation (and more generally in the quest for a unified
theory of all interactions) is the singularity problem. Ac-
cording to the Penrose-Hawking theorems [1], general
relatively (GR) manifolds are, in general, geodesically in-
complete, which is a sign that singularities in space-time
occur.

Singularities are undesirable for a theory which claims
to be complete since their existence implies that space-
time cannot be continued past them. The space-time
structure becomes unpredictable already at the classical
level.

Two important examples of singularities in GR are the
initial and final singularities in a closed universe and the
singularity in the center of the black hole. In the former
case, the singularity implies we cannot answer the ques-
tion what will happen after the “big crunch” or (in the
case of an expanding universe) what was before the *“big
bang.”

The presence of singularities is an indication that GR
is an incomplete theory. Wheeler even talks about a
““crisis in physics” [2]. It is a widespread opinion that ei-
ther quantum gravity or a more fundamental theory such
as string theory will provide a cure for the “sickness” of
GR. However, quantum gravity does not yet exist as a
self-consistent nonperturbative theory. Neither does
string theory exist as a unique theory capable of address-
ing the singularity problem of gravity in a definitive way,
although interesting string-specific ideas have recently
been put forward [3].

Because of the absence of a completely developed fun-
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damental theory on the basis of which we could address
the singularity problem, we will use a rather different ap-
proach. Any fundamental theory will, in the region of
low curvature, give an effective action for a four-
dimensional space-time metric g,, which to lowest order
must agree with the Einstein action. We will try to con-
struct (guess) an effective action for g,, which solves the
singularity problem and which in the low-curvature limit
reduces to the Einstein action. It is possible that in such
a manner we will be able to discover important features
of the future fundamental theory. We might also gain in-
formation which will help in finding this fundamental
theory.

Before discussing the ideas behind our construction of
the effective action for gravity, we return to the Penrose-
Hawking theorems [1]. They do not give us any detailed
information about the nature of the singularity. Howev-
er, in the two examples discussed above, a collapsing
universe and a black hole, we know that at the singularity
some of the physically measurable curvature invariants
such as R, R,,R*, and C2=C,p 5 C®"® diverge (here R
is the Ricci scalar, R, the Ricci tensor, and C,g,5 the
Weyl tensor). It is reasonable to assume that the diver-
gence of some curvature invariants at the singularity is a
fairly general phenomenon. In fact, for singularities
reached on timelike curves in a globally hyperbolic
space-time it can be proved [4] that the Riemann tensor
becomes infinite. Hence, as a first step we will find a
mechanism to bound all the curvature invariants.

Limitation principles play a very important role in
physics. Special relativity includes as one of its funda-
mental assumptions the principle that no particle velocity
can exceed the speed of light. The cornerstone of quan-
tum mechanics is the uncertainty principle which states
that the second fundamental constant, Planck’s constant
#i, gives the minimal phase-space volume a particle can be
localized in. The third fundamental constant, Newton’s
gravitational constant G, has not yet been used in any
limitation principle.

1629 ©1993 The American Physical Society
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Thus it is natural to assume that there exists a funda-
mental length

Ipy~(G#ic ~)12~107% cm

in nature (determined by G) such that there is no curva-
ture corresponding to scales / <Ip;. There are strong in-
dications that this will in fact arise in quantum gravity [5]
or string theory [3]. From the existence of a fundamental
length, it follows by simple dimensional considerations
that all curvature invariants are limited:

IRI=1p?,

IR, R¥|<Iy*, (1.1)

[Copys CPPO <155, .. .

To realize the idea of a fundamental length it is necessary
to construct a theory in which all curvature invariants
are bounded. Since there are an infinite number of curva-
ture invariants and since bounds on low-order invariants
do not necessarily imply bounds on higher-order invari-
ants, it is a rather formidable task to construct such a
theory.

Fortunately we can simplify the problem drastically by
making use of the “limiting curvature hypothesis” (LCH)
construction [6], according to which one looks for a
theory in which (i) a finite number of invariants are
bounded by an explicit construction (e.g., |[R|<1p? and
IR R <Ip*, and (ii) when these invariants take on
their limiting values, any solution of the field equations
reduces to a definite nonsingular solution (e.g., de Sitter
space). In this case it follows automatically that all cur-
vature invariants are limited. Note, however, that it is
necessary to demonstrate the absence of singular solu-
tions for which the curvature invariants which were sin-
gled out in step 1 above do not approach their limiting
values. Whether this is the case or not will depend on the
specific model. Examples are discussed in Secs. III and
IV.

The LCH contains the part of Penrose’s hypothesis [7],
which states that the Weyl tensor C should vanish at the
beginning of the Universe. This follows since by the
LCH the Universe near the big bang is de Sitter and that
C =0 for a de Sitter universe.

A theory in which the LCH is realized has some attrac-
tive features, both for cosmology [6] and black holes [8].
In cosmology, the present homogeneous expanding
Universe would have started out with a de Sitter phase.
In this case we would have some (maybe unusual) realiza-
tion of the oscillating universe scenario. Entropy con-
siderations tell us that only for a perfectly homogeneous
and isotropic universe could we have perfect periodicity.
In general, we must have a nontrivial realization. Includ-
ing inhomogeneities, we might obtain a multiple-universe
model in which one collapsing universe splits into several
de Sitter bounces.

For black holes the LCH gives the attractive picture
that inside of the horizon instead of a singularity at the
center we would have a piece of a de Sitter universe
which could be the source of other Friedmann (baby)
universes (see Fig. 1). In this case the difficult question

(a) (b)

FIG. 1. Penrose diagram of an eternal black hole (a) in Ein-
stein gravity and (b) in the nonsingular universe theory. The
singularities (S) are replaced by de Sitter phases (dS) which cou-
ple to Friedmann universes (FRW). The horizons (H) are not
affected.

[9] concerning information loss when matter falls into a
black hole has a natural answer: The information which
is lost to an observer external to the Schwarzschild hor-
izon is stored in the baby universe. In addition, using
this picture provides a good starting point to attack the
issue of the final stage of an evaporating black hole, a
problem which has recently been of high interest in the
context of two-dimensional quantum gravity [10].

In this paper we construct an effective action for gravi-
ty in which all homogeneous and isotropic solutions are
nonsingular and at high curvature approach de Sitter
space. (A brief summary of our work was published in
Ref. [11].) In order to implement the LCH, we proceed
in analogy to a technique by which point-particle veloci-
ties can be limited, thus achieving the transition between
Newtonian mechanics and point-particle motion in spe-
cial relativity (SR) (see also Ref. [12]). An extension of
our construction to inhomogeneous cosmologies and to
black hole metrics will be presented separately [13].

In the following section, we present the general theory
of how to implement the LCH. We obtain a fairly gen-
eral effective action for gravity as a higher-derivative
modification of the Einstein action, specialize to the case
of an isotropic, homogeneous universe, and derive the re-
sulting equations of motion.

In Sec. III we analyze a simple model which yields a
nonsingular universe without limiting curvature. We dis-
cuss the effects of including spatial curvature (i.e., k0)
and hydrodynamical matter. The analysis of the more
complicated model with limiting curvature is given in
Sec. IV. Section V contains conclusions and further dis-
cussion.

II. THEORY

In order to realize the LCH and hence to avoid singu-
larities, it is necessary to abandon at least one of the key
assumptions on which the Penrose-Hawking theorems
are based. The two most important assumptions are (i)
the energy-dominance condition, a simplified version of
which appropriate for cosmology is €>0 and €+3p =0,
where € and p are matter-energy density and pressure re-
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spectively, and (ii) the Einstein equations are universally
true.

There is no reason to believe that these assumptions
will be valid at very high energies and curvatures. First
of all, already in matter theories routinely studied by par-
ticle physicists, the energy-dominance condition is not al-
ways true. For example, the effective equation of state
for a homogeneous, slowly varying scalar-field
configuration with potential energy is p=~—¢, thus
violating the energy-dominance condition. This matter-
evolution scenario is in fact the basis for the inflationary
universe [14].

Note, however, that inflationary-universe models do
not cure the problem of the final singularity. There may
be nonsingular solutions for a collapsing universe filled
with scalar-field matter, but they are of measure zero.
Rather, in this case typical solutions have an effective
equation of state p =€ (the kinetic term for the scalar
field dominates), not p=—¢€, and hence have a final
singularity. Our goal is to construct a theory in which all
solutions are nonsingular.

Concerning the second key assumption of the Penrose-
Hawking theorems, it is well known that Einstein theory
can only be an effective theory of gravity at low curva-
tures. Perturbative quantum-gravity calculations [15],
vacuum polarization effects of quantum matter fields in
an external gravitational background [16], and also con-
siderations based on string theory [17] all show that the
effective equations for the gravitational field should be
modified at higher curvatures. In a perturbative analysis,
the modifications take the form of higher-derivative
terms which are usually important only at very high
(Planck) curvatures. Hence, provided the effective-action
approach is valid at all at high curvatures, this effective
action will certainly not be of pure Einstein form.

To summarize, there are two ways to modify the
theory at high curvatures in order to avoid singularities:
(i) Modify the matter action by including terms which
violate the energy-dominance condition; (ii) modify the
gravitational-field equations.

The first approach was explored in Ref. [18]. Howev-
er, the weakness of this approach is the absence of a good
physical motivation for the modification. In addition, it
seems impossible to avoid singularities associated with
purely gravitational modes which do not couple to
matter.

The second approach is much better motivated since
higher-derivative correction terms to the Einstein action
are predicted by many theories [15—-17]. Hence our start-
ing point will be to look for an effective action for gravity
of the form

__ 1
Se 167G

+nonlocal terms ,

J F(R,R,\,R*,Cp s CP1%,. . )V =g d*x
2.1)

where the ellipsis denotes the dependence of F on other
curvature invariants. At low curvatures the leading term
in F is simply R.

The action (2.1) can be viewed as the effective action of
some fundamental theory such as quantum gravity or

string theory. In these theories we are at present unable
to calculate the nonperturbative effective action. Hence,
as mentioned in the Introduction, our approach will be to
construct (guess) an effective action of the form (2.1) to
obtain a theory in which all solutions are nonsingular.

To simplify the considerations we shall neglect nonlo-
cal terms. In our approach this is justifiable since if we
are able to solve the singularity problem in a purely local
theory, we expect that the nonlocal terms (which are
inevitable, for example, because of particle production)
will not drastically change the asymptotic behavior of our
theory because of its special properties (see Sec. V).

The key to the analysis is the assumption about the va-
lidity of the background-field approximation for the grav-
itational field up to high curvatures. Such an approxima-
tion will only be justified if the quantum fluctuations
around this metric are sufficiently small. If the gravita-
tional field is asymptotically free at high curvatures (see
Sec. III), we can hope that this approach will be valid.
As we shall see, there are features in our theory which in-
dicate that this will really be the case.

For the moment we shall ignore matter (later we will
show that the presence of matter does not change the
solutions at high curvatures in an important way). Thus
our starting point is the effective action
Sg=——1é6fF(R’RuvR‘w’C2v .. )\/'—g d4x .

The usual Einstein theory in the absence of matter has
only one solution, Minkowski space, for a homogeneous
and isotropic universe. Any non-Einstein theory of gravi-
ty gives rise to fourth- (or higher-) order equations of
motion and hence to a large number of cosmological solu-
tions. In general, the singularity problems of such a
theory are much worse than in Einstein gravity. A sim-
ple example is R ? gravity,

(2.2)

F(R)=R +aR?, (2.3)

which is conformally equivalent [19] to Einstein gravity
plus scalar-field matter and which hence has many isotro-
pic singular solutions (even without matter). Thus the
theory we are looking for must be a very special higher-
derivative gravity model.

We wish to construct an effective action for gravity in
which all homogeneous and isotropic solutions are non-
singular and in which all curvature invariants are limited
(in Sec. V we will indicate how to extend our analysis to
anisotropic models [13]). To motivate our construction it
is useful to keep in mind ways of writing the action for
two well-known physical theories in which certain physi-
cal quantities are bounded: special relativity and the
Born-Infeld theory of electromagnetism [20].

To impose bounds on physical quantities in an explicit
manner, it is convenient to employ a Lagrange-multiplier
technique proposed by Altshuler [12]. To explain how
this technique works we first consider the simple example
of point-particle motion. We start with the action for a
nonrelativistic particle of mass m and world line x (z).
We demonstrate how to explicitly implement the limita-
tion on the particle velocity and, in particular, how to ob-
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tain the action for point-particle motion in special rela-
tivity. The nonrelativistic action with which we start is

Sqa=m [ dtix? 24

In order to construct a new theory with bounded veloci-
ty, we introduce a “Lagrange-multiplier field” ¢(z),
which couples to some function of the quantity whose
value we want to limit, and a potential V'(¢) for this field:

Spew=m [dt[137+¢i2—V($)] . 2.5)

Let us stress that ¢ is not a dynamical field. Provided
that 0V /d¢ is bounded, the constraint equation (i.e., the
variational equation with respect to ¢) ensures that x is
bounded. In order to obtain the correct Newtonian limit
for small X and small ¢, ¥(¢) must be proportional to ¢*
as |¢|—0. One of the simplest potentials which satisfies
the above asymptotic conditions,

vig)=-2_

1424 ° (2.6)

leads to special relativity. In fact, eliminating the
Lagrange multiplier using the constraint equation and
substituting the result into (2.5) yields (up to a constant
term which does not affect the equations of motion) the
relativistic point-particle action

Spew=m [dtV 1—5> 2.7)

Let us return to the theory of gravitation. In the nota-
tion of the above example, the “old” theory will be given
by the Einstein action. In order to implement the LCH
we wish to impose restrictions on some curvature invari-
ants I,,I,,...,I, in an explicit manner. The general

form of a higher-derivative local modification of the Ein-

stein action involving the invariants I', ..., I, is
1 —
Sg—_ 167G [R+F(Il,12,,ln)]\/—g d4x s (2'8)

where F is some function of the invariants I, ..., I,.

By introducing Lagrange-multiplier fields
(1), ...,d,(t), the above action can be rewritten as
Sg——R—Gf[R Fo 1IN+ e+, fo (L)

+V(p, - b))V —gdix, (2.9

where f;(I;) are functions we can choose as we want.

The actions (2.8) and (2.9) are equivalent provided that
the potential V(¢ ...,d,) satisfies the partial
differential equation
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,§1¢ 36, ¢y ¢

v k14
EX 0,

This follows immediately by using the constraint equa-
tions for (2.9):

v

(I)=——,
f=5,

We see from the constraint equations (2.11) that by ap-
propriate choice of the functions f; and ¥ we can imple-
ment bounds on the invariants I,,...,I,. Variation of
the action (2.9) with respect to g,,, yields the field equa-
tions.

First, we try to construct the simplest theory in which
the LCH is realized. At least for simple models (such as
the isotropic universe), it is natural to choose as one of
the invariants

I,=R—V3(4R , R~

Fify (2.10)

—1
’fn

i=1,...,n. (2.11)

RV, (2.12)
since for a homogeneous, spatially flat universe it is equal
to 12H2 This invariant will be used to limit the curva-
ture by some (e.g., Planckian) value. The second invari-
ant I, will take on such a form as to implement in the
theory the condition that in the asymptotic regions all of
the solutions evolve to de Sitter. The simplest way to do
this is to pick I, such that I, =0 only for de Sitter space
(Minkowski space is included as a special case) and to
make sure that

I2—>O as |¢2|—>00 . (2‘13)

For homogeneous and isotropic space-times, it can be
shown that

I,=4R, R*"—R? (2.14)

is a good choice, since I, =0 only for de Sitter space.
Note that, in general, I, is positive semidefinite. Howev-
er, for inhomogeneous and anisotropic space-times (e.g.,
when C2540), the above form of I , is insufficient to single
out de Sitter space as an asymptotic solution. This is ob-
vious from considering the Schwarzschild metric for
which I, =0. Hence, in the general case, we [13] should
add to (2.14) terms which depend on C? and vanish for
conformally flat space-times.

However, for a homogeneous and isotropic universe it
is (as we will show) sufficient to consider the action in the
general form

Se=—Terg JIRHo/1UD+0f51)

+V (¢, .01V —g d*x (2.15)

The variational field equations which follow from (2.15)
are
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a1 9f afy |7
RB 263 SBV—— ¢l all 5 ¢1 aIl ¢1 aI
3fs RS "’ «
¢2 aI ¢2 812
af, |'° af
a —_—
2059 I, ¢ dI,
and the constraint equations are
oV 4
f[id)=— I))=———. (2.17)
1\41 a¢ f2 2 a¢2

We will simplify the theory further by assuming a factor-
izable potential

V(g1,6:)=V1($1)+V5(4,) .

The asymptotic conditions on the potentials V| and ¥V,
follow from demanding that the theory reduce to the Ein-
stein theory at small curvatures and that the LCH be
realized. The first condition yields

Vi )~¢2, lo;l<<1, i=1,2.

In order to limit R explicitly, we can try a potential
which to leading order takes the form

Vi) ~éy, |¢1| >1,

and to obtain de Sitter solutions in the asymptotic regions
we need a potential which at large ¢, increases less quick-
ly than ¢,. We assume an asymptotic form

(2.18)

(2.19)

(2.20)

V,(¢,)~const, @,/ >>1. (2.21)

In this case, provided f,(I,)—0 as I, —0, the constraint
equation (2.17) implies that I,—0 as |¢,| — o, and we
have a chance of realizing the LCH, provided that the
evolution of the scalar fields ¢, and ¢, is appropriate, a
question which needs detailed investigation.

To conclude this section we will write down Egs. (2.16)
and (2.17) explicitly for a homogeneous and isotropic
metric with scale factor a(¢) in the contracting phase
(i.e., H <0):

ds?=dt’—a*(t)

L dr2 4124674 2 sin%0 d 92
;

(2.22)
We choose simple functions f; and f,:
fiUI)=1,, fo(I,)=—T,. (2.23)
Thus our ﬁnal action takes the form
Sy=— 16 Terg J [(1+6DR
—(¢,+V3¢,)V 4R ,,R*'—R?
+V(h)+ V()] —g d¥x . (2.24)

af,

a‘*‘ ¢1f 5;3 4 ¢2—RM ‘Sg

yOT

a

9f>
¢2 aIZ

[°4

s

af> af>

8¢2———R"‘ y,,+2¢za—12RRg+%83¢zf 2 (2.16)

As is well known from the derivation of the
Friedmann-Robertson-Walker equations in Einstein grav-
ity, the only independent equation of motion is the 0-0
equation. In our case we have in addition the constraint
equations (2.17). The full set of equations can be ob-
tained by inserting the metric (2.22) into (2.16) and (2.17).

The resulting ¢,,¢, and 0-0 equations are

2 k1.
H+a2 TR (2.25)
kK_ 1,
H T TUn vy, (2.26)
——(V,+V2)+3H2(1—2¢1)+3 S(4¢,+1)
R |2 k
Ha

Another way to obtain the same equations is to substitute
the ansatz (2.22) with g =N (¢)* into the action (2.24)
and to vary it with respect to N, ¢, and ¢, (see, e.g., Ref.
[21]). Adding to the system matter with the action

S,=[L,V =g d*, (2.28)
where L,, is the matter Lagrangian, only leads to an ad-
dition term

STﬁGpm (2.29)
on the left-hand side of the 0-0 equation.

In the following sections we shall show that all solu-
tions of the above equations are free of singularities.

III. NONSINGULAR UNIVERSE
WITHOUT LIMITING CURVATURE

Since our goal is primarily to construct a nonsingular
universe model and only secondarily to limit the curva-
ture, we first consider a simple model in which the ¢,
field is absent. In this case it is easier to discuss our tech-
niques of analysis.

We will show that for this model all solutions for a col-
lapsing universe are nonsingular and asymptotically ap-
proach de Sitter solutions. However, there is no general
(i.e., solution independent) bound on the effective cosmo-
logical constant of the de Sitter period.

In this section we set ¢,=¢ and ¥V, =V. The equations
of motion are given by (2.26) and (2.27). Let us first con-
sider a spatially flat (k =0) collapsing model without
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matter. In this case the equations of motion are

H*———V’ (3.1)

: 1

= —V (3.2)
¢ 2V3H

The phase space of this model is the two-dimensional
(¢,H) plane. The phase-space trajectories can be under-
stood by considering dH /d¢$ [determined immediately
from (3.1) and (3.2)]:

-1

aH__ ¥ vl . 33

dé V12

From (3.3) it follows that provided that V(¢) is bound-
ed at large ¢ [as postulated in (2.21)], then as ¢ tends to
infinity H approaches a finite value; i.e., for any solution,
the effective cosmological constant in the large-¢ region
is bounded. In this case it follows from (3.2) that in a col-
lapsing universe, for large ¢,

o(r)~e3Hl (3.4)

1
2V3H

—3H¢+V3H—

Our choice of invariant I, has led to the conclusion that
the asymptotic de Sitter solutions are attractor solutions.
This conclusion holds independent of the specific choice
of the potential ¥V'(¢), as long as the asymptotic condition
(2.21) is satisfied.

From (3.4) it follows that all solutions for a contracting
universe are free of singularities. It takes infinite time to
reach ¢ = o

To concretize the consideration we consider a simple
potential which satisfies the asymptotic conditions (2.19)
and (2.21):

— 2
V=\/12H(2)—¢—2— , (3.5)
1+¢

where H, is a constant (in the model with limiting curva-
ture discussed in Sec. IV, H, sets the scale of this limiting

curvature).

The phase-space trajectories (¢(z),H (t)) in a collaps-
ing universe are shown in Fig. 2. The numerical results
were obtained using the specific potential (3.5). However,
as discussed above, the main features of the diagram de-
pend only on the asymptotic properties.

First, we note that there is only one singular point
(¢=H =0) in the phase plane. This point is

(¢,H)=(0,0) (3.6)

and corresponds to Minkowski space-time.

There are two classes of trajectories which are asymp-
totically de Sitter. Those starting at large positive values
of ¢ go off to ¢ = 0, reaching their asymptotic value of H
from above (i.e., H <O) Those starting with large nega-
tive values of ¢ tend to ¢ = — oo with H >O0.

For small values of H and ¢ we can use the asymptotic
condition (2.19) on FV(¢) to conclude that there are
periodic solutions about Minkowski space. In this limit
the basic equations (3.1) and (3.2) become

1 oV

R T S
H=——"x 3 2H4 , 3.7)

.1 3H>—1v - V3(H /H,y)?— ¢*
=3 H ° H/H, ’

(3.8)

where for V(¢) we have inserted the general asymptotic
form

V($)=~2V3IHH?, (3.9)

valid for small ¢. The numerical factor 2V/3 has been in-
serted to eliminate numerical constants in the following
equations.

It is convenient to introduce a rescaled time
T= HO t (3. 10)

and a dimensionless measure of H:

FIG. 2. Phase-space diagram
(¢,H) (arrows indicating the
direction of time evolution) for a
spatially flat universe without
limiting curvature and with no
matter (k =c =0). Generated
using the potential (3.5).

GO
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y=H/H, . (3.11)
With d /dr denoted by a prime, Egs. (3.7) and (3.8) be-
come

(3.12)

y==2, p==E

To see the oscillatory nature of the solutions we intro-
duce radial and angular coordinates r and :

é=rsiny, y=—3"14(1—cosy) . (3.13)
The resulting equations for » and ¥ are
Y=0, r'=0, (3.14)

where the frequency is @=2X3!"%, The corresponding
solutions oscillate with frequency given by H (which we
expect to be Planck scale) about Minkowski space.

Based on the preceding discussion of asymptotic solu-
tions we see that there is a separatrix [22] in phase space
dividing solutions which tend to ¢ = o« from those which
oscillate or tend to ¢=— . We observe that for large
|H| the separatrix will asymptotically (and from the
right-hand side on Fig. 2) approach the line of turning
points given by d¢ /dH =0. From (3.1) it follows that for
large | H| the turning points lie at

~-L

V3
For small values of ¢ and H, the separatrix is well to the
right of the line of turning points given by

(3.15)

$~3174 |H| ‘

H, (3.16)

The above analysis of the phase-space trajectories is an
indication that in our theory Minkowski space is stable
toward homogeneous perturbations. As long as the ini-
tial values of |H|, |#|, and ¢/|H| are small, a solution

starting close to Minkowski space will remain close for
all times. The issue of stability of Minkowski space to-
ward inhomogeneous perturbations is an important un-
solved problem.

We stress again that all the general features of the
phase-space analysis are true for any potential V(¢)
which satisfies the required asymptotic conditions (2.19)
and (2.21). However, the results depend crucially on the
choice of the invariant I,.

Next, we include hydrodynamical matter with the en-
ergy density

o (t)=ca(t)™", (3.17)

where n =3 for dust and n =4 for radiation. For the mo-
ment we keep to a collapsing spatially flat model. In this
case Eq. (3.1) is unchanged, while Eq. (3.2) becomes

1 _ 87G
2V'3H V3H

With matter, phase space is three dimensional, the
third dimension being a (¢). In Fig. 3 we show the projec-
tion of some of the trajectories onto the (¢(z), H(z)) plane
for potential V' (¢) given by (3.5). All trajectories have
8mGc=1 and a(ty)=10, t, being the initial time. The
main impression is that the trajectories look very similar
to those without matter in the asymptotic region. We
shall now explain why this is the case.

First, we note that as |¢|— o, the solutions approach
de Sitter space since H—0. Hence

¢=—3H¢p+V3IH— ca(t)™". (3.18)

—|H|(t —t

alt)=e Vaty) . (3.19)

Next, we combine (3.1) and (3.18) to obtain, for |¢| >>1,

dH V' -

dé -~ 23

87Gce
V3H

3H¢+ a()™" (3.20)

Our model incorporates a very important feature: In the

|
o
~
—T
4
RN

-

pos

FIG. 3. Projection onto the
(¢,H) plane of the three-
dimensional phase-space dia-
gram (¢,H,a) (arrows again in-
dicating direction of time evolu-
tion) for a spatially flat universe
without limiting curvature but
with matter (k =0,c¢7#0). Gen-
erated using the potential (3.5)
with initial condition a(¢,)=10.
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b FIG. 4. Phase-space diagram
as in Fig. 3, but with a(z,)=1.
Therefore the initial matter-
energy density is larger than for
the trajectories of Fig. 3.

B-o

asymptotic de Sitter region, matter does not have an im-
portant effect on the geometry. The effective gravitation-
al constant which describes the influence of matter on the
geometry goes to zero as space-time approaches de Sitter
space. In this sense the model is asymptotically free.

Some understanding of asymptotic freedom can be ob-
tained by solving the ¢ and H equations of motion (3.1)
and (3.18) in the asymptotic region |¢|>>1. Equation
(3.18) becomes

c —p mlH|(z—1)

] a(ty) "e

(where we have incorporated the factor 87G /V 3 into the
definition of ¢). From (3.21) it follows that ¢(¢) is a linear
combination of the homogeneous solution (3.4) and (as-
suming that H ~const) the inhomogeneous contribu‘ion

¢,(1):

$=~3|H|p+ (3.21)

n|H|(t—1,)

(1) —-1). (3.22)

c -
almpetel e
For dust (n =3), both the homogeneous and inhomo-
geneous terms grow at the same rate, and the coefficient
of the inhomogeneous term is smaller. Hence matter
does not affect even the time dependence of the phase-
space trajectories. For radiation (n =4), ¢,(¢) grows fas-
ter than (3.4). At sufficiently late times, therefore, it will
dominate. In this period, however, we can [for potential
(3.5)] solve the H equation (3.1) to obtain

2H? }

_ V3n|H|? 3n
3nlH] a(ty)’e

—3n\H|(tl —t,)

H(t)=~H(t,)

(3.23)

(where ¢, is some time >>t, well into the asymptotic re-

FIG. 5. Projection onto the
(¢,H) plane of the three-
dimensional phase-space dia-

gram (¢,H,a) in a closed (k =1)

universe without limiting curva-
ture and in the absence of matter
(¢ =0). The potential (3.5) was
used and a(t,)=10 was chosen
as the initial condition.

-30 =20 -10 0 10
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FIG. 6. Same as in Fig. 5, but
with  the initial condition

a(ty)=1. Note the different
scales on the axes.
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gion), which shows that the presence of matter does not
affect the final value of the curvature when starting the
evolution in the asymptotic region.

For small |¢| the presence of matter does have a
significant effect on the phase-space trajectories. As a(t,)
decreases (or, equivalently, ¢ and thus the matter-energy
density increase), the distortions of the trajectories in-
crease, as can be seen by comparing Figs. 3 and 4. Figure
4 corresponds to a matter-energy density which is 10
times larger.

Finally, we consider the effects of spatial curvature. In
this case Eq. (3.1) and (3.2) generalize to [see (2.26) and
(2.27)]

1 k
H=——=V'+—, (3.24)
2V'3 a?
k 1 -
¢=—3H¢ H2¢ stV 3
ik ¢ (3.25)
Ha? Ha"

where the constant c is as in Eq. (3.21).

In the case of the potential (3.5) and for ¢ =0, some re-
sulting phase-space trajectories projected onto the (¢ /H)
plane are shown in Figs. 5 and 6. For the trajectories of
Fig. 6, the initial value of a (¢) was chosen to be 10 times
smaller than in Fig. 5. Hence the effects of curvature are
more pronounced.

Consider a sample trajectory of Fig. 5. It starts out
with large initial value of a. The trajectory tends toward
|¢|>>1 and H—0, as in the case k =0. Since a(t) is
now decreasing almost exponentially, the role of curva-
ture increases. At a critical value of ¢, the value of H be-
comes 0. This will occur when

, __k
2‘/ V'(¢(1))= PP

Hence the smaller the initial value of a(z), the earlier
(3.26) will be satisfied (compare Figs. 5 and 6). At a simi-

(3.26)

lar time, the curvature terms also start to dominate in Eq.
(3.24). Therefore, as is obvious from the k-dependent
terms in (3.25), ¢(¢) will rapidly decrease, as will |H(z)].
At some finite and negative value of ¢, H (t) vanishes.
Thereafter, the Universe reexpands. The evolution of
this model for small a (¢) resembles a de Sitter bounce.

Note that all solutions are nonsingular. In particular,
the solutions can be integrated through the point when
H =0 [when terms on the right-hand side of (3.25) be-
come infinite].

In conclusion, we have constructed a higher-derivative
modification of Einstein’s theory in which all homogene-
ous and isotropic solutions are nonsingular. Without
curvature (i.e., for k =0), the solutions either are periodic
about Minkowski space or else converge to a k =0 de Sit-
ter solution. For k50 the solutions which do not remain
close to Minkowski space go through a de Sitter bounce
and are future extendable to t = «. In addition, we have
shown that our model is asymptotically free in the sense
that the effective coupling of matter to gravity goes to
zero as the curvature increases.

IV. NONSINGULAR UNIVERSE
WITH LIMITING CURVATURE

Now we turn to the discussion of the full model in
which the LCH is implemented, the model given by the
action (2.24), in which for a homogeneous and isotropic
metric the equations of motion reduce to (2.25)-(2.27).
We include hydrodynamical matter with the energy den-
sity given by (3.17).

In the general case (k70 and ¢¥0), the phase space of
the model is three dimensional: ¢,(2), ¢,(¢), and a(z).
For k=0 and ¢ =0, the dependence on a(t) drops out
and the phase space can be reduced to the two-
dimensional ¢,/¢, diagram. The first-order equations of
motion in phase space are found by combining Egs.
(2.25)-(2.27). To derive the equation for ¢,(¢) we
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differentiate (2.25) with respect to ¢ and use (2.26) to sub-
stitute for H to obtain

. _HV!
$=—43—7 (4.1)
Vi
The equation of motion for ¢, is (2.27):
¢2=_3H¢2+H—a2¢2
+ L 3EA1-2¢)+3K (46, 1)
V3H a?
— L +vy)—< 4
2( 1 2) ; > (4.2)

where H can be expressed in terms of ¢; and a via (2.25).
From (4.1), (4.2), and (2.25), it is obvious that for
k =c¢ =0 the a (t) dependence disappears.

In the case kK =c =0 we may use (2.25) to get

d¢, 41 = 2
- — V3 (1—26)——(V, +V
d¢1 4V,2 ¢2 ( ¢1) V’l( 1 2)

>

4.3)

the key equation for the following phase-space analysis.
For all potentials V(¢,) and V,(¢,) with the asymp-
totic behavior

R. BRANDENBERGER, V. MUKHANOYV, AND A. SORNBORGER
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the phase diagrams have the same feature as depicted
schematically in Fig. 8 for spatially collapsing universes
without matter. The numerical solutions depicted in Fig.
7 were obtained for the particular choice of potentials
[which satisfy the asymptotic conditions of (4.4)—(4.6)]

#? In(1+¢,)
= 2 —
Vi(éy) 12H01+¢1 1 s R 4.7)
V2(¢2)=2‘/§H<2) ¢% . (4.8)
1+ 43

The presence of the logarithmic term in (4.7) will be
justified shortly.

We can identify four classes of trajectories. Note that
by (2.26), |¢,| — o implies that the evolution approaches
de Sitter space. The first class of trajectories start in the
de Sitter phase at ¢,— — o and evolve to de Sitter at
¢,— 0. For small initial values of ¢, trajectories start-
ing at ¢,=— o reach a turning point and return to
¢,=— . The third class of trajectories are periodic
solutions about Minkowski space-time (¢;=¢,=0). Fi-
nally, trajectories starting with small ¢, and ¢,/¢, with
¢, positive evolve toward de Sitter solutions at ¢,= .
There are two separatrices dividing phase space into re-
gions corresponding to the four above classes (see Fig. 8).

Note that in order to prevent solutions starting with
¢,>>1 and ¢,~0 from escaping to ¢, = at ¢, <1 in
finite time (such solutions which violate the LCH and
would lead to singularities in higher-order curvature in-
variants) it was necessary to add the logarithmic correc-

Phase space is the half plane ¢; 2 0. Negative values of
¢, are unphysical since by (2.25) and using the small ¢,
asymptotic form of V,(¢,), they would correspond to
imaginary values for H(¢). This half plane can be divided

b FIG. 7. Phase-space diagram
for the spatially flat (k =0)
1 universe with limiting curvature
based on the potentials (4.7) and
7 (4.8). There is no matter (¢ =0).

Vi<l ¢ <1, 4.4)
and
1
Vi<¢,—Ing,+0 b ], ¢ >1, (4.5)  tion term to V(¢,).
1
V, «const+ O €1 y $>>1, (4.6)
&,
R
i
o i
ik !
i
h
! ) 7
v
i s
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FIG. 8. Sketch of the generic phase-space diagram for a
two-field model with k =c =0 and potentials satisfying the
asymptotic conditions (4.4)—(4.6). Lines with arrows indicate
phase-space trajectories, arrows pointing in the direction of in-
creasing time. Separatrices are shown as dashed lines. With 4,
B, C, and D we denote the asymptotic region of phase space dis-
cussed in the text.

into four regions: in region 4, ¢;>>1 and |¢,| >>1; in re-
gion B, ¢;>>1 and |¢,| <<1; in region C, ¢,<<1 and
|¢,] <<1; and in region D, ¢, <<1 and |¢,| >>1. We will
analyze the phase-space trajectories in each of the above
regions, focusing on three features: the asymptotic ex-
pressions for d¢,/d ¢, (which give the tangent vectors to
the trajectories), the separatrices, and the equations for
the trajectories. To concretize the discussion we use the
potentials (4.7) and (4.8). However, except in region B,
the asymptotic solutions are independent of the specific
choice of potentials.
In region A, Eq. (4.3) becomes

4, _v3 41
g, " 4

= %
V3+4-1
)

. 4.9)

The direction of the tangent vectors is sketched in Fig. 8.
Arrows indicate the direction of increasing time and are
obtained by inspecting (4.1) and (4.2) directly. By in-
specting the tangent vectors, it is clear that all solutions
in the upper region ¢,>1 quickly approach de Sitter
space (|¢,| — oo implies de Sitter space). In the lower re-
gion ¢, < —1 there are two domains separated by a
separatrix which for ¢;>>1 and |¢,| >>1 is close to the
line of turning points where d¢,/d ¢, =0, its equation be-
ing given by

(23 4
3 V3 (4.10)
(see Fig. 8). To the right of the separatrix, trajectories
correspond to solutions starting out in de Sitter phase.
To the left of the line given by (4.10) we have
d¢,/d ¢, >0 and trajectories go off to de Sitter space at
¢,— — oo. In all cases, de Sitter space is reached at finite
¢, values. This is seen by explicitly integrating (4.9). In
the region where the first term on the right-hand side of
(4.9) dominates, we have

-3
¢1zc_'§*¢z ’

while in the domain where the second term dominates the
approximate solution is

(4.11)

1

e (4.12)
$43+e

é1

(c is a constant of integration). Note that all of the solu-
tions starting in region A start in de Sitter space and end
up in de Sitter space.

In region B the tangents in phase space are given by

b 5 1
‘1¢l ¢1¢2 ’

which integrates to

(4.13)

phi2

FIG. 9. Projection onto the
(¢1,4,) plane of the three-
dimensional phase-space dia-

gram (¢,,¢,,a), for a two-field
model which is spatially flat but
contains matter. The potentials
used are (4.7) and (4.8).
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phi2

FIG. 10. Same for a two-field
model without matter but in-
cluding spatial curvature (k#0).

1
¢, =cexp [273(;5%] . (4.14)

The tangent vectors are again sketched in Fig. 8. From
(4.14) it follows that trajectories leave region B at a finite
value of ¢,. They enter region 4 and hence asymptoti-
cally approach de Sitter space.

In region C, Eq. (4.3) becomes

1 %
V12 ¢ |
The separatrix in the upper half planes is close to the line

of turning points d¢,/d ¢, =0 for large values of ¢;:
by =+12'412(1—3¢,)' % .

1—3¢,— (4.15)

(4.16)

Where the first term dominates, the trajectories obey

1
¢lz—7§¢§+c . 4.17)
From the sketch of Fig. 8, it is clear that the trajectories
which pass through ¢,=¢,=0 with ¢,/¢,(¢,=¢,=0)
not too large correspond to periodic motion about Min-
kowski space. This, as in the model of Sec. III, is an indi-
cation that Minkowski space is stable in our theory to-
ward homogeneous perturbations.

Finally, in region D the equation for the tangent vector
is
d¢, V73
—— =+ Tlﬁ%

(4.18)
dé,

= 1
"/ - = .
3+ 2V3¢, ]

There is a separatrix which is (for large ¢;) approximately
described by

I2
o
N
»
T

FIG. 11. Trajectories in the
(I,,H) plane for the same model
as in Fig. 10.
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1

$o=— b, (4.19)
To the right of this line, the trajectories are given by

$r=c—3¢;° (4.20)
and to the left by

gr~ce 4.21)

In conclusion, all solutions are either periodic about
Minkowski space or are asymptotically de Sitter. All
solutions can be extended to t =3 o, and hence there are
no singularities.

As in the model of Sec. III, including matter does not
effect the asymptotic solutions. The coupling between
matter and gravity is asymptotically free also in the
theory with action (2.24). However, including matter
changes the nature of solutions starting near Minkowski
space. These solutions now approach de Sitter space (see
Fig. 9). This result is not surprising, since also in Ein-
stein gravity Minkowski space is not a solution of the
field equations in the presence of matter.

The projections of some phase-space trajectories onto
the (¢;,¢,) plane in a model with k0 but ¢ =0 are
shown in Fig. 10. As in the single-field model of Sec. III,
the trajectories initially evolve as for k =0 toward de Sit-
ter space. Hence, for finite ¢;, ¢, becomes very large.
Eventually, however, the curvature terms become impor-
tant; ¢, reaches a turning point and rapidly (within time
period H, !) relaxes to zero (for finite value of ¢;). As is
obvious from Fig. 11, the rapid decrease in ¢, corre-
sponds to the de Sitter bounce during which H changes
sign.

V. CONCLUSIONS AND DISCUSSION

We heve constructed a theory of gravity in which all
homogeneous and isotropic solutions (not only special
solutions as in some other models [23]) are nonsingular,
regardless of the matter content of the Universe. Our
effective action for gravity contains higher-derivative
terms which modify the Einstein action at high curva-
tures. Such terms are expected to be important near the
Planck curvature in any fundamental theory such as
quantum gravity or string theory.

Most higher-derivative gravity theories have much
worse singularity properties than Einstein gravity. We
use a particular construction based on implementing the
“limiting curvature hypothesis” to obtain a class of mod-
els without singularities. We discussed two models, one
in which all curvature invariants are bounded and all

solutions except those periodic about Minkowski space
asymptotically approach de Sitter space (Sec. IV) and a
simpler model without limiting curvature (Sec. III).

The theory presented in this paper is “asymptotically
free” in the sense that the coupling of matter to gravity
goes to zero as the curvature approaches its limiting
value (similar features have been discussed by Linde [24]
under the name “gravitational confinement”).

When applied to an expanding universe, our theory im-
plies that it started out in a de Sitter phase with scale fac-
tor a(t)=e™ (for k =0) or else (for k =1) it emerged
from a de Sitter bounce. In particular, there was a period
of inflation driven by gravity. This is no surprise as it is
well known [25] that higher-derivative gravity theories
often produce inflation.

Note that the property of asymptotic freedom might
also justify using the effective-action approach to gravity
until the curvature reaches the Planck scale. Asymptotic
freedom will also play an important role in controlling
nonlocal terms. For example, nonlocal terms due to par-
ticle production may be expected to vanish in the asymp-
totic regions of phase space.

Our action is constructed by adding two Lagrange-
multiplier terms (and their corresponding potentials) to
the Einstein action. Each Lagrange multiplier is coupled
to a curvature invariant. The role of the first Langrange
multiplier is to limit the curvature; the role of the second
one (¢,) is to force space-time to be de Sitter at large cur-
vature. For a homogeneous and isotropic model, it was
sufficient to couple ¢, to the invariant I, =4R, R*'—R 2
since in this case I, =0 singles out de Sitter space.

However, for an anisotropic cosmology, we must ex-
tend the invariant I, by including a term which effects
the anisotropy. In a subsequent paper [13] (see also Ref.
[26]) we will show that I,=4R R W—R2+4C? is an ap-
propriate invariant. This invariant also works for a
spherically symmetric metric. Thus, in a model such as
the one presented here, but with the new I,, we will be
able to show that there will be no singularities inside the
black hole horizon [13].

Open questions include the generalization of our model
to general inhomogeneous metrics and a full stability
analysis.
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