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Equations of state and transport equations in viscous cosmological models
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The aim of this paper is to compare the evolution of viscous cosmological models for three different
constitutive equations for the viscous pressure o, namely: Eckart theory (o.= —gV„u"), Maxwell-
Cattaneo theory (cr + rcr= —'g'V„u "), and generalized second-order Israel-Stewart theory
(cr+rcr= —'gV„u"—2)o Tpu "V~(vrlTg)). In the last case, the nonlinear terms may be interpreted as a
consequence of nonlinear equations of state for absolute temperature and thermodynamic pressure. We
show that the nonlinear terms of the latter equation are compatible with a viscosity-driven inflationary
expansion.

PACS number(s): 98.80.Hw, 04.40.+c, 05.70.Ln

I. INTRODUCTION

Viscous effects are the subject of growing attention in
the analysis of cosmological models [1—4]. The simplest
and most usual way to take them into account is to con-
sider the well-known linear relation between bulk viscous
pressure o. and the divergence of the barycentric velocity
u" as

ro+o = —gV„u", (2)

where ~ indicates the relaxation time, has been proposed
instead. This relationship, also known as the Maxwell-
Cattaneo equation, predicts a finite speed of propagation
for viscous pulses, given by

' 1/2

C
P7

with p the energy density. When ~—+0, v diverges. Some
authors [6,7,22] have applied Eq. (2) for the analysis of
cosmological models.

Recently, Hiscock and Salmonson [8] (HS, hereafter)
have used a generalization of Eq. (2) of the form

1 7o. +ro = —gV u"— go Tpu "V—
2 Tpg

(4)

This equation incorporates nonlinear terms which are not
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o = —g'V„u",

where g denotes the viscosity coefficient. This equation,
which is also called Eckart's equation, is well known, but
it, however, has two important shortcomings, namely (a)
it predicts an infinite speed for the propagation of viscous
pulses, and (b) it presents some pathological instabilities
[5]. In order to overcome these problems, the relaxation-
al equation

present in (2). The motivation for these terms must be
looked for in the thermodynamic formalism of extended
irreversible thermodynamics [9—16]. In HS the results
obtained with (4) are contrasted with those obtained with
(2). These authors showed that important differences
arise, namely, at late times the behavior of the cosmologi-
cal scale factor a (t) in the various theories is remarkably
different. In the Eckart cosmology, which uses for o. Eq.
(1), the scale factor behaves as a(t)=t ~ . When the
viscous pressure is described by the purely relaxational
equation (2), one has an exponential or inflationary
behavior a(t)=exp(kt). Finally, when the nonlinear
terms are included, as in Eq. (4), the scale factor a(t)
behaves asymptotically as a(t)=t HS concl.ude that
the viscosity-driven inAation is a spurious effect due to
the neglect of nonlinear terms in the transport equation
(4).

In their analysis, HS used the equations of state ob-
tained from the Boltzmann equation. Therefore, their
conclusions may follow either from the inclusion of non-
linear terms in (4) or from the special form adopted for
the equation of state for p, T, g or r Since HS .raised an
important point in the description of viscous phenomena,
it is worthwhile to examine to what extent their con-
clusions are influenced by the choice of the equations of
state.

The purpose of our paper is twofold: (a) to give a
different, but complementary, interpretation of the non-
linear terms appearing in (4), by relating them to the
nonequilibrium equations of state of extended irreversible
thermodynamics, and (b) to use a different set of equa-
tions of state than that of HS. Our equations of state are
commonly used in standard cosmological literature, so
that it is worthwhile to check how the equations of state
for p, T, and fir may affect the behavior of the cosmo-
logica1 model. We shall not discuss the relative merits of
the different sets of equations of state in the description
of the Universe; instead, our attention will be focused on
their mathematical consequences for the evolution of
their respective cosmological models. In Sec. II we deal
with the purely thermodynamical aspect, whereas Sec. III
is devoted to its cosmological consequence.
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II. EXTENDED THERMODYNAMICS:
EQUATIONS OF STATE AND

TRANSPORT EQUATIONS

The fundamental variables for describing relativistic
dissipative fluids are the energy-stress tensor T" and the
particle number four-vector N", which may be written as
[1-3,9-12]

T""=pu"u "+(p+o.)bF"+q"u'+q u" +ri" (5)

and

N"= nu", (6)

where n is the number density, u" the four-velocity of the
fluid, p the equilibrium pressure, 6" the projection ten-
sor orthogonal to u", a the bulk-viscous stress, q" the
heat flux, and H the shear-viscous stress tensor. In or-
der that the stress tensor T" is unique, the heat flux and
the shear-viscous stress have to satisfy the constraints

V" u =q"u„=H u =~„"=8—~ "=0 . (7)

The nonequilibrium entropy flow is given in extended ir-
reversible thermodynamics by the Israel-Stewart expres-
sion [10,11,16]

1 u"
s =snu" + — [—poo +piq q +p2r"'&„,]T 2

cLpaq cx )7~q+ +
T

(8)

P)0 (9)

The conservation of the energy and momentum take the
form [5,6]

V„T" =0,
V„N =0.

(10)

According to (8)—(11) the entropy production has the
form [8,10,16]

where T is the absolute temperature and s the entropy per
particle. The three parameters p; model the deviation of
the entropy density with respect to the local equilibrium
entropy due to the nonvanishing values of the flows. The
two other coefficients e; describe couplings between the
heat flux and the viscous stress deviation from equilibri-
um. If the a; and p; are taken to be identically zero, we
find Eckart's theory [17], which is the usual local-
equilibrium description of nonequilibrium systems.

According to the second law of thermodynamics the
divergence of the entropy four-vector is positive
[10,16,17]:

TV„s"= o[V—„u "+Pou "V„oaoV.„q"+—,' To V„((PO/—T)u")]

—q„[b,"'[(I/T)V T+urV u +PiurV q aoV,—o —
aVi& r+~,'Tq V&((Pi/—T)ur)

oTV,(ao/T—) TrrV (a, /—T)] ]—r„,(V"u +PzurV ri' a, V"q +—,'TH V (P2—/T)u~) . (12)

Slightly more general but more cumbersome expressions than (12) may be found in [8,10]. It is usual to express (12) in
the short form

TV„s"= crXO —q„X", —

Note that the time derivatives of the fluxes a, q„, and ~„appear in Xp, X"„and X~2, respectively. Then, in order to ob-
tain evolution equations for the fluxes one assumes that Xp, X~&, and X~2 are respectively proportional to a, q", and H .
In this way, and after conveniently identifying the proportionality coefficients, one may write (12) as [9—11,16]

a2 qqTVs~= +" +"
sT 2g

(13)

where ~, g are the coefficients of thermal conductivity and shear viscosity respectively. The evolution equations for a,
q", and H read

cr = /[V„u "—
+Pou "V„o aoV q"+ ,' T—oV„((PO/T —)u").],

q"= @TED""[(1/T)V —T+u~V u, +Piu~Vrq —aoV o aiV rr ,' Tq Vr((Pi/—T)ur)—
—o TV (ao/T) —Tr~V&(ai/T)],

H"= —2q(V"u +P2urV~v a, V"q +—,'TH Vr((Pz/T)ur)) —.

(14)

(15)

(16)

To return to the Eckart theory, which has just five
variables (three components of the velocity and two ther-
modynamic variables), one only has to set a; =p; =0.
Equation (14) (with vanishing heat flux) is the equation

I

used by HS as the basis of their model, namely, Eq. (4).
Here, we want to stress a complementary point of view

about the nonlinear terms appearing in (14) or in (4): we
wish to relate them to the nonequilibrium equations of
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1s=se o
2 Tgp

(17)

Here, the comoving reference is assumed, and we have
identified Po—=rip/, which is well known in extended ir-
reversible thermodynamics [16].

The generalized Gibbs equation corresponding to (17)
may be written as

state for the temperature and pressure. The meaning of
these generalized equations is an active topic in none-
quilibrium thermodynamics [18—20], so that it is useful
to examine this connection. For the sake of simplicity,
we will do that for vanishing heat Aux and shear-viscous
stress.

If the heat Aux and the shear-viscous stress vanish, the
entropy per unit mass of the deviation from equilibrium
has the form

the equation of HS.
The difference with these authors is simply that they

arrived at (24) [or (4)] without explicitly writing the
Gibbs equation, but by directly differentiating Eq. (14).
Their approach is of course correct. However, since the
meaning of generalized temperature and thermodynamic
pressure in nonequilibrium situations is one of the basic
thermodynamic problems, we think that it is of interest
to outline that the nonlinear term in (24) comes, precise-
ly, from the generalized temperature 0 and the general-
ized pressure m, when the Gibbs equation corresponding
to the generalized entropies is taken into account. Then,
we see that the nonclassical terms in L9 and m appearing in
(19) and (20) lead indeed to definite physical conse-
quences.

III. COSMOLOGICAL APPLICATION

ds=8 'dw+8 'n dv — o do,T p
(18)

where U=(1/p) is the volume per unit of mass energy
and w the internal energy per unit volume, and where, in
analogy with the standard Eckart theory, the generalized
absolute temperature 8 and generalized pressure m. have
been defined as [16—20]

p =nmp (25)

In this section we apply Eq. (24) to the description of a
cosmological model along the lines of Ref. [8]. In order
to solve the dynamical equations, we need equations of
state for T, p and also for the new parameter r/g of the
extended theory. HS have used the equations of state
arising from the Boltzmann equation, namely,

Bs
Bw

1 2 ~ U=T o
2 Bw Tg

(19)
2mc

k
(26)

Bs
BU

W, CT

1 2 8 U7"=T p cT
2 BU Tg

(20)

ps =8 'pw+0 'mpU — o.ci
T

Taking into account (19) and (20) we get

(21)

We may obtain explicitly the expression for the entropy
production by writing the time derivative of s as

mcus 0
(27)

p= Ao[p 'Ki(p)+3p K2(p)], (28)

where p, m, Ao, I, and K;(p) are respectively the inverse
temperature, particle mass, a constant, collision integral,
and Bessel's functions, and where A=3y[1+ I/gp] —5,
r) =K3(p)/K2(p), and y is the solution of

ps = T 'pw + T 'ppU ——o pu "V
2 " re

(22)

=P (I+5g/P —g ) .
y —1

Instead of (25)—(28) we propose to use the much
simpler set of equations

The first two terms are those of the standard theory, and
are given by the well-known expression —T 'crV„u",
therefore we may write

p =Ap

g=ap

p.

(29)

(30)

(31)
ps= —T o. V u "+—o+ —

Topu "V~ —1 1 7

2

7 . 1o = —g V u "+—o. +—
Topu "V

2 Tgp
(24)

If one takes into account just the first term on the right-
hand side, the standard Eq. (1) follows. If the two first
terms are considered, one obtains (2). And if the whole
right-hand side is taken into account, we have essentially

(23)

We now assume that o. is proportional to its conjugate
thermodynamic force in (2) and obtain

The first equation, with A, is a constant (A, =1/3 for
thermal radiation and A, =O for dust), is standard in
cosmological models, whereas the third one was proposed
by Belinskii et al. [21,22] as a simple procedure to ensure
that the speed of viscous pulses does not exceed the speed
of light [see Eq. (3)]. The equations of state (29)—(31) are
simpler and more usual in cosmology than those of HS.
We insist again that we are not referring here to the prob-
lem of which equations are most suited to the description
of the real world; we only wish to emphasize the decisive
in6uence of the equations of state concerning the possibil-
ity of viscous inflation. It is then worthwhile to analyze
to what extent the results of these authors are sensitive to
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the choice of the equations of state.
We will only consider the case of flat spatial sections,

k =0, in order to simplify the equations. For a
Friedmann-Robertson-Walker universe, the Einstein
equations can be written as

H+3(1+A, )HH= H—+ H+ —(1+A, )H
2 2

(n+2)——Pm (39)

p
3 2H (32) Note that this equation also admits an inflationary

solution with H=H =0, and Ho given again by (36).
H+ 3(A, +1)H = 4'—Gtr, (33)

IV. CONCLUDING REMARKS
with H —=a /a the Hubble factor and a (t) the scale factor
of the universe.

According to (33), the constitutive equation for o
should play an important role in the evolution equation
for the universe. When the Eckart equation (1) is used
one obtains

H+ ~(/+1)H2 —9P—'H2~+'=0 (34)

with P =a '(3/8~G)', and where we have employed
(28)—(30). If instead the relaxational equation (2) is used,
one has

H+H[3(1+A, )H+13 H ]

+H [—,'(I+A, )P H' —']=0—(35)

Note that both equations admit as a solution an
inflationary expansion given by

—[(P /3)( 1 +/)]1/(2m —1) (36)

1 . 1 1
t7 = —

g 3H +—o + Topu "V„— .
p 2 Tp

(37)

To relate T with p we assume T=bp" with b a positive
constant. For instance, for radiation, n =

—,'. When this
expression is used, (37) takes the form

0= —
g 3H+ —o — o

1 . n+2 p
p 2 p

(38)

Combination of (38) with (33) and (32) yields

Now, we want to ascertain the effect of the nonlinear
terms included in (22). Taking into account that g/r=p
and that V„u"=3H, the equation (24) for the viscous
pressure takes the form

We have related the nonlinear terms of the transport
equation used by HS to the generalized nonequilibrium
equations of state for pressure and temperature. This
connection is of interest from a thermodynamic point of
view, for it shows that the nonclassical equations, instead
of being an unphysical artifact, may have physical effects.
In fact it is known that the generalized equation of state
for absolute temperature in rigid heat conductors leads to
different speed for thermal pulses in a nonequilibrium
steady state along or opposed to the direction of the
mean heat flux [23,24].

When the equations of state (29)—(31) are used together
with the transport equation (24), one obtains Eq. (36) for
the evolution of the cosmological model. This equation
may have a solution of the kind H =const, i.e., an
inflationary expansion of viscous origin. This is not the
case in the model of HS, who argue that the viscosity-
driven inflationary behavior may be a pathological one
resulting from the use of truncated transport equations,
as those of Eckart [Eq. (1)] or Maxwell-Cattaneo (2).
Here it is seen that the conclusion of HS depends on the
equations of state used in their work (those correspond-
ing to a Boltzmann gas), so that it is not a general con-
clusion. Of course, which equations of state and which
transport equations are the most suitable for the Universe
is an open problem.
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