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New types of in8ationary universe
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We investigate a range of scalar-field potentials which give rise to slow-roll inflation. The behavior of
the scale factor of the Universe is derived in each case. Exact solutions are found which illustrate new

types of inAationary behavior that arise when the potential is asymptotically of the form
V= VOP exp(AQ ). The gravitational wave and density perturbation spectral indices arising in these
models are derived and discussed. We give a detailed discussion of the interrelationships between our
exact solutions and approximate solutions derived in the slow-roll approximation.

PACS number(s): 98.80.Cq

I. INTRODUCTION

The concept of chaotic inAation has motivated the
study of a wide variety of scalar-field potentials as possi-
ble sources of the energy-momentum tensor of matter
during the early stages of the Universe. At first, the al-
ternatives were studied solely with a view to discovering
the most natural manifestation of the inAationary
universe concept, demonstrating its ubiquity and conse-
quences [l]. Recent observations by the Cosmic Back-
ground Explorer (COBE) satellite [2] have led to detailed
studies of the density and gravitational wave Auctuations
that would be produced during any period of inflation [3].
The fact that the contributions of the density and gravita-
tional wave Auctuations differ significantly in different
inAationary universe models has motivated a detailed
study of all the alternatives. The original de Sitter style
of inAation proposed by Guth has been extensively stud-
ied, together with power-law inflationary models [4],
since these can also arise from scalar-tensor gravity
theories [5]. The author found a class of "intermediate"
inflationary universe models [6] (in which the scale factor
increases as the exponential of a fractional power of the
time) which have turned out to have very interesting
properties with regard to the balance of density and grav-
itational waves produced during inflation [7]. This col-
lection of different inAationary universe models leads one
to delineate the whole range of inAationary behaviors
that are possible for the set of scalar-field potentials
which allow slow rolling of the scalar field. In this paper
we shall show how the situation can be classified in a
straightforward way in terms of the behavior of the
scalar-field potential. A number of new types of inAation
will be found and are illustrated by a set of new exact
solutions for the zero-curvature Friedmann universe con-
taining a scalar-field source with potential V(P).

In Sec. II we give a general discussion of the evolution
of scalar fields in the Aat Friedmann universe and derive
conditions on the potential under which inAation will not
occur and persist as t —+ ~. In Sec. III two broad classes
of new exact inAationary universe solutions are derived
for potentials which combine products of power-law with
exponential behavior for P. In Sec. IV the density inho-

mogeneity and gravitational wave production during
these new varieties of inAation are computed and dis-
cussed. In Sec. V we relate our exact solutions and their
asymptotic behaviors to the more general behavior of
inAationary universes in the slow-roll regime.

II. SCALAR FIELDS IN FRIEDMANN UNIVERSES

The Einstein equations with 8mG =c =1 reduce to the set

3H =—'/+V
2H= —

P

P+3HP+ V'(P) =0 .

(3)

Any one of these three equations may be derived from the
remaining two. For our purposes, Eqs. (2) and (3) will

prove most useful.
Various attempts have been made to prove "no-hair"

theorems for Eqs. (2)—(4) and their anisotropic generali-
zations; this has led to some confusion. If a potential
possesses a minimum into which the P field evolves, then
one cannot expect to prove a no-hair theorem even if
inflation does occur. For example, if V= Vcg, then for a
suitable choice of Vo and of the initial value of P, a
period of de Sitter inAation will occur; however, there can
be no asymptotic approach of the space-time to the de
Sitter metric because the period of inAation will end when
the P field begins oscillating about the minimum at / =0.
Heusler [8] has investigated the averaged behavior of the
P field in potentials with a minimum, but his subsequent
use of those results to draw conclusions about the late-
time isotropization of homogeneous models is not
relevant to the issue of whether inAation can isotropize
the expansion. No inAationary model, in which inAation
ends, can ensure isotropization of the Universe from arbi-
trary initial conditions as t —+ ~. It does not need to. It

We shall be interested in the evolution of a scalar field

P with potential V(P) in a zero-curvature Friedmann
universe with expansion scale factor a (t ). We define the
Hubble expansion parameter as

H=a/a .
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merely offers a way of ensuring that the level of anisotro-
py is very small at some finite time ( —10' yr) after the
inflation ended. This situation means that while one can
prove a no-hair theorem for power-law inflation driven
by specific choices of scalar-field potential (e.g., exponen-
tial [9]) or by specifying the equation of state to be a per-
fect Quid with density p and pressure p obeying p+ 3p & 0
[4,10], there can be no proof of a no-hair theorem for
power-law inflation which demands only that p+3p &0.
For this would permit the inclusion of scalar fields whose
potentials possess minima in which the field ultimately
oscillates at late time after inAation has occurred.

If V=A,P, where N is a positive integer, then the P
field will evolve into a regime in which it performs oscil-
lations about the potential minimum with a period much
shorter than the expansion time scale of the background
universe. In this regime we can neglect H to a first ap-
proximation in (2) to obtain [11]

where the integration constant 3 gives the amplitude
of the oscillations. For a particular choice V, this equa-
tion may be integrated to obtain the first approximation
to P(t). Denote this "adiabatic" solution by P, . Now al-
low 3 to become a slowly varying function of t, so that

P=P, +PA /A .

Substituting into (4) with the assumption of a slow time
variation of A that (so A « AH), this gives

(N+1)A = —3AH;

hence,
—3/(, N+ 1)

1H= —,P=( —')' lnt3i' 3

will be a stable attractor as t~~. If this solution is
stable as t ~ ~ when VXO, then it indicates that
inflation will not continue indefinitely (we are ignoring
the reheating and decay of the P field here). Consider a
small perturbation of (11) by small quantities e and h, so
that

H=(1+h)/3t, P=(1+a)(—', )'~21nt . (12)

Keeping only terms linear in h and F., Eqs. (2), (3), and
(12) give

h(t)=h, t '+3t ' I t2V(P„)dt, (13)

where P, is given by P in (11). For any particular choice
of V, we can use (13) to determine the stability of the
noninflationary behavior. A solution of (13) which de-
cays with time is only a sufhcient condition for inflation
not to occur. It is not a necessary condition because
another term (for example, the curvature) might come to
dominate. As expected, Eq. (13) confirms that inflation
arises when V= Vo = const. Consider now the more gen-
eral potential

V(P)= VOP exp[ —AP ], M, N const . (14)

Using (13), we see that when N=O and M) 1 the
noninflationary behavior a ~ t ~ remains stable (another
proof of this will be given in Sec. V). This will also be the
case for M ) 1 when NAO. When M=O, V~ P, and if
there is no minimum, then there is an asymptotic ap-
proach to the intermediate inAationary models found by
the author [6,7], in which

—6N/(, N+ 1)ppo:a (9)

Hence its averaged behavior around the minimum of the
potential mimics that of a perfect Quid with an equation
of state p =(y —1)p in which

This means that the total-energy density of the scalar
field on the right-hand side of (2) evolves as [11]

a(t) ~ exp[At ],
y~t/

V(y) & A 2y2y
—p(2Ap)ti/2(1 p2y

—2)

where

P= 4(f ' —1) . —

(16)

(17a)

(17b)

y =2N(1+N) (10)
The range of general behaviors of V(P) remaining to be

investigated is when NXO and 0 & M & l.

We see that 1 + y ~ 2 and the behavior is noninAationary
(inflation requires 0 & y & —,

' ). If k =0, the expansion
asymptotes to a cct; if k &0, then it approaches a cc t
[12].

Now consider potentials without minima in which
inflation occurs by slow rolling. One can regard these as
descriptions of the slow-roll portion of a more complicat-
ed potential possessing one or more minima. It is useful
to begin by proving something about the scalar-field po-
tentials which do not lead to inAation. If the potential
never comes to dominate the solution of (2) and (3) as
t ~ m, then (with the exception of the case where
V~ exp[ —

A,Pj and A, & 2) the kinetic energy of P will
dominate the evolution and the solution will approach
the one with V=O; that is, the free-field solution

III. EXACT SOLUTIONS

We first search for solutions of (2) and (3) with

P= A(lnt B)", A, B—, n const .

Hence, from (3), we have

1 A 2n 2t —
2(lnt B )2n —2

and introducing O=lnt —B, we have

I g 2&2 g2n —2e —
Od 02

and so

(18)

(19)

(20)
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A2 2 —1, 82n —2+
2 dt9

d 2n —
2( 82n —2

)+ ~ ~ ~ +
dg2n 2

=—'A n t 'X„(8) . (21)

Thus we see that the constant B permits an overall
rescaling of the potential. At large P the scalar field
is evolving in a potential of the asymptotic form
V ~ P

/ exp[ —2(P/A ) / ]. When B = 1 there is a
simpler exact solution with

a(t ) ~ t(9A Int)/16

The corresponding potential is determined from (2) and is

V(P)= —,'A n exp[ 2B—]exp[ —2(P/A )' "]X„(8),
(22)

where 8=(hatt/A )' ". The expansion scale factor is given
by

(iii) n =2. The expansion rate now has the form

H=2A t '[(lnt B—) +2(lnt B)+—2];
hence,

a{t)o- expI2A [—,'ln t+(1 B) ln—t

(32)

a(t) ~ exp —,'A n fX„(8)d8 (23) +(B 2B+2—) lnt ]], (33)

which, since O=lnt —B, has the form of a finite series:

g2n —1

a~exp —3 n +8 " +(2n —2)8"
2 2n 1

with the potential given by

V= 12A exp I
—2B —2(P/A )'

X [(P/A )+2(P/A )' +2]
d2n —1+. . . + (821t —2}

d g2n —1

—2A P exp [ 2B —2(P/A—)'/ ] . (34)

Thus (18), (22), and either (23) or (24) give the complete
exact solution.

A number of particular cases in which (2n —2) is an
integer are instructive.

(i) n =1. This gives the well-known case of power-law
inflation with

(35)I)}=A(lnt)",

H= —'A n t '(lnt) "
2

a(t) ~ exp[ I A n (2n —1) '(lnt) "
(36)

H= —'A t
2

(25)
(37)

a ( t ) tx- t A /2

V(P)= —,'A (3A —2) exp[ 2B —2/A —'] .

(26)
with a potential of the form

(27)
V(P)= —,A n (P/A) ' / exp[ —2(P/A) /"] . (38)

The asymptotic forms of the general solutions
(18)—(24) for large P and large t, for general n ) 1, de-
scribe slow-rolling inflation in potentials that combine
power-law and fractional exponential functions of {(}. For
n) 1, they are

The choice 3 A =2 gives the free-field solution (11).
(ii) n =

—,'. This gives a new type of inflationary model
with

A second broad class of new inflationary models can be
found with the general behavior

H =9 A 't '( lnt B+ 1 )/8— (28) P= A(t~+B)", (39)

and an expansion scale factor

(t) t' " ' 't"" '"" "
It arises from the potential

V=exp[ 2B —2(hatt/A ) —
] A [1+({tt/A )

243
64

2

(y/A )2/3
8

(30)

H = —I g2 A 211 2 t 212 11(B+ t 2 )2n
2

Writing

(40)

(41)

exact solutions are obtained in the cases where
(2n —2)=—m is a positive integer. We find, in this case,
that H is given by a finite binomial series:

where 3 )0, B, n, and A, are constants. The Hubble rate
is given by

1 m+2 A,

H= ——XAn +. +
2 m+2 —X

m
Bk m+k —A,

k

m+k —X

—1Bm 1 —t}I.

2 —X
(42)
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Hence the expansion scale factor integrates to the form

'1 22a(t)=exp —A n
2

2n 2
Bk A.(2n —k)B tt2n' k

+ ~ ~ ~ +
2n(A, ' 2—n ) (2n —k)(A, ' —2n+k)

B2n —2 2A.

+ ~ ~ ~ +
2(A, ' —2)

(43)

1/n

When 8 =0 we recover the previously studied case of "intermediate" inflation [6,7] if A, —2n )0, that is, with n A( —,',

when n and k are positive. This is also the asymptotic behavior of the general solution (43) a large t T.he form of the
potential that gives the evolution (43) is

2(n —1)/n (2k —2) /A,

V(P)= ——A, A n —8Z Z 2

2 A

1/n (2n —A, ) 1/n 2 —X

3 A
+—A4X'n4

4 2n A,
+B2n —2

2 —X '

9Aa(t) ~ exp
3 Bt+

3(3—
A, ') 2(2 —A. ')

The asymptotic form of this function is an inverse power
law in P as /~ca, just as one expects from (15)—(17),
since the behavior of the scale factor is that of intermedi-
ate infiation. Since the general solution (39), (43), and
(44) is algebraically cumbersome, it is instructive to
display the explicit form of the scale factor in two partic-
ular cases (A,

' )2n ).
(i) n = —,':

3P /2
y+ fy2

2H'

H

2H"

HP

where H' =dH /dP. —From (18)—(24) we have

H' 2(n —1) H" 2(n —1)(n —2)
H n(b

' H n ~$2

Hence, asymptotically, as P~ ~,

(47)

(48)

(49)

(ii) n =2:
44K, 2Bt 3X

a(t) o- exp —2A +
4(4—A, ') 3(3—A, ')

(45)

and

4(n —1)(n —2)
2/2

8(n —1)
n P

(50)

(51)

B2t2A,
+I

2(2 —A. ') (46) The scalar and gravitational wave spectral indices n, and
n are given to first order in the slow-roll parameters e
and q as [7]

IV. SCALAR AND TENSOR FLUCTUATIONS n, =1—4e+2g, (52)

As we remarked in the Introduction, one of the most
interesting features of inflationary universe models is the
spectral slope of scalar and tensor fluctuations and their
contribution to the measured COBE signal. In this spirit
we can draw some conclusions about the density and
gravitational wave perturbations arising in the slow-roll
regime, at large P, of the two new classes of infiationary
expansion given in Sec. III above. The second class of
solutions, [Eqs. (39)—(44)] approaches the intermediate
infiationary model (15)—(17) as P~ oo. This model was
discussed in detail by Barrow and Liddle [7], and their
conclusions will apply to (39)—(44) with only small
modifications. The first class of new solutions, [Eqs.
(18)—(24)] with asymptotic slow-roll behavior given by
(35)—(38) is not contained in previous studies and requires
a separate analysis. Following the analysis of the inter-
mediate infiationary models in [7], we introduce the
slow-roll parameters e and q:

fig = 2F, (53)

where e and g are to be evaluated when the wave number
of interest leaves the horizon during inflation. Hence,
from (50)—(51), we obtain

n, —1 —8(1—n )(3n —2)n P (0,
n ——16(n —1) n

(54)

(55)

Since the inflationary solution which possesses the slow-
roll form (35)—(38) requires n to be an integer and n ) 1,
we always have n, & 1, and so a COBE-normalized spec-
trum has reduced small-scale power compared to a simi-
larly normalized scale-invariant spectrum. The relative
contribution made by the tensor and scalar modes to the
microwave background signal on a scale corresponding
to the 1th multipole of the spherical harmonic expansion
of the temperature anisotropy is [7]
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Rt(tensor)/(scalar) —12 4e. -99.2(n —1) n

or, equivalently, eliminating P using (54),

Rt —12.4(1 n—)(n, —1)(3n —2)

(56)

(57)

We see that for large P the gravitational wave contribu-
tion is small (recall that 3n —2 cannot be smaller than 1

in this solution).

V. DISCUSSION

By combining the results of this paper with our
knowledge of other inflationary models, we can produce a
tabulation of the results of scalar-field evolution down a
potential V(P), which is shown in Table I.

We note that the class of potentials shown in the last
row, with the form P exp[ —

A,P~], only includes those
with P =4(1—Q). An analysis of (2)—(4) in the slow-roll
approximation highlights why these special cases arise
and why the range of M and N values are so restricted in
the exact solutions. In the slow-roll approximation, the
Friedmann equations (2)—(4) reduce to

3H =V (58)

3HQ= —V' .

If we choose a potential of the form

V(tI))= Vog exp[ —
A,P~],

(59)

f (()' ~ ~ exp[ —,'AP~]dP=A( Vo/3)' (t+to), (61)

where to is an integration constant. The integral in (61)
exists in a simple closed form when 1 —Q ,'P=Q —1,——
that is, for

Vo, P, Q )0, A, )0, const, (60)

then, since V' ——
A,p

+~ '
Vo exp[ —

A,p~] as
(58) and (59) lead to

q —=(4—4Q P)/2—Q . (66)

When q is a positive integer, we can express the integral
in (65) as a finite series; thus,

q+1 k=q
expI —,'A/~I g ( —1)" k!(—,'AP~)~

k=0 k

=&(Vo/3)' '(t+to) . (67)

The case considered above, in which condition (62) holds,
corresponds to the simplest situation with q =0, and so
the right-hand side of (67) is 2A,

' exp I —,
'

A,P~ J. This en-

ables P to be expressed as an explicit function of t and so
H(t ), and hence a(t ), can be found from (58). But when
q&0, although t can be expressed as an explicit function
of P, this function cannot be inverted. Consequently, we
cannot find H(t) and a(t) explicitly in the cases where q
is a positive integer. The following conclusions can be
drawn. Since 2Q(q+2)=4 Nand M and—q are both
positive, our remarks are confined to the case with N & 4.

For a given q, the dominant term on the left-hand side
of (67) for large P will be contributed by the k =0 term in
the series. Hence, asymptotically,

2A, 'expPAQ~JQ~~-A(Vo/3)' (t+to), (68)

crate the entry in the last row of Table I after we substi-
tute N '=Q. We note the restriction N )—,

' on the entry
in Table I corresponds to the requirement that Q &2 in
(64), so that the Universe expands rather than contracts
as t —+~.

Finally, we indicate what occurs in the slow-roll ap-
proximation when (62) does not hold. If we put
u =exp( —,'Ax~), then (61) becomes

(2/A, )~+' f (lnu)~du=A(V /3)'~ (t+t ), (65)

where

P =4(1—Q), (62)
with q give by (66). We see that Q )0 ensures that P~ cc

as t ~ oo. Using (58), we see that
in which case (61) integrates to give

2exp[ —,'AP~]=A, Q(Vo/3)'~ (t+to) . (63)

a(t ) ~ exp I Q(2 —Q ) '(lnt )' (64)

We recognize (63) and (64) as the asymptotic forms
(35)—(38) for our first class of exact solutions which gen-

At large t, we obtain P~-(2/X) lnt. Using (58) and (61),
we get the evolution of the scale factor as

H=2/ —(t+t )
—iy( +«)~

0 (69)

If P =q =0, then we get power-law inAation with
Vo-expI —API as long as k &2. Since —,'P+qQ)0, the
inclusion of the last term in (69) serves to increase the
inAation over and above any which obtains in the power-
law case. However, we note that for PAOAQ the t(P)
relation [Eq. (68)] cannot be analytically inverted to yield
P(t ), and so we cannot obtain H( t ) explicitly from (58).

TABLE I. Results of scalar field evolution down a potential V(P).

Potential V(P)

Vo =const
exp( —A,P)

exp( —kP ), M) 2
y2M M ~Z+
P ", N&0
$4I+ ~~~+exp[ 2P~~+]

Scale factor a(t)

expat(Vs/3)'~ ]

t
E

1/3

4M/3(M + 1)

expI At ~' +

exp[ 'N (2N 1) '(lnt )— —

Inflation

yes
if A. (2
no
no (oscillates)
yes
if 1V& —'
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We can also examine the PAOWQ cases in terms of the
slow-roll parameters e and ri defined by Eqs. (47) and
(48). For a potential of the form (60), we have

[ P2y —2+ 1 g2Q2y2Q —2 gPQyQ
—2

] P2y —2+ ] g2Q2y2Q —2 gQyQ
—2(P+ Q

(70)

(71)

The slow-roll approximation corresponds to a&1 and
i7(1. Inflation will end when v= 1. The solution (68)

shows that t ~ ~ corresponds to P~ ca, and in this limit
(70) and (71) give e~O and r)~0 as required for the ex-
istence of slow-roll inilation as long as Q ( 1. This
confirms our earlier remarks following Eq. (14).
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