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The geometry of the spinning black holes of standard Einstein theory in 2+ 1 dimensions, with a nega-

tive cosmological constant, and without couplings to matter, is analyzed in detail. It is shown that the

black hole arises from identifications of points of anti —de Sitter space by a discrete subgroup of SO(2,2).
The generic black hole is a smooth manifold in the metric sense. The surface r =0 is not a curvature

singularity but, rather, a singularity in the causal structure. Continuing past it would introduce closed

timelike lines. However, simple examples show the regularity of the metric at r =0 to be unstable: cou-

plings to matter bring in a curvature singularity there. Kruskal coordinates and Penrose diagrams are

exhibited. Special attention is given to the limiting cases of (i) the spinless hole of zero mass, which

diA'ers from anti —de Sitter space and plays the role of the vacuum, and (ii) the spinning hole of maximal

angular momentum. A thorough classification of the elements of the Lie algebra of SO(2,2) is given in an

appendix.

PACS number(s): 97.60.Lf, 04.20.Jb

I. INTRDDUCTIQN

The black hole is one of the most fascinating structures
that has ever emerged out of the theory of gravitation.
And yet, it would seem fair to say, we are far from fully
understanding it. It is therefore fortunate that full-
fiedged black holes have been found to exist [1] in the
transparent setting of 2+ 1 standard Einstein gravity [2].

The purpose of this article is to study in detail the
geometry of the 2+ 1 black hole without electric charge
[3]. These results on the black-hole geometry were only
announced and briefly summarized in Ref. [1].

The plan of the article is the following. Section II
deals with the action principle and its Hamiltonian ver-
sion. The Hamiltonian is specialized to the case of axial-
ly symmetric time-independent fields and the equations of
motion are solved. The resulting metric has two integra-
tion constants that are next identified as the mass and an-
gular momentum. This identification is achieved through
an analysis of the surface integrals at spacelike infinity

'Electronic address: cecsphy Ilascar. puc. cl.
~Electronic address: henneaux@ulb. ac.be

that must be added to the Hamiltonian in order to make
it well defined. It is then shown that for a certain range
of values of the mass and angular momentum the solution
is a black hole. This black hole is sho~n to be quite simi-
lar to its 3+1 counterpart —the Kerr solution. It has an
ergosphere and an upper bound in angular momentum
for any given mass.

The discussion of Sec. II focuses on the physical prop-
erties of the black hole and ignores a question that must
have been needling the geometer hiding within every
theorist. The spacetime geometry of the black hole is one
of constant negative curvature and therefore it is, locally,
that of anti —de Sitter {Ads) space. Thus, the black hole
can only differ from anti —de Sitter space in its global
properties. More precisely, as we shall see, the black hole
arises from anti —de Sitter space through identifications of
points of the latter by means of a discrete subgroup of its
symmetry group [4]. Section III is devoted to this issue.
The identifications are explicitly given and are, in partic-
ular, used to show that the black-hole singularity at r =0
is not one in the metric, which is regular there, but rather
a singularity in the casual structure. Continuing past
r =0 would bring in closed timelike lines. When there is
no angular momentum an additional pathology appears
at r =0, a singularity in the manifold structure of
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the type present in the Taub-NUT (Newman-Unti-
Tamburino) space. This is dealt with in Appendix B.

Once the identifications are geometrically understood,
we go on, in Sec. IV, to exhibit special coordinate sys-
tems that reveal the causal structure. In particular,
Kruskal coordinates are defined and the Penrose dia-
grams are drawn. Special issues pertaining to the ex-
treme rotating black hole with a nonzero mass and to the
zero-mass limit of a nonrotating hole ("vacuum") are an-
alyzed. Section V is devoted to some concluding re-
marks, showing the instability of the regularity of the
metric at r =0 in the presence of matter. It is also
briefly discussed how "chronology is protected" in the
2+ 1 black hole.

The classification of the elements of the Lie algebra of
the symmetry group SO(2,2) is given in Appendix A.

II. ACTION PRINCIPLE, EQUATIONS
OF MOTION AND THEIR SOLUTIONS

A. Action principle

The action in Lagrangian form may be taken to be

components of (2.2). Extremization with respect to the
spatial metric g; and its conjugate momentum m'~ yields
the purely spatial part of the second-order field equations
(2.2), rewritten as a Hamiltonian system of first order in
time.

B. Axially symmetric stationary field

0~/&2~, t, ~t~t, . (2.7)

The form of the momenta ~'~ may be obtained from
(2.7) through their relation m'J= —

( —,'m)g '~~(&'~ —&g'~)

with the extrinsic curvature K;, which, for a time-
independent metric, simply reads 2N K;~ =(N;~~+N~~;).
This gives as the only component of the momentum

l p(r) .
2~

(2.8)

One may restrict the action principle to a class of fields
that possess a rotational Killing vector 8/BP and a time-
like Killing vector 0/Bt. If the radial coordinate is prop-
erly adjusted, the line element may be written as

ds = —(N ) (r)dt +f (v)dr +r [N~(r)dt+dP]

I= f&—g [R+2l ]d x dt+B',= 1

2m
(2.1) If expressions (2.7), (2.8) are introduced in the action,

one finds

R„——,'g„,(R +2l ) =0 (2.2)

which, in a three-dimensional spacetime, determine the
full Riemann tensor as

where B' is a surface term and the radius l is related to
the cosmological constant by —A=l . [Note that, for
convenience in what follows, the numerical factor
(16nG )

' in front of the action is taken to be (2m ) ', i.e.,
we set the gravitational constant 6, which has the dimen-
sions of an inverse energy, equal to —,'.]

Extremization of the action with respect to the space-
time metric g„(x,t ), yields the Einstein field equations

I= —(t& —t, )fdv[N(r )&(r )+N~A&]+B,

with

&~= —2lp',

N(r) =f 'N

C. Solutions

(2.9)

(2.10)

(2.11)

(2.12)

—2
(g„~.g.,—g.~.g„,» (2.3)

describing a symmetric space of constant negative curva-
ture.

One may pass to the Hamiltonian form of (2.1), which
reads

I=f [vr'Jg; N&i N'&; ]d x d—t+B . — (2.4)

The surface term B will be discussed below. It differs
from the B' appearing in the Lagrangian form because
the corresponding volume integrals differ by a surface
term. The surface deformation generators &i, &; are
given by

&i=2vrg ' (vr' n; (vr;') ]
—(2') 'g' (R+—2/l ),

(2.5)

f = —M+
2

2r J
4r' '

(2.13)

where M and J are two constants of integration, which
will be identified below as the mass and angular momen-
tum, respectively.

Variation of the action with respect to f and p yields
the equations

To find solutions under the assumptions of time in-
dependence and axial symmetry, one must extremize the
reduced action (2.9). Variation with respect to N and N~
yields that the generators & and && must vanish. These
constraint equations are readily solved to give

J
2I '

(2.6)

Extremizing the Hamiltonian action with respect to
the lapse and shift functions N, N' yields the constraint
equations &i=0 and &,. =0, which are the l, l and J,i.N'=0,

(N~)'+ N =0,
r 3

which determine X and N~ as

(2.14)
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N=N( ~ ),
N~ = — N( ~ )+N~( ao ) .

J
2T

(2.15)

The constants of integration N( oo ) and N&( co )

part of the specification of the coordinate system, which
is not fully fixed by the form of the line element (2.7) (see
below).

D. Surface integrals at infinity

1. Quick analysis

of motion hold) . (2.16)

Now, one must demand that when the equations of
motion hold, the variation of the action should be zero
[5). Therefore, the boundary term B in the action must
be adjusted so as to cancel the first two terms on the right
side of (2.16). Thus, we put

B = ( t2 t i )[ N( oo )M +——N&( Oo )J ] . (2.17)

Equation (2.17) identifies M as the mass and J as the
angular momentum. This is because they appear as con-
jugates to the asymptotic displacements N( oo ) and
N~( co ). [The minus sign in front of N( ~ ) appears be-
cause, conventionally, one introduces a minus sign in the
generator when the displacement is along a timelike
direction. ] That N~ is the angular displacement is evi-

dent. However, the fact that the rescaled lapse N given

by (2.12) appears in (2.17) rather than the original Ni,
deserves explanation. The reason is the following. The
normal component of the deformation that joins the sur-
face of time t and that of time t+5t is 5(=nN 5t, where
n is the unit normal. But the unit normal does not ap-
proach a Killing vector at infinity. If one multiplies it by

f, one obtains, at infinity, a Killing vector K=nf whose
norm K K= f is independent of N—( ~ ). The displace-
ment N( ~)5t ("Killing time") is the component of the
deformation g' along K.

2. Detailed analysis

The preceding argument gives a quick way of obtaining
the surface integrals that must be added to the action. It
also puts i.n evidence the physical meaning of I and J.
However, a more careful analysis is needed. One knows
that in a gauge theory such as general relativity the con-

We will be interested in including in the variational
principle the class of fields that approach our solution
(2.13), (2.15) at spacelike infinity. This means that the ac-
tion should have an extremum under variations of g, andlj
~'~ that for large r approach the variations of the expres-
sions (2.13), for any 5M and 5J and for fixed N(00),
N~(~). However, as seen most evidently from the re-
duced form (2.9) of the action, upon varying g," and ~'~

one picks up a surface term. That is, one finds

5I=(t~ t, )[N—( ~ )5M N~( ~ )5—J)+5B
+(terms vanishing when the equations

served quantities are related to the asymptotic symmetry
group. This fact already emerged in the previous discus-
sion where "displacements at infinity" played the key
role. For 2+1 spacetime dimensions with a negative
cosmological constant, this asymptotic group is infinite
dimensional and contains SO(2,2) as a subgroup. The
asymptotic Killing vectors 8/BP and K=N( ~ ) '8, that
appeared above are two of the generators in the Lie alge-
bra of SO(2,2). Thus, what we have called "Killing-time
displacements" are not "translations" but, rather, SO(2,2)
boosts.

The general analysis of the asymptotic symmetry group
of 2+1 gravity has been given in Ref. [6]. We briefiy re-
call here its key aspects and apply them to the present
treatment.

One considers all metrics that for large r become
r 2

ds ~— — dt + — dr +r dP
l

(2.18)

[There is no loss of generality, in this context, in taking
N( ao ) = 1 and N~( oo ) =0. One must only remember that
for any given spacetime the surface integrals are to be
calculated in a coordinate system obeying these condi-
tions. ]

The precise way in which ds approaches (2.18) for
large r is obtained by acting on the solution (2.13), (2.15),
with all possible anti —de Sitter group transformations.
The rationale for this procedure is that one wants to have
at least SO(2,2) as an asymptotic symmetry group. This
is because the metric (2.18) coincides with the asymptotic
form of the anti —de Sitter metric, which has SO(2,2) as
its (exact) symmetry group. The remarkable feature is

that the resulting class of allowed asymptotic metrics ad-
mits a much larger symmetry group.

The asymptotic group turns out to be the conforma1
group. The conformal group may be defined as the group
of all transformations that leave invariant the cylinder at
infinity, up to a Weyl rescaling. The conforma1 Killing
vectors obey

4,p+kp;. ,g.pk;i. =—0—. (2.19)

[L„,L ]= i I(n —m )L—„+ +ln(n 1)5„—
[IC„,E ]= i I (n —m —)A„+

[L„,K ]=0 .

+ ln (n 2 —1)5„], (2.20)

In the normalization for the central charge that has be-
come standard in string theory, one has

The Lie algebra of the conformal group consists of two
copies of the Virasoro algebra. Therefore, the conserved
charges of 2+1 gravity are two sets L„and E„of
Virasoro generators (n =0, +1,+2, . . . ). Of these, the six
SO(2,2) generators are LO, L„I. „KO,K„K „which
form a subalgebra.

The L„and K„obey the Virasoro algebra with a cen-
tral charge proportional to the radius of curvature. One
has, in terms of nonquantum Poisson brackets,
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c =121/R . (2.21)

The metric given by (2.13), (2.15) has only two charges
that are nonzero (M=KD+LD, J=KD L—0). However,
by acting with the asymptotic group one can endow it
with other charges, much as by boosting a Schwarzschild
solution one may endow it with linear momentum.

E. The black hole

The lapse function N vanishes for two values of r
given by

2 1/2 ' 1/2

cause the deformation would require going through a se-
quence of naked singularities not included in the
configuration space.

Note that the zero point of energy has been set so that
the mass vanishes when the horizon size goes to zero.
This is quite natural. It is what is done in 3+1 dimen-
sions. In the past, the zero of energy has been adjusted so
that anti —de Sitter space has zero mass instead. Quite
apart from this difference, the key point is that the
black-hole spectrum lies above the limiting case M=O.
We now pass, in the next section, to a detailed study of
the geometry of the black hole.

r+=l . 1+ 1—M
2

whereas g00 vanishes at

J
Ml

(2.22) III. BLACK HOLE AS ANTI —DE SIl I'ER
SPACE FACTORED BY A SUBGROUP

OF ITS SYMMETRY GROUP

erg

These three special values of r obey

(2.23)

r r+ rerg (2.24)

Just as it happens in 3+1 dimensions for the Kerr
metric, r+ is the black-hole horizon, r„ is the surface of
infinite redshift, and the region between r+ and r„g is the
ergosphere. In order for the solution to describe a black
hole, one must have

M&0, (2.25)

In the extreme case
~ J~ =Ml, both roots of N =0 coin-

cide. Note that the radius of curvature 1 = ( —A )

provides the length scale necessary in order to have a
horizon in a theory in which the mass is dimensionless.
If one lets l grow very large the black-hole exterior is
pushed away to infinity and one is left just with the in-
side.

The vacuum state, namely, what is to be regarded as
empty space, is obtained by making the black hole disap-
pear. That is, by letting the horizon size go to zero. This
amounts to letting M~O, which requires J~O on ac-
count of (2.25). One thus obtains the line element

ds„„=—(r/1) dt +(r/1) dr +r dP (2.26)

As M grows negative one encounters the solutions
studied previously in Ref. [7]. The conical singularity
that they possess is naked, just as the curvature singulari-
ty of a negative-mass black hole in 3+1 dimensions.
Thus, they must, in the present context, be excluded from
the physical spectrum. There is, however, an important
exceptional case. When one reaches M= —1 and J=O
the singularity disappears. There is no horizon, but there
is no singularity to hide, either. The configuration

ds = —[1+(r/1) ]dt +[1+(r/1) ] 'dr +r dP

A. Anti —de Sitter space in 2+1 dimensions

1. Metric

Anti —de Sitter space can be defined in terms of its
embedding in a four-dimensional Aat space of signature
(
——++):

ds = —du —dv +dx +dy

through the equation

—v —u+x+y = —l

(3.1)

(3.2)

A system of coordinates covering the whole of the mani-
fold may be introduced by setting

u =l coshp sink, , v =l coshp cosA, (3.3)

with 1 sinhp=')/x +y and 0&@& ~, 0&A, &2m. In-
serting (3.3) into (3.1) gives

dx +dyds =l —cosh p dX + l'+x'+y' (3.4)

an expression that can be further simplified by passing to
polar coordinates in the x-y plane

We will show in this section that the black hole arises
from anti —de Sitter space through identifications by
means of a discrete subgroup of its isometry group
SO(2,2). This implies that the black hole is a solution of
the source-free Einstein equations everywhere, including
r =0. As we shall also see, the type of "singularity" that
is found at r =0 is, generically, one in the causal struc-
ture and not in the curvature, which is everywhere finite
(and constant). It should be emphasized that this state-
ment means that r=0 is not a conical singularity. To
proceed with the analysis we first review the properties of
anti —de Sitter space.

(2.27) x =l sinhp cosO, y =l sinhp sinO, (3.5)

(anti —de Sitter space) is again permissible.
Therefore, one sees that anti —de Sitter space emerges

as a "bound state, " separated from the continuous black-
hole spectrum by a mass gap of one unit. This state can-
not be deformed continuously into the vacuum (2.26), be-

which yields

ds =1 [ —cosh pdA, +dp +sinh pd8 ] (3.6)

for the metric of anti —de Sitter space.
Because A, is an angle, there are closed timelike curves
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in anti —de Sitter space (for instance p=po, 8=80). For
this reason, one "unwraps" the A, coordinate, that is, one
does not identify A, with A, +2m. The space thus obtained
is the universal covering of anti —de Sitter space. It is this
space which, by a common abuse of language, will be
called anti —de Sitter space in the sequel. If the
unwrapped X is denoted by t /I and if one sets r =I sinhp,
one obtains

ds =[(rlI) + 1 jdt +[(rl1) +1j 'dr +r d8

(3.7)

which is the metric (2.7) with M= —1, J=O (and P re-
placed by 8).

2. Isornetries

U+X&

U+X &

+x &0

U+X &0

+X &0

u+x&0

u+x &0

By construction, the anti —de Sitter metric is invariant
under SO(2,2). The Killing vectors are

u+x&0

u+x &0

a a
ab b ~ a bBx Bx

(3.8) (b)

where x'=(U, u, x,y ) or, in detail,

J„=Ua„—ua, , J„=xa.+Ua. ,

J =yB„+UB, J, =xB„+uB„,
3 y~„+u B, J23 ya„—xa

(3.9)

abJ ab ba
ah~ (3.10)

and is thus determined by an antisymmetric tensor in R .

The vector Joj generates "time displacements"
(Jo, =Bz), whereas J23 generates rotations in the x-y
plane (J23 =Be). The most general Killing vector is given
by P e'&P . (3.13)

The mappings of (3.13) for which t is an integer multiple
of a basic "step, " taken conventionally as 2~,

FIG. 1. Poincare patches. (a) Section with surface y =0. The
solid lines have u+x =0, y =0. These curves are lightlike and
asymptotic to A, =(k+ 2)m. The pattern is periodic in A, . (b)

Section with surface x =0. The solid lines (including the axis
A, =O) have u +x =0, x =0 in anti —de Sitter space. The pattern
is again periodic in A,. As one lets the angle 8 approach km. /2,
the lines u+x =0 become more and more horizontal until they
reach the configuration shown.

3. Poincare coordinates
P~e'~P, t =0, +2m, +4m, . . . , (3.14)

The coordinates defined by

l
p y U

u+x' u+x' u+x ' (3.11)

d z i2 dz +dP —dyds =l
Z2

(3.12)

For u+x &0 one has z &0 and for u+x (0 one has
z (0. One can also find analogous Poincare coordinates
for each of the regions where u —x has a definite sign.

B. Identifications

1. Identic cation subgroup
associated with a Killing vector

Any Killing vector g defines a one parameter subgroup
of isometrics of anti —de Sitter space:

are called Poincare coordinates. They only cover part of
the space, namely, just one of the infinitely many regions
where u +x has a definite sign (see Fig. 1). These coordi-
nates are, therefore, not well adapted to the study of glo-
bal properties. In terms of (z,P, y ) the anti —de Sitter line
element reads

define what we will call the identification subgroup.
Since the transformations (3.14) are isometrics, the

quotient space obtained by identifying points that belong
to a given orbit of the identification subgroup, inherits
from anti —de Sitter space a well-defined metric which has
constant negative curvature. The quotient space thus
remains a solution of the Einstein equations.

The identification process makes the curves joining two
points of anti —de Sitter space that are on the same orbit
to be closed in the quotient space. In order for the quo-
tient space to have an admissible causal structure, these
new closed curves should not be timelike or null. A
necessary condition for the absence of closed timelike
lines is that the Killing vector g be spacelike:

g f&0 (3.15)

This condition is not sufFicient in general. However, as
will be shown in Sec. III B 5, it turns out to be so for the
particular Killing vectors employed in the identifications
leading to the black hole.

2. Singularities in the causal structure

There are some Killing vectors that do satisfy (3.15)
everywhere in anti —de Sitter space, for example, 8/BO,
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where 8 is the angular coordinate appearing in (3.6).
However, the Killing vectors appearing in the
identifications that give rise to the black hole are timelike
or null in some regions. These regions must be cut out
from anti —de Sitter space to make the identifications per-
missible. The resulting space, which we denote (AdS)', is
invariant under (3.13) because the norm of a Killing vec-
tor is constant along its orbit. Hence, the quotient can
still be taken.

The space (AdS)' is geodesically incomplete since one
can find geodesics that go from g g & 0 to g g & 0. From
the point of view of (AdS)', i.e., prior to the
identifications, it is quite unnatural to remove the regions
where g g is not positive. However, once the
identifications are made, the frontier of the region g g & 0,
i.e., the surface g /=0, appears as a singularity in the
causal structure of spacetime, since continuing beyond it
would produce closed timelike curves.

For this reason, the region g g=O may be regarded as
a true singularity in the quotient space. If this point of
view is taken, as is done here, the only incomplete geo-
desics are those that hit the singularity, just as in the
3+1 black hole. It should be stressed that the surface
g /=0 is a singularity only in the causal structure. It is
not a conical curvature singularity of the type discussed
in Ref. [7]. Indeed, the quotient space is smooth [8]. Its
curvature tensor is everywhere regular and given by

—2 (3.16)

3. Explicit form of the identiftcations

We claim that the black-hole solutions are obtained by
making identifications of the type described above by the
discrete group generated by the Killing vector

r+ r
~12 l ~03 ~13+~23 (3.17)

where the J,b are given by (3.8). The antisymmetric ten-
sor co' defined by (3.17) through g= —,'co'"J,b, is easily
verified to possess real eigenvalues, namely, +r+ /l
and r /l. The corresponding Casimir invariants

2I, = — (r++r )= —2M—,l2
(3.18)

I = ——r r = —22 2 +
l

The fundamental group of the quotient space is non-
trivial and isomorphic to the identification subgroup.
The orbits of the Killing vectors define closed curves that
cannot be continuously shrunk to a point. The "origin"
g /=0 is neither a point nor a circle. It is a surface. The
topology of g /=0, and also that of the whole quotient
space, can be inferred by inspection of the Penrose dia-
gram in Fig. 4(c). One finds that the black hole is topo-
logically R XS ' and that the surface g g =0 has
infinitely many connected pieces, each of which is a
cylinder whose circular sections are null.

According to the classification given in Appendix A,
the Killing vector (3.17) is of type Ib when r+Ar, of
type II, when r + =r WO, and of type III+ when

r+ =r =0.
To prove that the identifications by e ~ yield the

black-hole metric, we start by considering the nonex-
treme case r+ —r )0. In that case, by performing an
SO(2,2) transformations, one can eliminate the last term
in (3.17) and replace g with the simpler expression

I'

12 l 03 (3.19)

This follows from the analysis of Appendix A, where it is
shown that any SO(2,2) element with unequal real eigen-
values can be brought into the form (3.19) by an SO(2,2)
transformation. Alternatively, one may rewrite (3.17) in
Poincare coordinates as

~+
'a. +pap+~ a)

a a
a +~ap +

ap
(3.20)

and observe that the shifts

r+p~p
r+ —r

(3.21)

y y 2 —2 '
r+ —r

(3.22)

which are SO(2,2) isometrics, eliminate a/aP in (3.20).
The norm of g' is given by

r+ r2 2

(u —x)+ (u —y), (3.23)

or, using (3.2),

r+ —r2 2

(u —x )+r
l2

Accordingly, the allowed region where g' g' & 0 is

(3.24)

(3.25)

The region g' g' &0 can be divided in an infinite num-
ber of regions of three different types bounded by the null
surfaces u —x =0 or u —y =l —(u —x )=0. These
regions are the following.

(1) Regions of type I. Smallest connected regions with
u —~ ) l and y and u of definite sign. These regions
have no intersection with y =0, since this would violate
u —x =l~+y —v ) l~. These regions are called "the
outer regions. " The norm of the Killing vector satisfies
r '+ & (' g' & + m .

(2) Regions of type II. Smallest connected regions with
0&u' —x'&l' and u and v of definite sign. These re-
gions are called "the intermediate regions. "The norm of
the Killing vector satisfies r & g' g' & r +.

(3) Regions of type III. Smallest connected regions
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with —(r 1 )/(r+ —r ) &u —x &0 and x and v of
definite sign. These regions are called "the inner regions"
and only exist for r %0. They do not intersect the x =0
plane. The norm of the Killing vector satisfies
0&(' g'&r'.

The frontiers between the various regions are lightlike
surfaces (the horizon). Each region of type I has one re-
gion of type II in its future and one in its past. For
r %0, two situations are found for each region of type
II: (i) it has one region of type II and two regions of type
I in its future as we11 as one region of type II and two re-
gions of type III in its past, or conversely (ii) the same
description with I and III interchanged. Finally, each re-
gion of type III has one region of type II in its future and
another one in its past. This is shown in Figs. 2(a) —2(c).
Let us now choose three contiguous regions of types I, II,
and III (one of each type). In these regions we introduce
a (t, r, P) parametrization as follows (we assume for
definiteness u, y & 0 in I, u, —

U & 0 in II, and x, —
U & 0 in

III):
Region I. r+ &r:

u =v'A (r) cosh/(t, P),
x =&A (r) sinhg(t, g),
y =KB (r) cosht(t, P),
v =&B(r) sinht(t, P);

Region II. r & r & r+ .

u =&A (r) cosh/(t, P)

x =&3 (r) sinhtI)(t, g)

y = & B(r) si—nht(—t, P),
v = —v' B(r) cosht(—t, p);

Region III. 0&r &r

u =&—A (r) sinhP(t, P),
x =&—A (r) cosh/(t, g),
y = & B(r) sinht(t, P—), —

v = —& B(r) cosht(t, g—) .

In (3.26), (3.27), and (3.28) we have set

(3.26)

(3.27)

(3.28)

r —r2 2

A(r)=l
r+ r

r —r+2 2

B(r)=l
r+ r

In the coordinates t, r, P, the metric becomes

dg = —(~ ) dt +(~ ) 2dr +r (~4dt+dy)2 (3.30)

with —oo & t & oo, —oo & P & oo, i.e., it is the black-hole
metric but with P a nonperiodic coordinate. The Killing
vector g' reads

a
a

(3.31)

t =(1/1 )(r+ t ll rP), P=(1/l )( r—t/l+r+P) . —

(3.29)

By making the identification

(3.32)

one gets the black-hole spacetime as claimed above.
It is clear from the construction that the coordinate

system t, r, P does not cover the domain g' g') 0 entirely,
since it only covers one region of each type. If r =0 (in
which case region III does not exist), this is only half of
one connected component of the domain g' g')0. If
r %0, each of the regions I, II, and III should be repeat-
ed an infinite number of times to completely cover the
domain g' g')0 which is now connected. This infinite
pattern follows from the fact that one is dealing with the
universal covering space of anti —de Sitter space and this
will reappear in the Penrose diagrams given below.

It is worthwhile emphasizing that it is the
identification (3.32) that makes the black hole. If one
does not say that P is an angle, one simply has a portion
of anti —de Sitter space and the horizon is just that of an
accelerated observer [9].

4. Extreme case

The above derivation cannot be repeated in the ex-
treme case r+ =r . This is because the Killing vector
(3.17) is now of a different type than (3.19). According to
the classification given in the Appendix, when r+ =r
(3.17) is of type II„while (3.19) is of type I& with doubly
degenerated roots. Hence, there is no SO(2,2) transfor-
mation mapping one to the other.

One can nevertheless argue that the identifications for
anti —de Sitter space generated by (3.17) yield the extreme
black hole without exhibiting the precise coordinate
transformation that brings g into the form BIB/. The ar-
gument runs as follows. The metric (3.30) is regular even
if one sets r+ =r . When P is not identified, it describes
a portion of anti —de Sitter space for any value of
r + —r & 0; hence, it does so also in the limit
r+ —r —+0. Similarly, 8/BQ is a Killing vector for any
value of r and r+. By continuity, its Casimir invariants
remain equal to I, = 2(r+ +r—)/l and

I2 = 4r+ r Il in t—he limit r+ r~0. Henc—e, in the
extreme case the vector BIB/ remains type Ib (with coin-
cident roots) or becomes type II„since these are the only
two types compatible with the given I, , I2. It is the
latter alternative that is realized. Indeed, type Ib may be
excluded by noticing that the corresponding Killing vec-
tor has constant norm equal to r+, whereas BIB/ has a
space-dependent norm equal to r . Thus, BIB/ must be
of type II, and, thus, equal to (3.17) [up to a possible
SO(2,2) transformation that leaves the metric invariant].

The preceding argument already establishes that the
black hole is obtained from anti —de Sitter space by an
identification. However, for completeness we exhibit a
change of coordinates in terms of which the identification
just makes a coordinate periodic. The required coordi-
nate transformation can be explicitly given in Poincare
coordinates. We start with the case M = r+ = r =0 (the
vacuum), which is the more illuminating one.

For M=0, the region g g) 0 splits into disjoint regions
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II
/

/
/

/
)/

III / 'i III

II
II

/

/

III , [ III
/

/
/

/

II
II

/
/

/
/

III i' III
/' i

/
/

(b)

X

(c)

FICr. 2. Regions determined by the norm of g'. (a) Section with surface y =0 when r %0. The solid lines are the curves g' g'=0
y=0. They are timelike. The dotted lines are the lines g' g'=r (u —x =0), bounding regions II and III. The lines formed by dots
and segments have g' g'=r2+, y=O. (b) Section with surface x=0 when r %0. The surface x=0 has f g' Oe&verywhere when
r %0. The horizontal solid lines are the lines g' g' =r, x =0. The lightlike lines formed by dots and segments have g'.g'=r . The
region g'.P & 0, x =0 splits into disconnected components separated by the horizontal lines and containing two regions I and two re-
gions II. (c) Section with surface y =0 where r =0. The solid lines have g'.g'=0, y =0. The lines formed by dots and segments
have g' g'=r+ The regio. n f g'&. 0 splits into disconnected components separated by the horizontal lines with each component con-
sisting of two regions II (and two regions I, not seen in this figure since they have no intersection with y =0). Regions III have disap-
peared. Note that the Killing vector g' is now tangent to the lightlike curves u —x =0, y =0.
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which are just the Poincare patches u +x )0 or
u +x & 0. Hence, to describe a connected domain where
g g& 0, one can just consider a single Poincare patch. In
Poincare coordinates the Killing vector g is —8/Bp and,
hence, the identifications

(3.33)

in (3.12) lead to the black-hole metric with M=O upon
setting z = 1/r, p=p, and y =t.

(Note that as depicted in Fig. 1, the horizon singularity
r =0 is the null surfaces u +x =0 delimiting the Poincare
region. Because the Killing vector g is again spacelike on
the other side of u+x =0, one can continue the solution
with zero mass through r=0 to negative values of r
without encountering closed timelike curves. By doing so
one includes, however, the closed lightlike curves that lie
on the null surface u+x =0, as well as some singularities
in the manifold structure of the type discussed in Appen-
dix B.)

The coordinate transformation bringing the anti —de
Sitter metric to the extreme case with MAO (and non-
periodic in P) is more complicated. One needs, in that
case, more than one Poincare patch to cover the black-
hole spacetime. Actually, an infinite number of sets of
patches is necessary, with each set containing one patch
of each of the four types u+x &0, u+x &0, u —x &0,
u —x &0. We merely give here that transformation in
one of the patches u +x )0 for r ) r+ ..

r

1 T 2r+yp= ——+p+e
2 I 2r+

1 T 2r+& 1y= ——+P—e + +
2 I 2r+

—1/2
r

(
2 r2 ) e +

2r+

(3.34)

(3.35)

(3.36)

where Tis given by

I r+T=2t
2r r

(3.37)

and fulfills dT=2dt+(2r+I rdr)l(r r+ ) . By substi-—
tuting (3.34)—(3.36) in the Poincare metric, one gets the
extreme black-hole metric [with N~ adjusted so that
N~(r+ ) =0].

5. Absence of closed timelike curves

We now complete the argument that there are no
closed causal curves in the black-hole solution. That is,
we show that there is no nonspacelike, future-directed
curve lying in the region g' g&0 of anti —de Sitter space
and joining a point and its image generated by exp(2irg).

Since the surfaces r =r+ and r =r are null, a causal
curve that leaves any one of the regions of types, I, II, or
III through r=r+ or r=r can never reenter it. Fur-
thermore, since the images of a point are all in the same
region as that point, it is sufficient to consider each of
these regions separately.

where P goes from —~ to + ~. Consider a causal curve
t(A, ), r(A, ), and P(A, ), where the parametrization is such
that the tangent vector (dt ld A, , dr ld A, d

P, /d 1,) does not
vanish for any value of A, . The causal property of the
curve reads

2

—(N ) +(N )
dA, di,

2

2

In order to join the Points (tp, rp, Pp) and (tp rp,
Pp+2km), the causal curve would have to be such that
dt/dA, =O for some value of k, since t comes back to its
initial value. But then, if (N ) &0 it follows from (3.39)
that dr/de, =dgldA, =0, leading to a contradiction.
Similarly, if (N ) (0 (region II), the fact that dr/dA, =O
for some value of 1, implies dt/di=dP/, dA=O, an, d the
required contradiction.

It should be observed that if one were to admit the re-
gion g g ~ 0 in the solution, one could leave and reenter
the regions of type III through the surface g g=O, which
is timelike for JWO. (This is not possible when J=O be-
cause the surface g /=0 is then null. ) One would find
that there are also closed timelike curves passing through
points in region III. The boundary between the region
where there are no closed causal curves and the region in
which there are is then the null surface r =r . From the
point of view of an outside observer staying at r ) r+, the
inclusion or noninclusion of the region g g ~ 0 is ir-
relevant and cannot be probed since the surface r =r+
remains in all cases an event horizon.

6. Black hole has only two Killing vectors

The black hole metric was obtained in Sec. III B 3 un-
der the assumption of existence of two commuting Kil-
ling vectors d/cd and 8/BP. One may ask whether there
are any other independent Killing vectors. The answer to
this question is negative, as we now proceed to show.

Before any identifications are made one has the six in-
dependent Killing vectors J,b of anti —de Sitter space.
However, after the identifications, not all the correspond-
ing vector fields will remain single valued in the quotient
space.

A necessary and sufficient condition for an AdS vector
field q to induce a well-defined vector field on the quo-
tient space is that g be invariant under the transforma-
tion of the identification subgroup:

[exp(2vrg)]*g=ri . (3.40)

For a Killing vector, this condition becomes

[exp(2irg) ]g[exp(2~$') ] (3.41)

In each of the regions of types I, II, or III, the anti —de
Sitter metric takes the form

ds = —[N (r)] dt +[N (r)] dr +r (N~dt+dP)

(3.38)



48 GEOMETRY OF THE 2+1 BLACK HOLE 1515

i.e.,

[exp(2~$), ri] =0, (3.42)

where g and g are viewed as so(2,2) matrices.
Now, the matrix g can be decomposed as

g=s+n, (3.43)

[s,rI] =0 (3.44)

[because the eigenvalues of the matrix exp(2ms) are real
and positive, any matrix commuting with it must also
commute with In[exp(2ns)]=2vrs] and

[n, g]=0 (3.45)

(the nilpotent matrix n can be expressed polynomially in
terms of the nilpotent matrix [[e xp( m2. n)] —1] and must
thus commute with g). It follows from (3.44) and (3.45)
that g and g commute:

where (i) s and n commute, (ii) s is semisimple with real
eigenvalues, and (iii) n is nilpotent (see Appendix A). Ac-
cordingly, the semisimple part of [exp(2ng)] is exp(2ms)
and its nilpotent part is [exp(2ms)][[exp(2mn)] —1].
Any matrix commuting with [exp(2~/)] must thus sepa-
rately commute with [exp(2ms ) ] and [exp(2m n ) ] (the
semisimple and nilpotent parts of a matrix can be ex-
pressed polynomially in terms of that matrix). This im-
plies both

The Equation (3.46) is equivalent to

[t',~+]=0, [g-,q-]=0,

(3.48)

(3.49)

because self-dual and anti-self-dual elements automatical-
ly commute. Now, the only elements of so(2, 1) that com-
mute with a given nonzero element of so(2, 1) are the mul-
tiples of that element. Therefore, since g+ and g are
both nonzero for all values of the black-hole parameters
we conclude, from (3.49),

~,P«, (3.50)

this shows that the most general Killing vector is a linear
combination of dl dt and BIB/.

IV. GLOBAL STRUCTURE

A. Kruskal coordinates

We follow the analysis of Ref. [10]. For the line ele-
ment

The study of global properties of the 2+1 black hole
reveals a strong coincidence with the 3+1 case. The
Penrose diagrams and maximal extensions are exactly the
same as those of a 3+ 1 black hole immersed in anti —de
Sitter space.

[4 ri]=0. (3.46) ds = —(N ) dt +(N ) dr +r (N~dt+dP) (4.1)

The problem of finding all the Killing vectors of the
black-hole solution is thus equivalent to that of finding all
the elements of the Lie algebra so(2,2) that commute with

(=(++0
Similarly,

(3.47)

In order to solve equation (3.46) for rt, we observe that
so(2,2)=so(2, 1)&so(2, 1) and decompose accordingly g
into its self-dual and anti-self-dual parts:

one may introduce a Kruskal coordinate patch around
each of the roots of (N ) =0 to bring the metric to the
form

ds =0 (du —du )+r2(N~dt+dp)2 (4.2)

where t=t(u, u).
If there is only one root (2=0) then the &ruskai coor-

dinates cover the whole space. When two roots coincide,
there are no Kruskal coordinates [11].

For definiteness, we start with r+. The Kruskal coor-
dinates around r+ are defined by patch E+.

r (r&r+ '

—r+r+
r+r+
r +r+

r +r+
r+r

r /r+ 1/2

r /r+ 1/2

sinha+ t,

cosha+ t,
(4.3a)

r+ +r( oo

U+ = I Ir r, —
r +r+
r —r+

r+r r /r+ 1/2

' r /r+ 1/2

cosha+ t,
(4.3b)

r +r+ sinha+ t,

with

r+ r2 2

(4 4)
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The angular coordinate (denoted P+ ) is chosen on X+ so that the constant of integration appearing in the solution of
(2.14) is fixed to give

N~(r~ ) =0 .

r &r&oo .

The metric takes the form (4.2), with the conformal factor

(r r)—(r+r+ ) r r — +
0 (r)=

g 2 r2$2 r+r

(4.5)

(4.6)

With the choice of P leading to (4.5), the term N~dt in (4.2) remains regular at r+.
Similarly, around r, one defines patch K

0&r&r

—r+r
r+r

—r+r
r+r

r+r+
—r +r+
r +r+

—r +r+

r+ /r 1/2

' r+ /r 1/2

cosha t,

sinha t,
(4.7a)

r &r&r~ '

r+r

r +r+
—r+r+
r +r+

—r +r+

r+ /r I 1/2

sinha t,
r~ /r 1/2

cosha t,
(4.7b)

with

2 2r r+
(2r

(4.8)

0 & r & r ~ . (4.9)

The overlap of the patches K+ and IC (r & r & r+ )

will be called E. Just as in the 3+1 case one may maxi-
mally extend the geometry by gluing together an infinite
number of copies of patches E+, K . We will not illus-
trate graphically that extension in terms of Kruskal coor-
dinates, but will rather go to the more economical Pen-
rose diagrams.

B. Penrose diagrams (r+ Ar )

This time, one chooses the angular coordinate P so that
N~(r ) =0. The metric takes the form (4.2) with

(r~ r)(r+r ) —r~ r "+ "—
A (r)=

2 r2I2 r++r

p=+q. The Kruskal and Penrose diagrams associated
with this geometry are shown in Fig. 3.

Next consider the case of the rotating black hole. By
making the change of coordinates (4.10) in the two
patches defined in Sec. IVA, we find one Penrose dia-
gram for each patch. These are shown in Figs. 4(a) and
4(b).

The regions shown as K in parts (a) and (b) of Fig. 4 are
to be identified because they are the overlap. Now, the
original black-hole coordinates covered K and one region
III in Fig. 4(a), and IC and one region I in Fig. 4(b). How-
ever, one wants to obtain a "maximal causal extension"
(i.e., a maximal extension without closed timelike curves).
To this effect one must first include the other two regions
in each diagram and then glue together an infinite se-
quence of them, as shown in Fig. 4(c).

r=O

The Penrose diagrams are obtained by the usual
change of coordinates

U+V=tan P +
2 , U —V=tan P

2
(4.10)

We define the inverse transformation by taking the usual
determination of the inverse tangent, namely, the one
that lies between vr/2 and +m. /2. —

Consider first the case J=O. From (4.10) and (4.3)
(with r =0) it is easy to prove that (i) r = Do is mapped
to the lines p =+—,'m. , (ii) the singularity r =0 is mapped to
the lines q=+ —,m., and (iii) the horizon is mapped to

(a) (b)

FIG. 3. Spacetime diagrams for J=O. (a) Kruskal diagram,
(b) Penrose diagram.
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C. Extreme cases M =0 and M =
~
J

~
/I The relation between the radial coordinate r and p, q is

1. M=0

The metric is

ds = (r/—I)dt +(r/I) dr +r dP

Defining the null dimensionless coordinates

(4.11)

cosp +cosq
sinp

and the metric takes the form

d 2 d 2
ds2=I2 P q +r~dP~

sin p

(4.15)

(4.16)

t l t IQ= V=
I r '

I r

we find

ds =r du dv+r dP

and pass directly to Penrose coordinates by

U=tan —,'(p+q), V=tan —,'(p —q) .

/

X
/'

(4.12)

(4.13)

(4.14)
The metric is

2. M=[J[/I

ds 2
r' r+-

r I2 2
dt'+

2 2 2
dr

(r r+—)

+r (N~dt+dg) (4.17)

where r =r+ =l(M/2)' is the horizon. Introducing
the null coordinates U = t + r * and V= —t +r, where
r * is the tortoise coordinate

From (4.15) it is easy to show that the origin is mapped to
the segment of the lines p =m kq running from p =0 to
p =m while spacelike infinity is mapped to the segment of
the p =n line that closes the triangle shown in Fig. 5(a).

r dr —rl 2 r —r++ ln
(N ) 2(r —r ) 4r+ r+r+ (4.18)

/

/(/
/

V'

(a)Patch K

/
/

(/'
(/ /

/
//'V

(b) Patch K+

4(N ) I (dp dq ) +rq(—N~dr+d~)2
(cosp+cosq)

From

(4.19)

and defining the Penrose coordinates p, q as in (4.14) we
obtain the line element

sinp

cosq +cosp

r —r+
r +r++ ln

I
2(r r+ ) 4r+— (4.20)

r= 0 r= 0

one sees that the lines r =r + are at +45', whereas r =0 is
atp=(km)+ and r=~ atp=(km) . [Byp=(kyar)+, we
mean that r ~0 as p ~k ~ from above, and similarly,

r=0 r=O

FIG. 4. Penrose diagrams for JAO. (a) Patch K, (b) patch
K+, (c) complete diagram obtained by joining an infinite se-
quence of patches K, K+ on the overlap K.

(a) M=o=J (b) M= I J/L ceo

FIG. 5. Penrose diagrams for the extreme cases (a) M =0=J,
(b) M =

I
&/I

I
&0.
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p =(km. ) means r~~ as p~km. from below. ] If we
take for p the usual determination of the arctangent in
(4.14), so that the region 0 & r & r+ is mapped on the tri-
angle bounded by p =0 (r =0) and p =q =sr,p —

q =m,
then we must take in the region r & r+ a diferent deter
mination. Indeed, one must glue the triangle correspond-
ing to r) r+ to the triangle corresponding to 0&r &r+
along the sides r =r+ at 45', and not along the vertical
sides (which are r = ac in the region r & r+ and r =0 in
the region r & r+ ). For instance, one could map r & r+
into the triangle bounded by p+q=m, p —q= —m. and
p =~. Once this is done, one can go safely across r =r+
because the zero of N in (4.19) is cancelled by the zero in
the denominator. To achieve the maximal extension one
then needs to include an infinite sequence of triangles as
shown in Fig. 5(b) (the original black-hole geometry just
included two adjacent triangles).

V. INSTABILITY OF METRIC REGULARITY
AT r =0: CHRONOLOGY PROTECTION

The point of view taken in this article is that the region
r & 0 must be cut out from the spacetime because it con-
tains closed timelike lines (see Fig. 6 for a Penrose dia-
gram that includes the forbidden region). This is a con-
sistent point of view and leads to a close analogy with the

FICx. 6. Penrose diagrams for the maximally extended nonex-
tremal spinning black hole (Ml &

~ J~ &0), showing also the re-
gions beyond the singularity where the Killing vector g is time-
like. Regions III' are defined by —ao & g f & r~ and contain re-
gions III (0&/ g&r ). The metric in these regions is iso-
morphic to the metric in regions I but with the roles of t and P
exchanged. The singularity r =0 in III corresponds then to the
stationary surface in I. There are closed timelike curves
through each point in regions III'. These closed timelike curves
cross g'. /=0.

r = 0 ( singulari t y )

event horizon

tO

O

D
II
L surface of shell

FIG. 7. Penrose diagram for a collapsing body in the case
J=0.
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black hole in 3+1 dimensions. There is, however, a com-
pelling additional argument for considering the spacetime
as ending at r =0. It is the fact that the introduction of
matter produces a curvature singularity at r=0. This
can be easily seen in simple examples and we believe it to
be a general feature (with the possible exception of very
"fine-tuned" couplings). The first example is the collapse
of a cloud of dust with J=O (Ref. [12]). Qne can then
verify that the matter will reach infinite density at r =0.
In this case only the part of the surface r =0 that inter-
sects the history of the dust becomes singular. This is
due to the fact that the dust "probes" only part of the
spacetime. However, in the case of a field, such as the
electromagnetic field, which is our second example, all
the spacetime is probed. As it was indicated in Ref. [1],
the introduction of a Maxwell field that depends only on
the radial coordinate yields an electromagnetic field for
which the gauge invariant scalar F„F" is proportional
to r and thus is singular at all points on the surface
r =0.

Therefore, in view of the curvature singularities that
are brought in by matter couplings, it seems not only
reasonable, but also compulsory, to exclude the region
r & 0 from the spacetime.

The collapsing dust is also interesting in that it may be
regarded as a mechanism for producing, without effort,
closed timelike lines from a perfectly reasonable initial
condition (with the help of a negative cosmological con-
stant though). However, one sees, first of all, that the
closed timelike lines are hidden behind the horizon at
r =r+ &0 (Fig. 7). But, moreover, if, say, an electromag-
netic field is brought in, a barrier of infinite curvature is
introduced at r =0. This makes the closed timelike lines
not reachable from r )0. In this sense we see that
"chronology is protected" [13]in the 2+ 1 black hole.
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APPENDIX A: ONE-PARAMETER
SUBGROUPS OF SO(2,2)

1. Description of the problem

The purpose of this Appendix is to provide a complete
classification of the inequivalent one-parameter sub-
groups of SO(2,2). Two one-parameter subgroups [g(t)]
and [h(t)], t ER, are said to be equivalent if and only if
they are conjugate in SO(2,2), i.e.,

be reconstructed from the knowledge of its eigenvalues:
one also needs information about its nilpotent part (the
dimensions of the irreducible invariant subspaces).

We shall construct the sought-after invariant
classification of elements of so(2,2) by means of the
Jordan-Che valley decomposition of the operator co'b.
Since vp"%5,b for SO(2,2), the operator iso'b is, in gen-
eral, not Hermitian. Accordingly, it may possess a non-
trivial nilpotent part when its eigenvalues are degenerate.
The classification of the possible co'b is analogous to the
invariant classification of the electromagnetic field in
Minkowski space and is also reminiscent of the Petrov
classification of the Weyl tensor in general relativity.

Because the matrix co,& is real and antisymmetric,
there are restrictions on its eigenvalues. These con-
straints are contained in the following elementary lem-
mas.

Lemma I. If A, is an eigenvalue of co,&, then —
A, is also

an eigenvalue of co,&.
Proof. From

g(t)=k 'h(t)k, keSO(2, 2) (Al)
(co,b

—
A,g,b)l =0 (A7)

By an SO(2,2) rotation of the coordinate axes in R,
one can then map g ( t ) on h ( t ). Since one-parameter sub-
groups are obtained by exponentiating infinitesimal trans-
formations, the task at hand amounts to classifying the
elements of the Lie algebra so(2,2) up to conjugation.

Now, the elements of so(2,2) are described by antisym-
metric tensors co,&

= —
co&, in R . If one conjugates the

infinitesimal transformation R '& =5'& + ceo'& by
kE-SO(2, 2), [k rtk=q, i'd=diag( ——++)], one finds
that the antisymmetric matrix co = (to,b ) trans—forms as

co~co'=k k, k &SO(2, 2) (A2)

2. Strategy

Any linear operator M can be uniquely decomposed as
the sum of a semisimple (diagonalizable over the complex
numbers) linear operator S and a nilpotent operator N
that commute:

M =S+iV,
[S,N]=0,

with

(A3)

(A4)

Xq=O for some q, (A5)

Hence, we have to classify antisymmetric tensors under
the equivalence relation (A2).

one infers the characteristic equation

det(co —A,7) ) =0 (A8)

But then O=det(co —A,g) =det( —to —A,g) =det(co
+A,g); i.e., —I, is also a root of the characteristic equa-
tion.

Lemma 2. If I, is an eigenvalue, then A,
* is also an ei-

genvalue.
Proof. This is a consequence of the reality of co,b

which implies that the characteristic equation (A8) has
real coefficients.

2.a. Type of eigenvalues

It follows from these theorems that the four eigenval-
ues of co are of the following four possible types:

(1) A, , —A, , &', —k', A, =a+ib, a%0Mb,

(2) A, , =A, f, —A. „X~=A,2, —
A, 2

(A, , andi, 2 real),

(3) A. (, —A, )
—A, A, 2,

—
A, 2

—A,q,
(A,

&
andA, 2 imaginary),

(4) A] A] y A]y A2y Az Ap

(A, , real, A.2 imaginary) .

and

S=L ' (diagonal matrix)L for some L (A6)

In each case, the eigenvalues involve only two indepen-
dent real numbers, whose knowledge is equivalent to
knowing the two Casimir invariants:

(Jordan-Chavalley decomposition of M ).
The eigenvalues of S coincide with those of M and pro-

vide an intrinsic characterization of S. When the eigen-
values of S are nondegenerate, the nilpotent operator N is
identically zero and M is thus completely characterized
(up to similarity) by its eigenvalues. However, if some ei-
genvalues are repeated, N may be nonzero and M cannot

I =co co, I ——6' co co1 ab & 2 2 ab ed (A9)

[Ifone replaces SO(2,2) with SO(4), iso'b is hermitian and
therefore diagonalizable. Hence, there is no nilpotent
part and ice b is completely characterized by its eigenval-
ues and thus by I, and I2. ]

Multiple roots can occur only in the following cir-
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cumstances.
Cases (2) and (3), when A,

&
=A,2 (or —A,2). If A, &%0, then

A,
&

and —A,|are distinct roots. If A,
&
=0, then 0 is a qua-

druple root.
Cases (2), (3), or (4), when one of the roots vanishes.

2.b. Types of antisymmetric tensors

For simple roots, one can give a unique canonical form
to which any matrix co,b with a given set of eigenvalues
can be brought by an SO(2,2) transformation. This is the
form of ~,b in the basis where cu'b is diagonal. In the
presence of multiple roots, there are inequivalent canoni-
cal forms because co'b may contain a nontrivial nilpotent
part N. But for each possible type of N, there is a unique
canonical form. These canonical forms are all derived in
Secs. 3—10.

We shall say that the matrix co' is of type k if its nilpo-
tent part is of order k, N =0. Types I and II can be fur-
ther classified according to the reality properties of the
roots. We thus define the following.

Type I (N=O). I, : four complex roots A, , —A, , A, ',
(A,%+A,'). I& four real roots A, |, —A, „A,2,

—A,2.

I, : four imaginary roots A, &,
—A.„A,2,

—A.2. Id. two real
roots (A,

&
and —

A, &), and two imaginary roots (Az and
—

A,2).
Type II (NAO, N =0). II, : two real double roots, A,

and —A,. IIb. two imaginary double roots, A, and —X.
II, : one double root (0) and 2 simple roots (A, and —A, ,
with A, real or imaginary).

Type III (N2+0, N3=0): one quadruple root, zero.
Type IV (N3+0, N4=0): one quadruple root, zero.
We shall write in all cases

A, =a+ib (A 10)

co bv =AU, co bu =pu (A 1 1)

We close this section by proving the following useful lem-
ma.

Lemma 3. Let v' and u' be eigenvectors of ~'b with
respective eigenvalues A, and p:

vanish since the metric would then be degenerate. By
scaling m, if necessary one can assume l'm, =1. One
then has also l'*m, = 1. The metric is given by

g,q =l, mI, +I,*mq'+[a~b],
since

(A13)

co' =A,(l, mI, ll, m—, )+A. (l;mq' —
lq m,*) (A14)

because this reproduces (A12a) —(A12d).
Our goal is to achieve a canonical expression for m'b

over the real numbers. Therefore, we decompose the vec-
tors l, and m, into their real and imaginary components

a a +~Va~ a a+~qa (A15)

(the transformation I„m„ I,*, m,*~ u„v„n„q, is
invert- ible and so the vectors u„v„n„and q, form a
basis). This gives

g,b =2(u, nb v, qb )+ [a~b] (A16)

co,l, =2a(u, n&
—v, q& ) —2b(u, q&+ v, n& ) —[a~b ] .

(A17)

In the orthonormal basis where the vectors u„v„n„q,

v, =(—,', 0,0, —,
' ), and q, = ( —,', 0, 0, —

—,
' ), co,& take the form

0 b
—b 0

0 a
a 0

0 —a 0 b
—a 0 —b 0

(A18)

Equation (A18) is the canonical form of an antisym-
metric tensor of type I, . The Casimir invariants are
found from (A9) to be

(g,&
—l, m&

—l;m&* —[a~b ])u

is zero whenever u' equals l', m', l'*, m *. The tensor
co' is given by

Then v, u'=0 unless A, +p=O. In particular, if AAO,
then v' is a null vector.

Proof. One has u, co'& v =Au, v'= —pu 'v„and thus
(I,+p)u'v, =0.

We now proceed to the explicit determination of the
canonical forms.

3. Type I,
One has by definition of type I„

I, =4(b a), —

=4(b +g )

4. Type Ib

One has, by definition of type Ib,

co,q l =A, ,l„co,~ m = —A )m, ,

b b

(A19a)

(A19b)

(A20a)

(A20b)

~abl ~la

Cuabm = —Amb
b

co m*= —A, m*
ab a

(A12a)

(A12b)

(A12c)

(A12d)

The vectors l', m', n', and u' are real and linearly in-
dependent, and the nonvanishing scalar products are l-m
and n. u. Straightforward steps yield, then, in an ortho-
normal basis, the canonical form

0 0 0 —A2'

0
where the eigenvectors l', l*', m ', m '* are complex and
linearly independent. The only scalar products that can
be difFerent from zero are l'm, and l'*m,*. They cannot

0
0 0

ab 0 g& 0 (A21)
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The Casimir invariants are given by

I, = —2(i,i+k2),

I2 =4k)A2 .

5. Type I,

One has, by definition of type I„

(A22a)

(A22b)

ponents of ~,b in the subsequent discussion. For that
reason, we shall not perform the split.

8. Type II,

By definition of type II„ there are two doubly degen-
erate, nonzero, real eigenvalues A, and —A, . Each eigen-
value has at least one eigenvector, thus one can find I'
and m' such that

co,bl =ib, l, , co,bl *=—ib)l,*,

ct)ibm —lb ) m~, cogbm = lb ) mg
b bg

(A23a)

(A23b)

0 b, 0 0
—b] 0 0 0

0 0 0 b,
0 0 —b2 0

(A24)

The only nonvanishing scalar products are l, l'* and
m, m'*. One can rescale l, and m, so that l l*=+1,
m -m *= + 1. If l ~ l*= 1, then m -m *= —1, and vice ver-
sa. [Through l'=(1/&2)(u'+iu'), one associates to a
vector l' obeying l, l' =1, two real vectors u', v' such
that u, u '= 1 =v, v', u, v'=0. So, if l, l'* = 1, one must
have m, m'*= —1 in order to agree with the signature
( ——+ + } of the metric. ]

One obtains the final canonical form

cogbl =A, lg

co,&m = —
A,m, .b

(A26a)

(A26b)

cogb u =A ug + lg

combs
= A,s~ + (xmas

b

(A27a)

(A27b)

It follows from (A26a), (A26b) and (A27a), (A27b) that
l -l = l m = l u =0. Hence, since the metric is nondegen-
erate we must have 1.sAO. This implies in turn that a
must be different from zero, since (A27a), (A27b) gives
l.s+nm. u =0. By a rescaling of m we can set a=1, so
one has

co,bs = —ks, +m, .b (A28)

Within each invariant subspace we can introduce an
additional vector to complete I, m to a basis. Since c0'&

has a nilpotent part, at least one of the additional vectors
will not be an eigenvector. We can thus write, without
loss of generality,

for co,b in a real orthonormal basis.
The Casimir invariants are found to be

I =2(b +b )

I2=4b jb2 .

6. Type I&

(A25a)

(A25b)

The remaining scalar products are evaluated as fol-
lows. First, one can take u's, =0, since one can redefine
u'~u'+pl' without changing any of the previous rela-
tions. Second, by multiplying (A27a) with u', one finds,
using u'1, =0, that u'u, =0. One then finds from (A28)
u'm, = —1 as the only remaining nonvanishing scalar
product.

The metric and antisymmetric tensor co,b read
Type Id does not exist. Indeed, the real eigenvalue

brings a block of signature (+—), while the imaginary
eigenvalue brings a block of signature (++) or ( ——).
This is inconsistent with signature ( ——+ + ).

7. Role of the Casimir invmiants for type I

q, & =l, s&
—m, ui, + [a~b ],

co,„=A,(l, si, —u, mi, }—l, mi, —[a~b ] .

In a suitable orthonormal frame, this gives

0 1 1 A,

—1 0 A. 1
—1 —A, 0 1

—1 —1 0

(A29a)

(A29b)

If one compares (A19a), (A19b), (A22a), (A22b), and
(A25a), (A25b), one sees that the Casimir invariants com-
pletely characterize the matrices cu, b of type I. If I&+I2
are both positive, the type is type I, . If I&+I2 are both
negative, the type is type Ib. Otherwise, the type is I, .
Furthermore, the eigenvalues can be reconstructed from
I, and I2. The roots are degenerate when I&+I2 or
I& —I2 vanish. It is easy to see that I&+I2 are the
Casimir invariants of the two algebras so(2, 1) contained
in so(2,2)=so(2, 1)&so(2,1). The self-dual and anti-self-
dual (real) matrices co,

—
i, =co,&+ ,'E,&'"co,d —define irreduc-

ible representations of SO(2,2) (co,+i, transforms as a vec-
tor under the first SO(2, 1), while co,& transforms as a vec-
tor under the second). One has 2Ii =co,+&co+' and
2I2=co,b~ '. There is, however, no particular advan-
tage in working with the self-dual and anti-self-dual com-

{A30)

q.b l.sb m. ub+[a~—b], (A31)

but modifies co,b to

co,i, =A(1,$$ —u, mi', )+l, (ui, —m$) —[a b],
which, in an appropriate orthonormal frame, yields

(A32)

When A,WO, a simpler, equivalent canonical form, can
be achieved by replacing m, with m,'+l, /2A, and s, by
s,'+u /2A, . This leaves g,b unchanged
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0 0 A,0
0

—1 —1 0

0 1

~~b 0 —g 0 (A33) rj,b =E( —l, lq m,—tq
—tbm, +u, uq ),

co,b=E(m, ug
—u, mb) .

(A38a)

(A38b)

redefinitions of t' if necessary and using the fact that the
metric is of signature ( ——+ + ), one finally obtains

Ii = —4A,

I2 =4k,

(A34a)

(A34b)

The forms (A30) and (A33) are not equivalent when A, =O.
It is only (A30) that is of type II, in that case, since (A33)
with X=O possesses a nontrivial nilpotent part of order 3
and is thus of type III. The Casimir invariants are found
to be

CO b=

0 0 0 0
0 0 0 1

0 0 0 1

0 —1 —1 0

(A39)

Type III (e = —1):

This yields in an appropriate orthonormal basis, Type
III+ (c,=+1):

i.e., they are exactly the same as those of (A22a), (A22b)
with A, &=A,2. However, the canonical forms (A30) or
(A33) are not equivalent to (A21) with A, , =A,2, since they
possess a nontrivial nilpotent part, while (A21) does not
for any value of A, &, A,2.

0 —1 —1 0
1 0 0 0

b 1 0 0 0
0 0 0 0

(A40)

9. Types IIb and II,

The analysis of type IIb proceeds as for type II, . We
only quote the final canonical form in an orthonormal
basis:

~ab

0
—b+1

1

0

b —1

0
0

0

—1 —b —1

0
1

b+1
0

(A35)

and the Casimir invariants

Ii =4b I2=4b (A36)

Type II, is incompatible with a nondegenerate metric
and so it does not exist. Indeed, the equations co,bl =0,
co,bm =l, (0 is a double root and co'& is a nontrivial nil-

potent matrix in the corresponding invariant eigenspace),
together with crab ~ a ~ab ~ a imply l l
=I e.m = —(le) I=0, l m =co m =0, I u =A, 1 co u

=0, l v= —A, 'l v=0. So l' would be a nonzero vector
orthogonal to any vector and the metric would be degen-
erate.

10. Types III and IV

In type III, zero is a quadruple root of the characteris-
tic equation. Since co b is nilpotent of order 3, one can
find a basis such that

(A37a)

(A37b)

The scalar product of l' with u, vanishes from (A37b).
Similarly, m. m =m. u =0. Hence, m t cannot vanish,
say, m .t =+1. Then, by a redefinition of
l', l'~l'+pm', one can assume l t=0. It follows that
l.lAO, since otherwise the metric would be degenerate.
We set l.l = —c, c.=+1. By making appropriate

The two Casimir invariants vanish for type III and yet
the matrix co,b is not zero.

Type IV does not exist. Indeed, for the case of nilpo-
tency of order 4, one has co,bl =0, co,bm =I„
co,b u =m„and ~,b t =u, . By taking the scalar product
of the equation with l', one finds l-l=l. m =l u =0. So
l t40, say, l t=k. But then u.m=m cot= —l t40
(from the last relations), while the equations co,bu =m,
and the antisymmetry of cu, b imply u m =0. This con-
tradiction shows that type IV is inconsistent.

11. Summary of results

We summarize our results by giving for each type the
canonical form of the Killing vector —,

'~' J,b and the cor-
responding Casimir invariants in Table I.

Note that for the second canonical type II„valid when
A,AO, we have replaced J03 with —J03 to comply with the
form given in the text. This amounts to replacing A, 2 with—

A,2, and can be achieved by redefinining g as
This is why the second Casimir invariant, which is not
parity invariant, changes its sign.

The cases of interest for the black hole are Ib, II„and
III+, for which the eigenvalues of co,b, namely, +r+!l
and +r /l, are all real. [These cases exist only because
the signature of the metric is ( ——++ )]. Type Ib (with
A, ,WA, 2) describes a general black hole with

~
J

~
&Ml, type

II, describes an extreme black hole with nonzero mass,
while type III+ describes the ground state with M=O.
The type becomes more and more special [from four dis-
tinct real roots to one single real root (zero)] as one goes
from the general black hole to the ground state.

It is interesting to note that if one expresses r+ and r
as functions of J and M and goes beyond the extreme lim-
it

~
J~ =Ml, the roots r+ and r become complex conju-

gates. This strongly suggests that type I, describes the
spacetime whose metric is obtained by setting

~
J

~
& Ml in

the black-hole line element. On the other hand, if one
keeps

~
J

~

& Ml and takes M & 0, the roots r+ and r be-
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TABLE I. Classification of one-parameter subgroups of SO(2,2).

Tppe

I,
Ib

I,
II,

IIb
III+
III

Killing vector

b( J01 +J23 ) a (J03 +J12 )

~1J12 +~2J03
b1Jo1 +b2 J23
~(J03 +J12 ) +J01 J02 J13+J23
or
k( J03 +J12 ) J13+J23 (AWO)
(b 1)J01+(b 1)J23+J02 J13—J13+J23—Jo1+Jo2

—I11

4

b —a2 2

——'(A, 1+A2)

-(b1 +b2)
—

A,
2

—A,
2

b2

0
0

—I21

4

b2+a2

b1b2
A2

—A,
2

b2

0
0

come two different purely imaginary numbers. This
strongly suggests that there is a close relationship be-
tween type I, and the negative-mass solutions of [5].

Finally, on an even more parenthetical note, we men-
tion that for the Euclidean black hole the group SO(2,2)
is replaced by SO(3,1). In that case, the eigenvalues of
ro'I, are of the form (a, —a, ib, ib) wi—th real a and b.
This form may be obtained from that of type I& above by
setting Mz„, =M, JE„,= iJ i—n the formula (2.22), ex-
pressing the eigenvalues in terms of M and J. This is just
the prescription for the (real) Euclidean continuation of
the Minkowskian signature black hole (see, for example
Ref. [1]).

APPENDIX 8: SMOOTHNESS
OF THE BLACK-HOLE GEOMETRY

This Appendix addresses the question of whether the
smoothness of anti —de Sitter space subsists after the
identifications leading to the black hole are made. That
is, we ask whether the quotient spaces we deal with are
Hausdorff manifolds. The conclusion is that this is so
when JAO, but when J=O the Hausdorff manifold struc-
ture is destroyed at r =0.

As discussed by Hawking and Ellis [8], the quotient
spaces are Hausdorff manifolds if and only if the action of
the identification subgroup H =

[exp(2vrk g ),k EZ ] is
properly discontinuous, namely, if the following proper-
ties hold: (i) Each point Q HAdS has a neighborhood U
such that [exp(2mkg)](U)A U=P for all k HZ, k&0;
and (ii) if P, Q H AdS do not belong to the same orbit of H
(i.e., there is no k&Z such that [exp(2~kg)](P)=Q),
then there are neighborhoods B and B' of P and Q, re-
spectively, such that [exp(2~kg)](B) AB'=P for all
kez.

To proceed with the analysis we introduce the Euclide-
an norm

[(u' —u) +(v' —v) +(x' —x) +(y' —y) ]'

on R . The norm of the Killing vector

(B1)

r+ a a
u +x a a

(B2)

is bounded from below by r )0:

II&'&IIE =
2 2r+

(u +x )+ (v2+y2)

r+ —r2 2

$2
(u+x )

1/2
r

+ (u +x +v +y )2

u„=(coshna)uo+(sinhna)xo,

x„=(sinhn a )u 0+ (coshn a)xo,
v„=(coshn P)v 0

—(sinhnP)yo,

y„=—(sinhnP)vo+ (coshnP)vo,

(B4)

(B5)

(B6)

(B7)

with n &Z, a=2mr+ /l, P=2nrll. Th. e E. uclidean dis-
tance dz(QO, Q„) (nXO) between Qo and Q„ is bounded
from below by

dz(QO, Q„)&1&2(coshp —1) &0 (nAO) .

Indeed, one has

(B8)

&r &0 (on u +v =x +y +l ) (B3)

Let Qo be a point of anti —de Sitter space with coordi-
nates (uo, vo, xo,yo) satisfying uo+vo —xo —yo=l . Its
successive images Q„are given by

(u. —uo)'+(x. —xo)'+(v. —vo)'+(y„—yo)' l(u. —uo)' —(x„—xo)'I+ l(v. —vo)' —(y„—yo)'I

=2(coshn a —1) I u 0
—x 0 I

+2(coshnP —1 ) I
v 0

—yo I

&'2(coshP —1)[Iuo —xoI+ Ivo —yo I]
& 2( coshP —1 ) I

u 0
—x 0 +v 0

—y 0 I

=2(coshP —1)l

(B9)

(B10)
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The bound (B8) is uniform; i.e., it does not depend on Qo.
Let Po be another point of anti —de Sitter space with

coordinates (uo, uo, xo, yo). It is easy to see, by using
formulas analogous to (B3) for Po, that the distance
dz(P„, Qo) between Qo and the images of Po goes to
infinity as n —++~. Hence, there is a minimum "dis-
tance of approach" of the orbit of Po to Qo (which may
be zero if Qo =Pk for some k }. That minimum distance
of approach varies continuously if one varies Po continu-
ously.

Let U be the open ball centered at Qo with radius
r & —,'l v'2(coshP —1). The image of any point of this ball

by exp(2mkg) (k&0) cannot be in U. Otherwise the
bound (B3) would be violated. This proves (i).

Now, turn to (ii). Let Po be a point that is not mapped
on Qo by any power of exp(2rrg). In the open ball U,
there can be at most one image of Po. If there were none,
by continuity, the points suKciently close to Po would
have no image in U and thus (ii) would hold. So let us as-
sume that there is one image of Po in U, say P„. Let B be
an open ball centered at P„and entirely contained in U.
All the images of the points in B lie outside U, i.e.,
[exp(2mkg)](8)flU=P. Let 8" be an open ball cen-
tered at Qo such that 8 fl 8 =P. Then
8 = [exp —(2m n g ) ](8 ) and 8" satisfy condition (ii).

(For simplicity we have used in this analysis the
simpler form of the Killing vector only appropriate for

~
J

~
& Ml. One can easily check that for (J (

=Ml there are
no fixed points and that all the orbits go to infinity, just as

for ~J~ &Ml. It then easily follows that the results for
~

J
~
&Ml remain valid for

~
J

~

=Ml. The details are left to
the reader. )

The above argument breaks down when there is no an-
gular momentum because the Killing vector
g= (r+ /l)[u (t)/t}x )+x (t)/t)u ) ] vanishes in that case
along the line u =x=0, which is thus a line of fixed
points. This makes the bound (B3}empty. Furthermore,
each fixed point is an accumulation point for the orbits of
the points obeying u+x =0 and having the same values
of U and y. Hence, both (i) and (ii) are violated if one
takes for Q one of the fixed points. The action of the
group is not properly discontinuous. This leads to a
singularity in the manifold structure of the Taub-NUT
type.

[This kind of singularity has been discussed in Ref.
[14]. Another example of it has been found in Ref. [15].
For an analysis, see Ref. [9], where a discussion of
identifications under boosts in two-dimensional Min-
kowski space is given. To make contact with that
analysis, observe that near r=O one can neglect the
cosmological constant. The SO(2,2) group then goes over
to the Poincare group in three dimensions. The
identification Killing vector (3.17) then becomes a boost
plus a translation in a transverse direction. It is the pres-
ence, in our case, of this additional transverse direction
which is responsible for the smooth behavior when JWO:
the combination of a boost and a transverse translation
does not have fixed points. ]
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