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Neutrino oscillations in dense neutrino gases
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We consider oscillations of neutrinos under conditions in which the neutrino density is suKciently
large that neutrino-neutrino interactions cannot be neglected. A formalism is developed to treat this
highly nonlinear system. Numerical analysis reveals a rich array of phenomena. In certain gases, a self-
induced Mikheyev-Smirnov-Wolfenstein effect occurs in which electron neutrinos are resonantly con-
verted into muon neutrinos. In another relatively low-density gas, an unexpected parametric resonant
conversion takes place. Finally, neutrino-neutrino interactions maintain coherence in one system for
which a priori one expected decoherence.

PACS number(s): 95.30.Cq, 13.15.—f, 14.60.Gh

I. INTRODUCTION

In the 1990s progress in astrophysics has accelerated,
largely due to the use of satellite-based experiments.
More and more is being discovered about how the
Universe has evolved since the big bang, about the global
distribution of galaxies and matter, and about the nature
of exotic astrophysical objects such as pulsars, neutron
stars, and black holes. Neutrinos are potentially a useful
source of information. Like photons that were left
behind as an early-Universe relic (the cosmic microwave
background radiation), neutrinos should also obey a
thermal distribution governed by a temperature ( —,', )'

times the photon temperature [1]. Since neutrinos decou-
pled earlier than photons, the detection of the cosmic
neutrino relic would provide a glimpse of our Universe at
a very early stage. They are excellent probes of astro-
physical objects since they often escape without interac-
tion because of their very weak coupling to matter. An
example is for the Sun, where Earth-based neutrino
detectors allow the exploration of the physics of the Sun' s
core. Another example is SN 1987A for which neutrinos
provided useful information.

If neutrinos have masses and mixing angles then the
physics becomes even more interesting because of neutri-
no oscillations. Such oscillations can have a dramatic
effect on the use of neutrinos as experimental probes. A
prominent example is for solar neutrinos. For certain
values of neutrino masses and mixing angles, the elec-
trons in the Sun cause resonant conversion. Electron
neutrinos produced in the core can emerge from the
Sun's surface as muon neutrinos. The Mikheyev-
Smirnov-Wolfenstein (MSW) effect [2,3] is a popular ex-
planation of the solar neutrino problem [4].

Although no definite evidence exists for nonzero neu-
trino masses (there are only experimental upper limits),
many theoretical frameworks predict masses too small to
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have been detected [5]. Left-right-symmetric models, as
well as SO(10), E6 and many other grand-unified theories,
contain right-handed neutrinos [6]. In these theories and
many extensions of the standard model, neutrinos have
masses and mix. Neutrinos frequently have masses in
string theories.

In the early stages of cosmological history, neutrinos
constituted a dense gas. In this and other astrophysical
settings the interactions of neutrinos with themselves
cannot be neglected. In this paper we investigate the
physics of a dense neutrino gas under the assumption that
neutrinos have masses and mix. The system is not so easy
to analyze for the following reason. The oscillation of a
particular neutrino is affected by the electron neutrinos
and muon neutrinos through which it travels. If the
background neutrino density is known, it is straightfor-
ward to compute the effect on the oscillation of a single
neutrino. However, all the neutrinos in the gas are oscil-
lating and it is not easy to ascertain the Aavor content of
the background. This system has appeared in the context
of other computations [7—13]. As pointed out in Refs.
[13,14], there are subtleties concerning dense neutrino
gases. Often incorrect assumptions have been used.
Reference [14] determined the correct equations for a sys-
tern consisting of two neutrinos, but the case of a mul-
tiparticle gas was unsolved.

One of our main results is a formalism to handle neu-
trino oscillations for a dense neutrino gas. In Sec. II we
derive the equations governing a general system. The
propagation of a single neutrino is determined under the
assumption that the background neutrino currents are
known. Knowledge of many such individual solutions
should suffice in determining the background. Indeed,
based on an approach similar to the Hartree-Fock ap-
proximation, we derive self-consistency equations for the
backgrounds.

We hope to apply our methods to early-Universe phys-
ics, supernova explosions, and neutron stars. Since the
concept of a neutrino gas is general, there may be unfore-
seen applications.

In addition to the average density, neutrino masses,
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and neutrino mixing angles, the determination of the
backgrounds depends on statistical features of the gas,
such as the energy distribution of neutrinos, fluctuations
in the density of backgrounds, and the initial distribution
of neutrinos in flavor space. Hence, the physics depends
on certain features of the gas. This renders it difficult to
make general statements about oscillations for a dense
neutrino gas. The subtleties here are sufficiently impor-
tant that part of Sec. II is devoted to them.

In Sec. III we treat the homogeneous gas. Translation-
al symmetry significantly simplifies the analysis. In addi-
tion, there is a formulation of the problem which resem-
bles a particle moving in a magnetic field and permits one
to use physical intuition. We also derive in Sec. III the
analogue of the adiabatic approximation. One general re-
sult is that, at late times, the backgrounds tend to become
diagonal in the mass-eigenstate basis and not in the flavor
basis, as one might assume. In Sec. IV we present ex-
ploratory numerical analyses. The examples considered
use idealized statistical distributions but are sufficient for
exhibiting possible behaviors of physical gases. We re-
strict ourselves to the two-flavor case for reasons of sim-
plicity and call the two flavors electron and muon.

A neutrino gas is a highly nonlinear system in which
unexpected phenomenon may occur. We have observed
four generic types of behavior.

(I) The neutrinos oscillate more or less as they would
in a vacuum. Such a behavior often occurs, as expected,
when the gas is not too dense. The effect of background
neutrinos is minimal.

(2) There is a self-induced MSW effect. A gas initially
consisting of electron neutrinos turns into a gas consist-
ing mostly of muon neutrinos within a few oscillation
times. The matter-induced mixing angle evolves from a
value around n. /2 to a value near zero. There is resonant
conversion of electron neutrinos into muon neutrinos.
This behavior seems to happen only when the gas is dense
and neutrino self-interaction effects are maximal.

(3) For one type of gas in which the neutrino density
was relatively small, a parametric resonance occurred.
During many oscillation times the electron neutrinos
slowly converted into a gas of mostly muon neutrinos.
The background oscillated with a small amplitude but in
phase with individual neutrinos, so that during each os-
cillation period a small fraction of electron neutrinos was
converted into muon neutrinos on average. Maximal
conversion occurred and the effects of neutrino interac-
tions were dramatically enhanced on large time scales.

(4) For another type of gas, self-maintained coherence
occurred. One expects statistical distributions to cause
individual neutrinos to have different oscillation times
and to not be in phase. Thus, for sufficiently large times,
cancellations should occur to produce a smooth average
background neutrino density. The backgrounds should
achieve constant asymptotic values. Instead, we found
that neutrino-neutrino interactions caused the oscilla-
tions to remain in phase and decoherence did not occur.
This phenomenon took place for a relatively dense system
and arose due to the nonlinear nature of the problem.

Behaviors (3) and (4) were unexpected. Behavior (I) is
quite reasonable. Behavior (2) can be understood some-

II. THE NEUTRINO GAS:
GENERAL CONSIDERATIONS AND FORMALISM

A. The background interactions

The propagation of a neutrino through a medium is
affected by the presence of other leptons. A well-known
example occurs for the Sun. For certain ranges of neutri-
no masses and mixing angles, the interaction of neutrinos
with the Sun's electrons greatly affects neutrino oscilla-
tions and leads to resonant conversion. This is the well-
known MSW effect [2,3].

Interactions which are the same for all flavors of neu-
trinos do not affect neutrino oscillations. An example is
the neutral-current interaction due to electrons via the
exchange of Z . In contrast, electrons interact only with
electron neutrinos in the charge-current interaction pro-
duced by the exchange of 8'+—.The corresponding four-
fermion Lagrangian X;„, is

2+2GF [el y v,L—, (x, r)v, t. y&eL (x, t)

+I L Y vpL(x, r)vpL3'jU L(x, r)], (2. l)

where G+ is Fermi's constant, and e, p, v„and v„are, re-
spectively, the fields for the electron, muon, electron neu-
trino, and muon neutrino. The subscript I. means a left-
handed fermion:

To save space, we do not always display the x and t
dependence.

what intuitively. Roughly speaking, it is similar to the
MSW effect with background electron neutrinos replac-
ing the Sun's electrons and with time playing the role of
radial distance. A significant difference is the presence of
off-diagonal backgrounds (see Sec. II). As in the MSW
efFect, the matter-induced mixing angle starts near 90 for
a sufficiently dense gas. The initial electron neutrinos be-
gin to oscillate, so that, after a short time, the back-
ground electron neutrino density is reduced. The situa-
tion is similar to a neutrino moving a little outward from
the Sun's core; the electron density goes from a high
value to a smaller value. In the next time interval, the
neutrinos oscillate in a less dense background causing a
little more conversion. The background is further re-
duced and so on. The only question is whether the pro-
cess slows down and stops before passing through the res-
onance. If it continues, the final mixing angle is small
and a large fraction of the initial electron neutrinos are
converted to muon neutrinos. In this case, the final situa-
tion is like that of a neutrino emerging from the Sun' s
surface.

We work in units for which A=c =1. Although our
formalism gives basis-independent results, we generally
work in the flavor eigenstate basis for which Z and 8'*
couple to currents with no off-diagonal terms.
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By a Fierz transformation Eq. (2.1) can be rewritten as

X;„t= —2" 2Gz( eL y eL v L y i.v I+.PL y PL V„Ly i,v„L )CC ~l — A,

(2.2)
I

In the classical limit, the left-handed current eI y eL (x, t)
is replaced by its background value (eLy eL(x, t)). The
same is true for the left-handed muon current. Conse-
quently,

GF
(2(eLy eI ) 2—(p Ll PL ))(v Ll Av L vt Lyivt L)

2

GF
L ) +2 (P L Y PL ) )( v L y AVL + vp. L y &v)JL

2
(2.3)

Only the first term treats electron neutrinos and Inuon
neutrinos differently, and hence is relevant for oscilla-
tions.

When the neutrino currents are as large as charged-
lepton currents, the interaction of neutrinos with them-
selves must be included. The exchange of a Z leads to
the four-fermion interactions

NC GF
+int ~ (VeLy VeLVeL Yi.VeL + pL Y VpL )JL yk pL~2

+ 2veL V AveL vp. L Y vpL ) (2.4)

Let us mimic the procedure for the charged-current case.
We replace left-handed neutrino currents by background
values using

3GF
+i t [((v Ly L)+(v LV v L))(v Lyiv L+v Lyiv L))

2

GF
(((v Ly v L ) (v LY v L))(v L3 iv L v L3 iv L))

2

G
Ly vpL)vpLV)v L+ (vpLV v L)v LVAvpL)+

2
(2.5)

There are two subtleties involved in deriving Eq. (2.5). The first is that each four-fermion interaction produces
several terms when one uses

0 Ly PbLP L3 AdL P LY PbL(ALL ifdL )+(4 L.1 WbL)4 L3 A.PdL+ P LY PdL. (4 LyhkbL ).
+ (0 L Y PdL ) P LyifbL (4 L1 , PbL ) ( P LVAdL ) (4 L3 WdL ) ( 4 Ll ifbL ). (2.6)

where g„1()b, g„and pd are arbitrary fermion fields.
Equation (2.6) is like a Hartree-Fock approximation. The
first two terms, the "diagonal terms, " are the "Hartree"
part of a Hartree-Fock approximation. The third and
fourth terms are "exchange interactions" and enter addi-
tively because of Fermi statistics. The last two terms in
Eq. (2.6) do not lead to interactions; they contribute to
the vacuum energy and comprise the "constant" in Eq.
(2.5).

The second subtlety is that the off-diagonal back-
grounds (v,I y v„L ) and (v„Ly"v,L ) cannot be set to
zero, in contrast with the case of massless neutrinos.
When mixing is present, ( v,L y v„L ) and ( v„Ly v,L )
are generally nonzero. Even when they vanish at time
t =0, they usually are not zero for later times. In certain
situations, off-diagonal backgrounds vanish in the mass-
eigenstate basis. However, if they vanish in that basis, a
simple calculation shows that they do not vanish in the
Savor basis. The examples in Sec. IV illustrate the need
to keep off-diagonal backgrounds.

The above two subtleties were discussed by Pantaleone
in Refs. [13,14]. Previous treatments of neutrino gases
often did not properly take these effects into account.

B. The self-interacting system

A dense neutrino gas is a complicated system. The
propagation of a particular neutrino depends on its in-
teraction with the other leptons. Since neutrinos oscil-
late, the nature of the lepton background is continually
changing. Furthermore, unlike the case of electrons in
the Sun, where the electron density is known to high pre-
cision, the background neutrino densities are a priori not
known but must be calculated. One must know the neu-
trino background to determine how an individual neutri-
no oscillates, but one must know the flavor of every indi-
vidual neutrino to determine the background. A brute
force approach treats the coupled system in its entirety
and would require tremendous computing capabilities.
However, when the number of neutrinos is large, the
methods of statistical mechanics are applicable and a
simplification is expected to occur.

Let v"(x, t) denote the wave function for the ith neu-
trino. In Qavor space, we write

'v,"(x,t) '

v"'(x, t) = (, ) (2.7)
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where v," and v„" are the electron-neutrino and muon-
neutrino components. The wave function satisfies the
normalization condition

f d x v," (x, t)v"(x, t)+ f d x v" (x, t)v"(x, t)=1 .

C. Symmetry and simplification

In practice, the system of interest has symmetries
which simplify the analysis when statistical mechanics
methods are employed. For example, consider a homo-
geneous gas in a large box of volume V. Then, only the
temporal components of the background lepton currents,
JL(x, t), in Eqs. (2.3) and (2.9) are nonzero on average.
One can use the replacements

JL(x, t) —+50JL(t):— d x JL(x, t) . (2.10)
V v

Thus, the backgrounds depend only on time and not posi-
tion. In Eq. (2.10), JL stands for either ( eL y eL ),
(O'L1 PL) (VLY VL) (v LY v L) VLY v L)
(v„Ly V,L ). The Aavor-diagonal currents are number
densities since

1
d x(V,LV,L)(x, t)=p, (t) —p, (t),

v e e

1
d x(v„I v,I )(x, t)=p (t) p(t), —

V v P

1—f d x(eLeI )(x,t)=p (t) —p +(t)
(2.11)

= —[p (t)—p +(t)],1

1—f 1 x (pLIJL )(x, t) =p (t) —
p ~(t)

1= —[p —(t) —p +(t)]
P P

(2.8)
The two terms in Eq. (2.8) are, respectively, the probabili-
ty that the ith neutrino is an electron neutrino and a
muon neutrino at time t. If the ith particle happens to be
an antineutrino, the wave function is normalized to —1

instead of +1 in Eq. (2.8). In Eqs. (2.7) and (2.8) and
henceforth, the Dirac indices on v"(x, t) are not
displayed.

The wave function v"(x, t) is the solution to the Dirac
equation with interactions given in Eqs. (2.3) and (2.5)
where the neutrino background are

(v,Ly v,L)(x, t)= gv', JLy v',JL(x, t),
JWl

Ly v L) gv Ly v L(xt)
JWl

—(j} A. (j} (2.9)
(VeL Y VIJL ) = g VeL Y VpL(x~t)

JWl

(VpLY VeL ) —g VpLy VeL(X, f) .
JWl

The neutrino gas problem is highly nonlinear: The indi-
vidual solutions v"(x, t) are obtained in the presence of
the backgrounds in Eq. (2.9), yet these backgrounds are
computed from the individual wave functions v"(x, t).
This leads to a situation where a bootstrap approach is
often necessary.

In the last two equations, strict equality holds in the non-
relativistic limit.

For a system with spherical symmetry, as might occur
in a supernova or a neutron star, the temporal and radial
components of background currents are nonzero and de-
pend on two variables, time and radial distance. In such
a situation, an angular averaging is performed.

D. Calculational procedure

We assume certain information is exactly known such
as background charged-lepton currents, initial neutrino
backgrounds, initial individual wave functions, and the
energy distribution of neutrinos. In principle, one should
also know the fluctuations, both in space and time, of
background densities. As a neutrino propagates through
the medium there are regions with lepton densities that
are slightly higher than and slightly lower than average
densities. Such variations slightly affect the oscillations
of a neutrino.

If a "neutrino detector" is placed in the gas, the time
resolution of the detector must be known. If the mea-
surement takes several oscillation times, an averaging
over this time scale must be made. A similar procedure
might be necessary initially, if background neutrino
currents are not known for t =0. It could be that the neu-
trinos are generated over a period of time, in which case,
the initial production profile must be supplied.

In summary, there are probability distributions govern-
ing a gas and representing intrinsic uncertainties. These
distributions must be a priori known. Important physics
is often encoded in the probability distributions.

A solution to the neutrino gas problem is a
specification of the background neutrino currents for
t 0 satisfying two requirements. (i) The solution must
agree with initial conditions and be continuous. (ii) A
consistency condition must be satisfied. After obtaining
the wave functions v"(x, t) from the Dirac equation in
the presence of background currents, the background
neutrino currents, as computed from the v"(x, t) in Eq.
(2.9), must agree with the backgrounds originally pro-
posed. In checking this, one must average over the un-
certainties given in the previous paragraphs. In other
words, wave functions must be computed for varying en-
ergies, different propagation times, Quctuations in back-
grounds, and various initial conditions. The averaging
over these uncertainties is performed with a priori known
distributions. In certain situations, the self-consistency
condition is automatically satisfied; however, in some cir-
cumstances considerable effort is required.

One way to find neutrino background solutions is as
follows. An educated initial guess for backgrounds is
made. Then, individual wave functions v"(x, t) are com-
puted. From these, an output background via Eq. (2.9) is
computed and a modified background is proposed. A
way of choosing the modified background is to let it be a
linear combination of input and output backgrounds.
One then repeats the procedure until the self-consistency
condition is met. In essence, one is trying to find a fixed
point in a multivariable space. Standard methods to deal
with such problems can be employed.
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III. THE SPATIALLY HOMOGENEOUS CASE

A. Evolution equation for an individual neutrino

1 0
4Ei v= const X 0 1

v+4Eh v,
dt

(3.1)

where

This section treats the spatially homogeneous gas.
Equations (2.10) and (2.11) are valid; only temporal com-
ponents of currents are nonzero and they are independent
of position. We assume that vacuum and matter-induced
neutrino masses are much smaller than the neutrino's en-
ergy E so that the neutrinos are relativistic. We also as-
sume that forward scattering dominates and higher-order
processes can be neglected, i.e., GFE && 1.

Under these conditions, it is valid to linearize the
Dirac equation in the standard manner [15]as

r

mine the evolution of a single neutrino.
It is useful to define some parameters associated with

Eq. (3.2). The instantaneous matter-induced mass-
eigenstate basis is obtained by diagonalizing h using a un-
itary matrix U via

h =U t
Um (3.7)

where one can write

Um

lA
e

0 e
—ia

m

cos(8 ) sin(8 )

—sin(8 ) cos(8 )
(3.8)

In general, this basis is time dependent since h and U
depend on t. Unlike the MSW case when only an elec-
tron background is present, there is an additional angle
a because the off-diagonal term csin(28„)+B,„in h is
generally complex:

veL, 2a —= —arg[b, sin(28„)+B,„) . (3.9)

v, cos( 8, )
—sin( 8„) v,L

vz sin( 8, ) cos(8„) v„L
(3.3)

The difference 5 of the square of the vacuum masses m
&

and m2 is

A=m2 m )
2 2 (3.4)

The charged-lepton-induced mass-squared difference A is
given by

vpL

and h acts like a time-dependent Hamiltonian:

B + A —b, cos(28„) b, sin(28, )+B„,
4Eh = 5 sin(28„)+B,„B——A + b, cos(28, )

(3.2)

Since we are considering a specific neutrino, we drop a
superscript (i) on v, E, and h for convenience. In Eq.
(3.2), 8„ is the vacuum mixing angle which relates the
Aavor basis, v, and v„, to the vacuum mass-eigenstate
basis, v] and v2, via

The matter-induced mixing angle 0 is defined as

~
b. sin( 28„)+B,„~tan(28 ) = B —A +—b, cos(28, )

(3.10)

The matter-induced oscillation time (or length since we
take c =1) A, is

—=4~E /6 (3.11)

where the instantaneous mass-squared difference 6 is

—:[[ B —A +b—, cos(28, )]

+
~

b, sin(28, )+B, (3.12)

The subscript m on the above parameters stands for
"matter induced. "These parameters generally depend on
time.

When the charged-lepton background 3 is time in-
dependent, the dependence of A in h can be eliminated
by going to an effective mass-squared difference h,~ and
an effective mixing angle 0,& where

b, sin(28, )
tan(28, s) = —A +icos 28„

(3.13)
b,,~= [ [ —A + b, cos(28„)] + b, sin (28, ) J

'~

This follows from

and the neutrino background densities are

B
&v L, v L) &v„r, v„L, )

—A + b. cos(28, ) = b,,s cos(28,s),
h, sin(28„) =A,csin(28, s) .

(3.14)

[P, P (P P , )]--
B„,=4v'2GF E & v„L v,L ),
B,„=B„,=4v 2G~E&v,Lvp~) .

(3.6)

The angular brackets represent an averaging procedure in
Eq. (2.9) which arises from statistical distributions and
fluctuations of the gas. In short, Eqs. (3.1)—(3.6) deter-

However, since this transformation is different for neutri-
nos of different energy, A cannot be completely eliminat-
ed from the problem. For a monoenergetic gas, one can
set A to zero without loss of generality. In what follows,
we use 8 to denote 8„or 8,tr (whichever is relevant for an
individual neutrino) but we use 6 to denote b,,s. even
when A%0.

The procedure is as follows. For fixed input back-
grounds B and B,„one solves Eq. (3.1) over the ranges for
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which parameters, such as energy, propagation time, etc. ,
vary. Then, output backgrounds are computed via Eq.
(2.9). A solution is obtained if input and output back-
grounds coincide.

8. Magnetic-field-like reformulation

For a particular neutrino we use lower case b and b,„
to denote the analogue of the background-averaged B and
B,„. Define bilinears in fields using

b (t) —=2 2G~E[v,L v,L(t) v„t v„t—(t)],
(3.15)

b,„(t):42G—„Ev,"Lv„~(t), b„,(t) =b,„(—t)
Then, Eq. (3.1) implies

4iE = [b, sin(28)+B„, ]b,„[b,sin—(28)+B,„]b„, ,
b

dt
(3.16)

2iE "= [5sin(28)+B,„]b+ [b, cos(28) B]b,—„,dt

as well as particle-number conservation which is ex-
pressed as

d [(v,L v,L (t)+v„t v„t (t)] =0. (3.17)
dt

X—:—&v&+It, ,

%0=b, ( cos(28), —sin(28), 0),
(3.20)

where ( v ) denotes the averaging procedure performed
on v.

The computation proceeds by solving Eq. (3.19) for
varying parameters, then doing the averaging directly on
v, and finally requiring self-consistency. The formulation
in Eq. (3.19) provides useful insight in understanding neu-
trino oscillations.

C. Dimensionless parameters

This subsection makes manifest the dependencies on
various parameters. We do this by going to dimension-
less quantities. The numerical simulations in Sec. IV are
performed using the variables of this subsection.

For a particular neutrino, define a dimensionless wave
function P" [(i) denotes the ith neutrino], a dimension-
less time r, and dimensionless backgrounds (p) and
(p,„)using

y")=—v'V v") r=2&ZG, p.t,

Let 2i/2GFEp '~ 2v'2GFEp
(3.21)

u, =b, u2 —=R—e(b,„), u3 —= Im(b, „),
v= (u), U2, U3 )

(3.18)

Then, Eq. (3.16) resembles the propagation of a particle
in a magnetic field:

dv
dt

vXX
2E

(3.19)

where e/m, charge over mass, is replaced by 1/(2E), and
the magnetic field 23 has a fixed component So and a
component ( v ) generated from the neutrino back-
gl ound:

&p„, &=—&p,'„&,

where p„=(N N)/V is—the net neutrino density,

p =p +p —p —p, and V is the volume of the gas.

The bilinears P" and P,"„' are given in terms of P"
without dimensionful constants via

p(i) y(i)ty(i) pter(i) p(i) 2y(&)ty(r)

(3.22)
(N. —N„)(P) —= yP", (N. —N, )(P,„)—= gP,"„'.

From Eqs. (3.16) and (3.21), one finds

(P) —a. cos(28) x sin(28)+ (P„,)
v sin(28)+ (P,„) —(P) +x cos(28) (3.23)

where ~ is the dimensionless parameter

2v'2G~Ep
(3.24)

Neutrinos with different energies have different ~. For
neutrinos with v»1, the vacuum mass difference is
much greater than the neutrino-induced mass and those
neutrinos should oscillate in a manner similar to the vac-
uum case, unless subtle effects somehow lead to an
arnplification. When K «1, the neutrino-induced mass is
large and it is crucial to include neutrino backgrounds.
Equations (3.23) and (3.24) show that the oscillation of a
neutrino does not depend separately on 6, E, and p but
in the combination given by a. In dim. ensionless variables
the magnetic-field-like reformation reads

v = v = (P, Re(P,„),Im(P, „)),V

2 2GpE

dv 1~= —vXQ, %=—(v&+%0,d7. 2

%0:—ic(cos(28), —sin(28), 0),

(3.25)

where a caret indicates a dimensionless vector quantity.
Figure 1 illustrates the magnetic-field-like reformula-

tion. If neutrino-neutrino interactions are neglected then
4=%0 and the vector v(t) rotates around 40. In general,
( v(t) )Av(t) and neutrino self-interactions provide an ad-
ditional contribution to the force in Eq. (3.19) given by
(v(t) ) Xv(t)/2.

Using Fig. 1, one easily sees that our approach is basis
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The full G(tf, t; ) is obtained by multiplying successive
G(t+5t, t). If

d&m dO«1 and A, «1,
dt dt

(3.27)

then, as a function of t, U (t) varies slowly compared to
the oscillating factor exp(im5t/A, ). Hence, when one
multiplies successive G(t+5t, t), the U at adjacent
times cancel except for the first and last U . Denoting
G„as the adiabatic approximation to G, one has

G(tf, t, ) =G, (tf, t, )

e le+ 0—:U (tf), ~ U (t, ),0 e
(3.28)

where

(v(t)) x v(t
2

pf dS

(s)
(3.29)

0

FIG. 1. The magnetic-field-like reformulation. The broken
line shows the orbit of the vector v(t) defined in Eq. (3.25). If
v{t) and ( v{r)) are not parallel, then the neutrino background
produces a force equal to (vlrl) Xv{r)/2. When (v{ri) lags
behind v(t), this force causes v(t) to spiral outward away from
%0 as indicated.

Let us use G„as the propagation matrix. From the
solutions v as determined from G„,one computes the bi-
linears b and b,„ in Eq. (3.15). They are functions of
exp(2im. qr). Assume that tf —t, is much bigger than any
oscillation time. In computing B and B,„ in terms of 6
and b,„, statistical distributions are expected to produce
variations in A, (t) and hence large fiuctuations in
exp(2im. y), which effectively set this phase factor to zero:

~ exp(Zvrip)=Q bey, ~ exp(2e. ip)=0 Bey &

independent. A different basis simply orients the 1, 2,
and 3 axes in Fig. 1 differently. However, the relative
orientation of v(0) and %0 as well as the evolution of v(t)
and (v(t)) as determined from Eqs. (3.25) and (2.9) are
unchanged.

In addition to ~ and t9, neutrino oscillations depend on
the parameters specifying the averaging procedure and
entering in probability distributions. They also depend
on the initial neutrino wave functions and backgrounds.

D. An adiabaticlike approximation

Because of the complicated nature of the dense neutri-
no gas problem, one must probably proceed numerically
to obtain accurate results. For ordinary neutrino oscilla-
tions, approximate analytic methods exist [15]. One such
method is the adiabatic approximation. In this subsec-
tion, we derive the analogue of this approximation for the
neutrino gas.

Let G(tf, t, ) be the propagation matrix. It evolves a
solution v of Eq. (3.1) at time t; to a solution at time tf ..

v(tf ) =G (tf, t; )v(t; ). For small 5t,

G(t+5t, t)= exp[ i5th(t)] . —

for tf —t, »k (3.30)

where the abbreviations c2; =cos[28 (t; ) ],
=sin[28 (t; )], c2f cos[28 (tf )],
$2f sin[28 ( tf ) ] are used.

The initial 8 (t; ) and a (t,. ) are determined from Eqs.
(3.9) and (3.10). The final 8 (tf) and a (tf) are found
by using the results of Eq. (3.31) in Eqs. (3.9) and (3.10).
In the case of a monoenergetic gas, 8 (t) and a (t) are
the same for all neutrinos and the factors depending on
these angles in Eq. (3.31) can be taken outside the averag-
ing brackets. Assuming a smooth asymptotic behavior,
one then finds that a (tf ) is 0 or vr The two case.s are

tan[28 (tf ) ]=tan(28),

when

Straightforward but lengthy algebra gives B and B,„as
B(tf)=(b(tf))

= (c2fc2;b (t, ) ) —Re[(c2fsz;e ' b,„(t; ) ) ],
2'~m "f' (3.31)

B,„(tf)=—(e f tan[28 (tf)]b(tf)),

Using Eq. (3.7),

G(t+5t, t)=U (t)
[[i m/A, (t)]St

e 0
—[talk {t))st Um(t)

e

and

e = 1 and 6 sin(28)+B,„(tf) )0,

tan[28 (tf ) ]= —tan(28),

(3.32)

(3.26) when
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B,„(tf) = —tan(28)B (tf ), (3.34)

and B,„(tf) is real. Equation (3.34) implies that the off-
diagonal terms in the mass eigenstate basis vanish for late
times. This follows from

gM

Re(B,„)
cos(28) —sin(28) B
sin(28) cos(28) Re(B,„)

(3.35)
Im(B,„)=Im(B,„),
where the superscript M indicates the asymptotic mass-
eigenstate basis.

It is unclear when the adiabatic approximation can be
used from t; =0 to tf = ~. Unlike the MSW case of an
electron background in which one can imagine a situa-
tion for which p, (r) varies very slowly with the distance
r, the neutrino backgrounds tend to oscillate at the same
rate as an individual neutrino, especially for early times
for certain initial situations. Hence, the adiabatic ap-
proximation can hold only if the amplitudes of the neutri-
no backgrounds are small. Even in this case, the adiabat-
ic approximation might break down if small effects add
constructively over a long time period of time. Further-
more, the adiabatic approximation gives a result indepen-
dent of the averaging prescription. In Sec. IV, we show
that there can be sensitivity to the parameters in the sta-
tistical distributions. We also provide an example where,
although Eqs. (3.27) are valid, the adiabatic approxima-
tion fails due to a parametric resonance [16,17].

Figure 2 displays the survival probability of electron
neutrinos assuming that a(tf ) =0 and assuming that the
adiabatic approximation is valid for all times. Starting

1.2--

e f = —1 and 6 sin(28)+B,„(tf) &0 . (3.33)

In either case,

with a gas of electron neutrinos, oscillations convert some
particles into muon neutrinos. Plotted in Fig. 2 are con-
tours of constant survival probability P, i.e., the fraction
of neutrinos that remains electron neutrinos as t~~.
The formula for P is

P =
—,'+ —,

' cos(28) cos[28 (0)],
where 8 (0) is the initial matter-induced mixing angle:

tan[28 (0)]=sin(28)/[ —I/a+ cos(28)] .

Figure 2 provides a rough picture of neutrino-oscillation
results in neutrino gases.

For most systems, one expects the statistical distribu-
tions to produce backgrounds which are smooth for large
times. If the charged-lepton background A is time in-
dependent, B (t) and B,„(t) should become constant as t
gets big. The adiabatic approximation can then be used
to take a result at a large time and extrapolate it to very
large times. Hence, the result in Eq. (3.34) should hold
generally. We now demonstrate this more rigorously.

E. Some general results

Assume B (t) and B,„(t) have smooth limits as t~ oo

and let tf denote asymptotic late time. Apply the averag-
ing procedure to Eq. (3.16). As t ~ oo, the left-hand side
of Eq. (3.16) vanishes because, in averaging, b and b, are
replaced by B(t) and B,„(t) which become constant.
Therefore, the average of the right-hand side of Eq. (3.16)
must be zero. This implies Eq. (3.34),

B,„(tf ) = —tan(28)B ( tf ) .

As t ~ ao, the background densities approach limits such
that off-diagonal terms vanish in the mass eigenstate
basis. There is a simple physical interpretation of this re-
sult via the magnetic-field reformation. The only pre-
ferred direction in Fig. 1 is along %0 so that if the back-
grounds approach fixed values for large times, it should
lie along the direction of %0. Since

%o ~ (cos(28), —sin(28), 0),
B,„(tf ) = —tan(28)B ( tf ) .

Secondly, a bound on B(tf) can be obtained. Since
( v( tf ) ) points in the same direction as $0 and since
B(tf ) is the x-axis projection of ( v(tf ) ),

0. 9--

B(tf )—cos(28) ~
, , &

~ cos(28),
2 2G E,„p'"' (3.36)

0. 8-

4
10

-3
10

-2
10

-I
10

0
10

where E,„ is the maximum energy of any neutrino and

total —(~ +~ )/y

sin (2e)

FIG. 2. The survival probability according to the adiabatic
approximation. In this figure we assume that the adiabatic ap-
proximation is exact and that lim, „2a (t) =Omod2m. Lines
of constant survival probability P are shown as a function of
sin (20) and ~=A/2&26FEp .

B(tf)~b, cos(28) when 2a (tf)=0,
B (tf ) ~ b, cos(28) when 2a (tf ) =m .

(3.37)

is the total neutrino density. When 2a (tf)=0 and
2a (tf ) =~, it is straightforward to show that the follow-
ing holds for a monoenergetic gas:
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A third result concerns "a weak averaging procedure. "
If for some reason, b(t)=B(t) and b,„(t)=B,„(t), then
the situation is that of a neutrinoless background. This
follows from Eqs. (3.19) and (3.20). When v = ( v ),
v X ( v ) =0 and the background-neutrino-induced
magnetic-field term produces no effect. Consequently, one
can replace % by %o and neutrinos oscillate as if they
were in a vacuum. For example, if only one neutrino is
present in the gas, then v= (v) and this is the situation.
If the spread in probability distributions is very narrow,
one expects only small deviations from vacuum oscilla-
tion results.

gy distribution. To simulate the system we used many
neutrinos with different energies. In doing so, the self-
consistency condition is implemented automatically since
backgrounds can be determined by averaging over the
various wave functions. Time averaging is less physical
but is expected to produce effects similar to more realistic
systems. It is also presented to illustrate the self-
consistency condition.

The numerical simulations were performed using the
dimensionless parameters of Sec. III C. Initially, all neu-
trinos were taken to be electron neutrinos, i.e.,

v(0) = (v(0) ) =(1,0,0),
IV. SAMPLE SIMULATIONS

To illustrate our ideas, we have performed exploratory
numerical simulations for a gas of neutrinos with N =0
(no antineutrinos). Solutions to Eq. (3.23) were obtained
by numerical integration with a computer. The self-
consistency condition, when it was not automatically
satisfied, was implemented by an iterative procedure. We
have performed enough numerical work to gain some in-
sight into the physics of dense neutrino gases. However,
our studies are not exhaustive and further work is need-
ed.

For reasons of space, we discuss selected examples;
significantly more simulations have been performed. We
observed several interesting effects. With one exception,
neutrino oscillations resemble, as expected, the vacuum
case, when the neutrino gas is not too dense. In the ex-
ceptional case, a parametric resonant conversion of neu-
trinos occurred; a gas of electron neutrinos, although di-
lute, was able to slowly convert into a gas of predom-
inantly muon neutrinos. It took many many oscillation
times for this to happen. When the neutrino gas is dense,
we find that a self-induced resonant conversion can
occur. Most electron neutrinos are converted into muon
neutrinos. In an exceptional case, an unusual cooperative
phenomenon occurred in which neutrinos oscillated more
or less in phase. An averaging procedure failed to pro-
duce incoherence. The self-maintained coherence arose
for a situation in which one expected incoherence.

A general result concerns initial conditions. If all neu-
trinos are initially in mass eigenstates then there are no
oscillations. To show this, note that all

b,„(0)= —tan(28)b (0)

and consequently

B,„(0)= —tan(28)B (0) .

Next, note that the time derivatives db/dt and db, „/dt
are zero at t =0 since the right-hand side of Eq. (3.16)
vanishes. For each neutrino, let b (t) =b (0) and
b,„(t)=b, (0) be the constant solution. Then B (t) =b (0)
and B,„(t)=b, (0) also because the average of a constant
is the constant. Hence B,„=—tan(28)B for all times. A
solution is found since both sides of Eq. (3.16) are zero.

We used two generic types of averaging procedures:
time averaging and energy averaging. The latter is neces-
sary in any physical gas since neutrinos will have an ener-

cf. Eq. (3.25). Although other values of sin (28) were
simulated, we use sin (28)=0.25 for all the numerical ex-
amples presented below.

A. General comments on time-averaging procedures

Given a solution v of Eq. (3.25), we define the time-
averaged background ( v ) to be

1 +1+f )

(v(r))= f &0 v(a), (4.1)

where

d(v) const ~Q
d7 7

as 7—+ ~. Time averaging guarantees that neutrinos in-
terfere incoherently. In Sec. IV B, we consider
symmetric-time averaging for which f =f . In Sec.
IV C, we treat backward-time averaging for which f~ =0.

For small times, one can obtain accurate analytical re-
sults for v(r) and (v(r)) by performing a Taylor-series
expansion in 7. The results are presented in the Appen-
dix. We used series with up to ten terms to verify our nu-
merical simulations in the small 7 region.

The time-averaging procedure illustrates well the self-
consistency condition. A background (v) is a solution if
(v) is the result of time averaging over v(cr ) in Eq. (4.1)
when v(r) is obtained by integrating Eq. (3.25) using ( v)
as the background. In practice, we found such back-
ground solutions by iteration. An initial background
(v);„was proposed. Using (v);„ for (v), Eq. (3.25) was
solved by numerical integration on a computer. Then Eq.

v=(P, Re(I3,„),Im(P, ))

and f and f are the backward and forward time-
averaging fractions. The physical motivation for time
averaging is that various efFects cause different neutrinos
to propagate for different amount of time. The solution
v(o ) can represent any one of the neutrinos. By time
averaging, one implements the idea of different times of
flight. The advantage of this approach is that only one
solution of Eq. (3.25) need be known. A flat distribution
is used in Eq. (4.1); if desired, one can use another distri-
bution. Since the averaging time interval increases
without limit as 7~ ~, one expects the backgrounds to
go to smooth limits. Indeed, from Eq. (4.1) one can show
that
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(4.1) was used to generate an output (v),„,. The new
background ( v )„,„was selected as a weighted combina-
tion of ( v );„and ( v ),„,and used as the new initial input.
The procedure was repeated until input and output back-
grounds agreed.

B. Symmetric-time-averaging examples

The iterative procedure converged in the region ~) 1.
As an example, consider 50%%uo time averaging, i.e.,f =f =0.5, sin (28)=0.25 and

z =6/2 t/2G~Ep„= 5.0 .

The large value of v means that the mass difference in-
duced by the neutrino background is much smaller than
the vacuum mass difference. Hence, one expects neutrino
oscillations to differ only slightly from the vacuum case
and this indeed happens. Figures 3(a), 3(b), and 3(c)
display the dimensionless backgrounds as a function of
dimensionless time w. The numerical asymptotic values
are

(P& =0.753, (Re(P,„))= —0.436,

(lm(P, „)) =O.OOO .

In the absence of background neutrinos, i.e., vacuum os-
cillations, the asymptotic values would be

(P) = cos (28)=0.75,
( Re(P,„)) = —sin(28) cos(28) = —0.433,

and ( Im(P, &) ) =0. These vacuum values are close to the
numerical results. The adiabatic predictions of

(P) =0.693, (Re(P, )) = —0.400,

and

(lm(P, „)) =O. OOO

from Eq. (3.31) are in less agreement, suggesting that the
system behaves more like the vacuum than expected.
The prediction of

( Re(P,„)) /(P) = —tan(28) = —0.577

in Eq. (3.34) is confirmed. Our numerical result is

( Re(P,„)) /(P ) = —0.579 .
and

&Re(P )&e p.

0. 8.

0. 6.

0

0.2--

—0.2.

—0. 4.

—0. 6

—0. 8..

0. 6--

0

10 7 15 20

0

10 15 20

The other values of sin (28) for x ) 1 which we examined
produced results which also mimicked vacuum behavior
for neutrino oscillations.

When ~ ( 1 and the neutrino gas is dense, we were un-
able to find the backgrounds for all times using the
above-mentioned iterative procedure. Nevertheless, some
conclusions can be drawn. In a simulation with parame-
ters in the previous example except ~=0.5, we obtained
the backgrounds to a few percent for r & 10. Figure 4(a)
displays ( P ) for r & 20. For 10 & r & 20, the iterative pro-
cedure progressively broke down so that only —15%%uo ac-
curacy was achieved. For ~) 20, we were unable to
determine the solution; however, examination of comput-
er runs suggest that (P) continues to decrease and ap-
proaches 0. 1+0.3, meaning that almost 50%%uo of electron
neutrinos are converted into muon neutrinos.

It appears that there is a neutrino-self-induced MSW
effect. In the absence of neutrino interactions,
(P) =cos (28)=0.75. Numerical results give a consider-
ably smaller value of (P). At r=o, when all neutrinos
are electron neutrinos, the matter-induced mixing angle
8 in Eq. (3.10) is large and near m/2. As the neutrinos
convert into muon neutrinos, (P) becomes smaller and
8 decreases below m. /4 as Fig. 4(b) shows. The situation
is similar to the MSW resonant conversion of solar neu-
trinos created by a background electron density [2,3].
The differences are that, in our case, the electrons are re-
placed by the neUtrinos themselves and time plays the
role of distance from the Sun's center. Other values of
sin (28) give similar results, indicating that a self-induced
MSW effect occurs for ~(1.

—0. 6-

{c)
C. Numerical simulations with back-time averaging

FIG. 3. The neutrino backgrounds as a function of time for a
low-density neutrino gas with symmetric-time averaging.
a.=0.5, sin (28)=0.25, and f =f~ =0.5.

One can avoid the problem of iterative convergence by
using back-time averaging. If f~ =0, then the averaging
procedure in Eq. (4.1) involves only earlier times. As-
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sume that the wave function is numerically known up to
time ~. The backgrounds at time ~ are then determined
from earlier values of the wave function and can be used
to numerically integrate the wave functions from time w

to time ~+6,~. By repeating the process, we obtain the
backgrounds at all times. Although less interesting phys-
ically, back-time averaging provides no difhculties in
satisfying the self-consistency conditions and is computa-
tionally simple.

Let us reconsider the last example for which
sin (20)=0.25 and

~=A/2&2G~Ep, =0.5 .

We use 50&o back-time averaging: f =0.5. Figure 5(a)
shows the electron-neutrino survival probability
P =(1+(P))/2 as a function of time r. There is almost
complete conversion of electron neutrinos into muon neu-
trinos. Although electron neutrinos are quickly
transformed into muon neutrinos, it actually takes a rela-
tively long time interval to achieve asymptotic values for
the backgrounds. Backgrounds are within a couple per-
cent of asymptotic values when ~=300. Maximal con-
version occurs, i.e.,

e
m

0. 8.

0. 6.

0. 4.

0.2.

1.2-

0. 8.

0. 6-

0. 4-

0.2. -

10

10 20

(a)

(b)

30

30 40

50

50

lim (P(r) ) = [1—cos(20)]/2=0. 067 .
7~00

A self-induced MSW effect has occurred. Figure 5(b)
shows that the matter-induced mixing angle 0 goes
from a value near m/2 to a value near 0 as r goes from 0
to ~, just as in the MSW effect.

0. 8-

0. 6-

FIG. 5. The behavior of a dense neutrino gas with back-time
averaging. The simulation is done with ~=5.0, sin (20)=0.25,
f =0.5, and f~ =0.

Next, let us simulate a gas with a small background
neutrino density. We use the parameters in the last ex-
ample except for ~=5.0. For such a value of K, one ex-
pects results similar to the vacuum case. Surprisingly,
maximal conversion still occurs,

lim &P(r)) = —cos(28)= —0.866 .
7 ~ oo

0. 4-

0.2--

10 15 20

To analyze the physics, let us use the magnetic-field
analogy given in Sec. III B. Figure 6 shows the orbit of
v(r) during the first eight or so oscillation times. At
r=0, v(r)=(1,0,0). The vector v begins to precess
around

(a)

e
2.5.-

2--

1.5--

0.5.-

10 15 20

FIG. 4. The behavior for early times of a high-density neutri-
no gas with symmetric-time averaging. The results are for the
same parameters as in Fig. 3 except sc= 5.0.

FICr. 6. The orbit of v(w) for back-time averaging for the
low-density gas of Fig. 5. The vector v(~) begins at (1,0,0) and
starts to circle around Ro. The background neutrinos, however,
cause it to spiral backward and to eventually circle about
—Ro/s.
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So=I~( cos(28), —sin(28), 0)

and then gradually "spirals backward": v~~, the com-
ponent of v parallel to %0, decreases until v points oppo-
site to %o. For large times, v orbits in small circles about
—%0/~. The asymptotic result is

lim v(r)=( —cos(28), sin(28), 0)= lim (v(r)) .

It takes many, many oscillation times to achieve the
asymptotic value.

A parametric resonance has occurred. The neutrino
background oscillates, more or less, in phase with an indi-
vidual neutrino. Of course, time averaging reduces the
amplitude of the background. The background is able to
decrease v~~ a little during each oscillation period.
Without neutrino interactions, v(r) circles around %0/a.
With back-time averaging, (v(r)) "lags" behind v(r).
The effect of the neutrino background is to produce a
force (v(r)) Xv(r)/2. See Eq. (3.25). Figure 1 displays
v(r), (v(r)), and (v(r)) Xv(r)/2. One observes that
(v(r)) Xv(r)/2 causes v(r) to spiral backward; i.e., it
makes v~~(r) decrease. Eventually it pushes v(r) to
—Ro/v.

The above argument suggests that maximum conver-
sion occurs for any 8, x, and f & 0 when f~ =0. We
have numerically checked this for a number of simula-
tions. For bigger x and smaller f considerably more os-
cillation times are needed to achieve maximum conver-
sion. The final result is

lim ( v(r ) ) = ( —cos(28), sin(28), 0)
7MOO

(back-time averaging ) (4.2}

for all the cases we have examined. Equation (4.2) satu-
rates the lower bound in Eq. (3.36).

The above argument also suggests that, for forward-
time averaging, the orbit should spiral forward and
minimum conversion should occur. Using an iterative
procedure to obtain the self-consistent backgrounds, we
found

lim ( v(r) ) =( cos(28), —sin(28), 0}
7~00

(forward-time averaging ) (4.3)

for all the cases we studied.

D. General results concerning averaging
over an energy distribution

The particles in any physical gas have different ener-
gies. To deal with realistic neutrino gases, it is necessary
to average over the energy distribution of the neutrinos.
From Eqs. (3.22} to (3.24), one realizes that changing the
neutrino energy E is equivalent to changing ~, but leaving
p and p,„unchanged. A distribution in E corresponds to
a distribution in 1/~. Unlike the time-averaging case, a
constant charged-lepton background 3 cannot be elim-
inated by going to effective parameters because the trans-
formation in Eq. (3.14) varies with energy and hence

dv
2 =(v~(r)) Xv~(r), (4.4)

1v~(r)
2 =vj(1 ) X%0+ (vi(1 ) ) Xvii(r)+ (vii) Xvi(v') .

d7

(4.5)

Since Eq. (4.4) does not depend on a neutrino's energy,
application of the averaging procedure to Eq. (4.4) yields

d( ~(( )) =0.
d7

(4.6)

Because (v~~(r)) is proportional to N& N2, where N—,
and Nz are the number of neutrinos with mass m, and
mass m2, and because the total neutrino number N&+N2
is conserved, N& and N2 are individually conserved. The
conservation of individual mass-eigenstate numbers can
be shown to hold generally for a pure neutrino gas with
only neutral current interactions [13]. Since a time-
averaging procedure violates N, —N2, it cannot arise in a
pure neutrino gas but must be induced by other interac-
tions such as the weak charged-current interaction.
Background charged leptons can create and destroy neu-
trinos and lead to varying propagation times.

Equation (4.6) implies that (v) moves in a plane per-
pendicular to 4o. If (v) achieves a constant asymptotic
value then lim, (v(r)) is given by the projection of
( v(0) ) onto %0/a:

lim ( v(r) ) = cos(28)( cos(28), —sin(28), 0),
7 —+ OO

so that

lim (P) = cos (28),
T~ OO

which is the same result as for vacuum oscillations.

(4.7)

varies from neutrino to neutrino. In this and the next
subsection, we set 3 to zero.

For energy averaging, the self-consistency condition is
automatically satisfied. However, numerical integrations
of many neutrino solutions must be computed. The pro-
cedure is as follows. Let there be N neutrinos with wave
functions P" and energies E", i =1, . . . , N . Assume
P" has been numerically computed up to time r. Then,
using Eq. (3.22), the backgrounds can be calculated by
averaging over P" and P",„'. With (P) and (P,„),one
can numerically integrate to get the P" at r+b, r. The
procedure is then repeated.

As in the case of time averaging, closed forms for the
Taylor series in ~ for

v"={P",Re(P",„'),Im(P,"„')}

and (v) can be obtained. An inductive algorithm is
given in the Appendix. We uses such series to check
computer programs.

For an energy-averaging procedure, neutrino particle
numbers for mass eigenstates are conserved [13]. Let v~
and v~~ denote the components of v perpendicular to and
parallel to %o. In terms of these components, Eq. (3.25)
reads
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E. Numerical results for averaging
over an energy distribution

For Ko) 1, this is the case. Figure 7 displays the results
when sin (28)=0.25 and

iro=b, /2&2G~Eop =5.0,
where Eo is the average energy. We used 101 neutrinos

0. 8.

0. 6"

0.4'

0.2. -

(a)

8 10

—0.2.
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—0. 4.

&Re(P )&e p. —0. 6.

—0.8"

(b)

0. 6--

0.4"
&Im( P 0.2

—0. 2-

4 6 8 10

—0. 4.

—0. 6.-

(c)

FIG. 7. The neutrino backgrounds for a low-density gas with
an energy-averaging procedure as a function of time. The re-
sults are for ~0=5.0, sin (28)=0.25, and a Rat energy distribu-
tion with energies varying from 0.4E0 to 1.6E0.

This subsection presents numerical results for the case
of a Aat energy distribution. Such a distribution corre-
sponds to a fiat distribution in I/~ and leads to different
%o for different neutrinos. Suppose the neutrino interac-
tions are neglected. Then, neutrinos with different ener-
gies have different oscillation times, A, , as can be seen
from Eq. (3.11). Even when the neutrino wave functions
begin in phase at ~=0, one expects the phases to eventu-
ally distribute themselves randomly and for incoherence
to be achieved. Hence, (P) and (P, ) should have
smooth limits and satisfy Eqs. (3.34) and (4.7):

lim [ (P ), ( Re(P, ) ), ( Im(P, „)) ]
7MQO

= cos(20)(cos(20), —sin(20), 0) .

with energies varying uniformly between 0.4Eo and
1.6Eo ~ The asymptotic values are

(P) =O. 75, (R (P,„))= —0.43,
and

(Im(P, „)) =O. OO

in agreement with the predictions in Eq. (4.7) of 0.750,—0.433, and 0. In addition,

( Re(P,„)) /( P ) = —0.57

agrees with the theoretical result of —tan(28)= —0.58.
We checked that results were not sensitive to N when
N is large.

When we reduce Ko to 0.5, an unexpected phenomenon
occurs. There is self-maintained coherence. Independent
of N and the total integration time, incoherence is not
achieved. Figures 8(a), 8(b), and 8(c) display the neutrino
backgrounds during the first few oscillation times. The
oscillatory behavior continues indefinitely. We have ob-
served it to persist beyond 250 oscillation times, i.e., for
r) 5000. Figures 8(d) and 8(e) show the behavior of 9
and a . The former oscillates while 2a continuously
cycles around the unit circle. Neutrino-neutrino interac-
tions cause neutrinos to bunch together in Aavor space.
Even though neutrino energies vary from 0.4EO to 1.6Eo,
coherence is maintained and almost all the neutrinos os-
cillate in phase. The same phenomenon occurs for small-
er values of Ko.

By examining individual solutions, we believe we have
an intuitive explanation of the above effect. Coherence is
maintained if the vectors v~ associated with different indi-
vidual neutrinos rotate at approximately the same rate.
Suppose a particular neutrino has an energy smaller than
the average energy Eo, and, hence, a relatively large K.
Neglecting neutrino interactions, its v~(r) would rotate
faster around So than the v~(r) of a neutrino with energy
Eo because of the factor of ~ in %0 in Eq. (4.4). Taking
into account the term (vj(r) ) Xv~(r) in the equation for
dv~~(r)/dr in Eq. (4 4), one sees v~~ is reduced compared
to a neutrino with an average energy. The situation is
similar to back-time averaging. The smaller value of v

II

causes v~(r) to rotate more slowing than a neutrino with
energy Eo due to the second term in Eq. (4.5). Hence the
first two terms in Eq. (4.5) can cancel each other. Ap-
parently, they maintain the v~(r) of different neutrinos
rotating at the same rate on average. The last term in Eq.
(4.5), (v~~ ) X v~(r), does not make any of the v~(r) rotate
faster or slower. In examining the orbit of v(r) for the
neutrino with energy 0.4EO we observed that v~1(r) is re-
duced compared to neutrinos with energy Eo. The oppo-
site was true for the neutrino with energy 1.6EO. When
E is larger than Eo, the vj(r) Xgo term in Eq. (4.5) affects
a slower rotation for vII. However, v spirals forward and

vII increases and this creates a faster rotation due to the
(v„(r)) Xv~~(r) term. In other words, we believe the first
two terms in Eq. (4.5) compensate for each other on aver-
age and this cancellation produces a lack of decoherence.
This can only occur for Ko sufficiently small. When Ko) 1
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investigate whether certain gases possess chaotic
behavior.

Because the physics depends on the detailed nature of
the gas, it is probably best to proceed by applying the for-
malism to known systems in nature. Possible applications
include efFects in the early Universe and in supernova ex-
plosions. We are currently investigating the behavior of
neutrino oscillations in the early stages of the universe
[18].

Note added. After this manuscript was accepted for
publication, a paper appeared [19] which also incorpo-
rates the ofF-diagonal terms correctly.
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APPENDIX: TAYLOR-SERIES EXPANSIONS

For small times, accurate analytical results can be ob-
tained via Taylor series. For the time-averaging pro-
cedure we expand using

n —1

cjaj Xa„ i+a„ i Xko
j=0

Equation (A4) permits an inductive determination of the
a„. When

v(0) = &v(0) & =(1,0,0),
ac= (1,0,0) and the first few terms in Eq. (Al) are

P= 1 —
—,'(K$2or) +O(r ),

l KS 2@1 $2@C2g K$2g

2 8 8
(Kr) + (1—c )r +O(r ),

(A5)

&P& =1— ' (Ks»r)'+O(r'),

EC1K$2er C2$28C28
p

2 8
(Kr)

C2K$2g+ (1—c, )r +0 (r ),
where $2s ——sin(28), c2o =—cos(28), and

v = (P, Re(P,„),Im(P, „)) .

For energy averaging, let v"(r) and E"be, respective-
ly, the flavor vector and the energy for the ith neutrino.
Expand using

v(r)= g ajrj, &v(r)&= g c a r~,
j=0 j=0

v"(r)= y a"r', &v(r) &= y &aJ &r'.
j=0 j=0

Then

(A6)

where the definition of the averaging moment coefficients
Cj 1S

1 +1+f )

r(f +f ) ~~i f—(A2)

or

co=1, c = [(1+f )J+' —(1+f )J+'] .
1

m p

(A3)

The coefficients a„are determined from Eq. (3.25). One
finds

n —1

g &a, &xa'„' i,+a'„', X+i')
j=0

V

&a, &= y a'„', (A7)
i=1

allows one to determine the Taylor-series coefFicients in-
ductively. In Eq. (A7)

%~"—:K"(cos(28), —sin(28), 0),
where

K =bl2v 2G E 'p—
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