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Masses of vector and axial-vector mesons at finite temperature
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The temperature dependence of the efFective masses of vector mesons (p and cu) and axial-
vector mesons (Ai) are examined with the use of an efFective chiral Lagrangian. The effective
masses at finite temperature are determined from the pole positions of the propagators and from
the inverses of the static screening lengths. The results may be viewed as an extrapolation of known
hadronic interactions to temperatures up to a deconfinement/chiral-symmetry-restoring transition
or crossover.
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I. INTRODUCTION

We believe that the fundamental theory of the strong
interactions is quantum chromodynamics (QCD) with
quarks and gluons as the elementary fields. If the quark
masses are set equal to zero, the QCD Lagrangian is sym-
metric under the chiral group SU(Kt) xSU(Ny). Since
the u- and d-quark masses are very small, this is a good
approximation for the subgroup SU(2) x SU(2).

In the hadronic phase, at low energy, quarks and gluons
are confined in hadrons: pions, nucleons, vector mesons,
and others. Since each hadron does not have the parity-
doubled partner, one assumes that the ground state of the
theory spontaneously breaks the chiral symmetry down
to SU(Kt). Spontaneous breaking of the symmetry is
accompanied by the appearance of % —1 massless Gold-f
stone bosons. Pions, kaons, and g mesons are regarded
as these Goldstone bosons.

As the energy density of the hadronic system increases,
it is expected that the system undergoes a phase transi-
tion and/or crossover to a quark-gluon plasma (QGP)
[1—3] in which quarks and gluons are deconfined and
the spontaneously broken symmetry is restored. Thus
there are at least two possible phase transitions in
hadronic matter as temperature increases: deconfine-
ment of quarks and gluons at temperature Tg and restora-
tion of the broken chiral symmetry at temperature T,h
[4,5]. These phase transitions are very important to un-
derstand QCD and the QGP phase at high temperature.

By studying the properties of hadrons at finite tem-
perature we may be able to understand the approach to
the expected phase transitions and/or crossover and the
formation of the new phase. The masses of the mesons
are regarded as one way we can see the properties of
hadronic matter. Recently, there have been estimates
made of the meson masses at finite temperature by using
lattice simulation [6,7], QCD sum rules [8,9], and effec-
tive Lagrangians [10].

In lattice calculations, screening masses of mesons, re-
lated to the imaginary-time response function, are mea-
sured to study the structure of the hot matter. It has
been suggested that the unbroken chiral symmetries are
reflected by the degeneracies of the screening masses of

the expected chiral multiplets [6]. Recent Monte Carlo
simulations on the lattice showed that the screening
masses of the vr meson and o meson, and the p meson and
Ai meson, are degenerate and approach 2vrT, the limit
which corresponds to the free-quark contribution at high
temperature (T ) T,h). The degeneracies are interpreted
as the signals of chiral-symmetry restoration. However,
there is no general proof that the screening masses are
directly related to the masses of low-lying excitations in
hot matter.

The calculation using QCD sum rules showed that
the mass of the p meson increases with temperature
and approaches the mass of the Ai meson, which de-
creases as temperature increases [8]. Chiral-symmetry
restoration was inferred from the degeneracy of the vec-
tor and axial-vector meson masses. But other calcula-
tions [9], which used a difFerent Lorentz structure for the
sum rule, showed that both vector and axial-vector me-
son masses decrease as temperature increases. These are
supported by an argument based on scale invariance, in
which all meson masses approach zero as the temper-
ature approaches its critical value [11]. However, the
mass difference between these mesons becomes even big-
ger as temperature increases because the p-meson mass
decreases faster than that of the Ai meson.

Gale and Kapusta [10] investigated the properties of
the neutral p meson at finite temperature using an effec-
tive, renormalizable Lagrangian with charged pions and
neutral p mesons. They found that the neutral p-meson
mass increased slightly with temperature.

We see that there are some contradictions in the pub-
lished results using different techniques. Why? First of
all, there is as yet no systematic way to describe hot
hadronic matter. Even though QCD is the fundamental
theory, hadronic systems cannot be easily described by
QCD because of confinement of elementary fields and the
symmetry breaking. Another problem in estimating the
masses of the mesons at finite temperature is the ambigu-
ity of the definition of the mass [12]. Generally, different
definitions describe physically different phenomena.

In this paper the vector and axial-vector meson masses
are investigated and analyzed at finite temperature. We
use an effective chiral Lagrangian with pions, p mesons,
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~ mesons, and Ai mesons. The vector and axial-vector
mesons can be included in the effective Lagrangian ex-
plicitly, being regarded as massive Yang-Mills fields of
the chiral symmetry which is spontaneously broken in the
hadronic phase. This effective Lagrangian can describe
all of the interactions in terms of a relatively small num-
ber of parameters which can be obtained phenomenolog-
ically.

The effective Lagrangian assumes confinement and
spontaneous breaking of the chiral symmetry. The La-
grangian is applicable only to low temperature before the
expected phase transitions. The results obtained from
this approach should be viewed as valid at low temper-
ature, and extrapolations to T = 150—200 MeV can be
viewed only as suggestive.

In the effective Lagrangian approach, it is assumed
that the properties of the system are describable at the
tree level, where the masses and coupling constants are to
be regarded as the physical ones. Loop diagrams, which
are neglected, produce only renormalization efFects on
these parameters [13]. We assume that the tree approx-
imation is still reasonable at finite temperature due to
the relatively low density of the system. At finite tem-
perature the tree-level contributions are obtained from
the one-loop diagrams which are interpreted as the scat-
tering processes in the medium [14].

We consider two definitions of the mass at finite tem-
perature: the pole mass determined from the pole po-
sitions of the propagators [15] and the screening mass
obtained from the hadronic correlation function at large
spatial separation [6]. Both definitions are well known
from many-body theory and are relevant in different
physical contexts.

In Sec. II the effective Lagrangian used in the present
calculation is described. We restrict ourselves to the
SU(2) xSU(2) xU(l) subgroup in which the p, cu, and Ai
mesons are included as gauge fields. Anomalous inter-
actions are included in the effective Lagrangian by the
gauged Wess-Zumino terms [16,17].

In Sec. III the effective masses of the p meson, u meson,
and Ai meson are calculated from the pole positions of
the propagators at finite temperature. The propagator in
the medium can be obtained from the Dyson-Schwinger
equation in terms of the bare propagator and the self-
energy. The self-energy of the vector and axial-vector
mesons are computed at the lowest order. The effective
mass can be obtained from the proper limit of the com-
ponents of the self-energy.

In field theory at finite temperature the screening mass
can be obtained from the static limit of the time-time
component of the self-energy [1]. We calculate the screen-
ing masses of these mesons in Sec. IV. The computed
screening masses are compared with the effective masses
from Sec. III. The electric screening mass, which is de-
fined as the inverse Debye screening length, is obtained
by introducing electromagnetic interactions in the effec-
tive Lagrangian.

In Sec. V the results are analyzed and related to the
properties of the hadronic matter at finite temperature.
Some useful relations are given in Appendix A, and ex-
plicit expressions for the self-energy of the p meson, w

meson, and Ai meson are presented in Appendixes 8, C,
and D, respectively.

II. EFFECTIVE CHIRAL LAGRANGIAN

In the low-temperature hadronic phase quarks and glu-
ons are confined, and so the system may be adequately
described by a theory in which hadrons are used as ele-
mentary fields. Effective Lagrangians which preserve the
chiral symmetry have been widely used and lead to suc-
cessful predictions in low-energy hadron physics. This
method is based on the symmetry and the vacuum struc-
ture of the fundamental theory [18—23].

At low temperature, one can work with the nonet of
light pseudoscalar mesons, which are regarded as Gold-
stone bosons related to spontaneous breaking of chiral
symmetry. These pseudoscalar mesons P are related to a
field U defined by

U=exp

and their interactions are described by the nonlinear 0.
model [20]

Co ——s~F Tr[8"UcI„Ut], (2)

where E = 135 MeV is the pion decay constant and
the A's are Gell-Mann matrices. We can add a chiral-
symmetry-breaking term which is proportional to the
masses of the Goldstone bosons:

Tr[M(U+ Ut)], (3)

where

2(
M = —

~ m/, + —m
~

Il — (mI, —m )As.
v~

A~~ = 2(V" + A"),
A." = -(V" —A").

(5)

(6)

Equation (2) can be made gauge invariant in the pres-
ence of the gauge fields when we introduce the covariant
derivative D" defined by

D~U = 0"U —igpA~~U +igpUAI, (7)

As temperature increases, we need to include the vector
and axial-vector mesons. This could be done explicitly,
or it could be done implicitly by including higher-order
interaction terms of the pseudoscalar fields. These two
approaches are nearly identical [24,25]. There is a tradi-
tional way of describing the massive spin-1 mesons at low
energy in the effective chiral Lagrangian, which is based
on the old notion of vector-meson dominance [18,21—23].
Those mesons are included as massive Yang-Mills-type
fields of the chiral symmetry. It is convenient to introduce
the left-handed vector fields Al. and right-handed vector
fields AR, which are related to the vector and axial-vector
fields as
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where g0 is the phenomenological gauge coupling con-
stant. The efI'ective Lagrangian then consists of the non-
linear o. term with a covariant derivative and kinetic
terms of the spin-1 gauge fields:

where

g = gp/gl —0 . (16)

Zp —s'F Tr[D„UD"Ut]+ s~F Tr[M(U+ Ut —2)]
1T [FI FIPv + FR FRPv]

+mpTr[A„A "+A„A "], (8)

where

~2e „f,,a" mp„+ —m ~„—
g

+o(a„), (17)

When we include the electromagnetic interaction in the
effective Lagrangian as [29]

zg [gL' I gL' +]
pv p v v p, ~0L p, & v J (9)

we have

We include the degenerate spin-1. mass term m0, which
breaks gauge invariance but not chiral invariance. Mass
splitting is generated by the partial Higgs mechanism.

We add two more nonminimal, but gauge-invariant,
coupling terms to reproduce the experimental results
[26,27]

i(Tr[D„—UD UtF ""+D„UtD„UF "
]

+aTr[F„„UF " Ut], (10)

where ( and cr are parameters to be determined.
There are anomalous interaction terms included in

the efFective Lagrangian, called Wess- Zumino terms,
which describe the non-Abelian anomaly structure of
@CD. The general structure of these anomalous terms
in an arbitrary subgroup of SU(3) x SU(3) are given in
Ref. [16]. We consider p mesons, w mesons, and Ai
mesons which can be regarded as gauge bosons of the
SU(2) I, x SU(2)~ x U(1)z symmetry. The left-handed A~&

and right-handed AR vector fields are related to the p
meson, u meson, and Aj meson as

mr( ' »)=
327r3 E3 '

which is the same as the current-algebra prediction.
As a result the Lagrangian is the sum of three terms:

0+Z o +Cwz (19)

mp ——768 MeV, I'~ = 149 MeV,

m~, ——1260 MeV, I"~, ——400 MeV, (2o)

we get two sets of parameters [29]:

set I: g = 10.3063, cr = 0.3405, ( = 0.4473;
set II: g = 6.4483, 0' = —0.2913, ( = 0.0585.

(»)
(22)

The Lagrangian has four parameters (mp, g, o, () which
can be inferred from comparison with experimental data.
We use the masses and decay widths of the p meson and
Aq meson to determine the parameters. When we use
[3o]

AP~ =
2 (p" + ur" + Ai ),

AR= 2(p" + "—Ai)

with pP = p"7 /~2, w" = ur" ]1, APi ——Ai r /~2, and
the w 's are the Pauli matrices. The gauged Wess-Zumino
terms are [28]

Recent calculation shows that parameter set I is consis-
tent with @CD sum-rule results [31]. We will consider
both sets in what follows, but we prefer parameter set I.

III. POLE MASS

&wz =— e"" Pcs„Tr[L„L Lp]
487r2

Pw„g Tr[A~ Lp —Al. Rp
16' 2

+i gp(AR Ut Al,p U

A~-A~p)]—

The propagator of a vector field at finite temperature
(T = 1/P) is defined by [1,32]

z'D„= (TA„(x)A (0))

= Z Tr(T[A„(x)A (0)] exp( —@II)), (23)

where N& is the number of colors, e~ ~ is the antisym-
metric Levi-Civita tensor with e = 1, and I~ and R~
are the left and right Sugawara currents:

L =UtB U, B = Ut9 Ut. (14)

3 2

Z~~p = E le&~ Tr[0~ ppQ] )8vr2E

The w meson interacts with the pion and p meson
through anomalous terms:

where H is the Hamiltonian and Z is the partition func-
tion:

Z = Tr[exp( —PH)]. (24)

IIp v —+ +0 (25)

Propagation of the G.eld in the medium is modified by
the interactions, and this modification can be included
in the self-energy, which is related to the inverses of the
full and bare propagators by
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The poles of the full propagator are interpreted as the el-
ementary excitations in the interacting system [15]. The
effective masses of the elementary excitations are defined
as the positions of these poles.

The propagator and the self-energy of the vector fields
are symmetric second-rank tensors. We have four in-
dependent tensors at Bnite temperature which can be
constructed &om the four-momentum k„and the four-
velocity of the heat bath n„, where n~ = (1,0, 0, 0) in
the rest frame of the heat bath. It is convenient to intro-
duce four covariant tensors as follows [32,33]:

P

(a)

kpk„)
k' )

(26)

2A„= g„~ ——[kp(n„k„+ n k„) —k„k„—k n„n„],
k2 f kpk„) ( kpk„l
k2 " k2 k2

(C„=—
/

n„— „"
/

k +
/

n„—
2/1[ &

k2 ) E,

k„k
Pr V

P P

A~

(c)

FIG. 1. One-loop contributions to the p-meson self-energy.

where k = kp —k . The self-energy can be written as a
linear combination of these four tensors:

Ilpv —ct'A~v + PBpv + pCpv + hD~v,

1/' „k i 1(,. k
G = —

(

II" + —,II„/ = —
] II; + ', ll„) .

2 q
~ k'

y 2 g
* k' (31)

II" = GP" + FP", (2S)

where PT and PLv are projection tensors defined as

PT ——PT ——PT —0,
P" = 6" —k'k'/k

L ( —g — T (29)

E and G are related to the components of the self-energy
by

k2
F = ——IIppk2 (30)

where the n, P, p, and b are scalar functions which depend
on k2 and k n.

The p-meson self-energy has been calculated at the
one-loop level (Fig. 1), and the results are given in
Appendix B. The p-meson self-energy is transverse
(k"II~ = 0). In this case p and h vanish and there
is a simple expression for the self-energy as

From Eqs. (25) and (28) the propagator of the p meson
can be written as

PV
Z)Pv L

k2 —m2 —Fp

PPv
T

k2 —m2 —Gp P

k"k
(32)m2k2

k,' —m,' —E,(k„k -+ 0) = 0,

where m~ is the vacuum mass.
In the limit k -+ 0 we obtain (see Appendixes A and

The poles of the propagator are determined from the
equations k —m —G = 0 and k —m —F = 0, which
represent the transversal and longitudinal collective ex-
citations, respectively. In the limit where the magnitude
of the spatial momentum goes to zero (k ~ 0), there is
no distinction between the transversal and longitudinal
motions, and so E~(kp, k ~ 0) should be the same as
G~(kp, k -+ 0). We can define the effective mass of the
p meson as the kp which satisfies the equation

P&(kp k M 0) = G&(kp k ~ 0)

2 p dS ~(~ ) B B2P Bs + B4P
(2vr)2 (u

'
(kp2 —4~2) (kp2 —m2~ + m2)2 —4~2kp2

p2

(kp2 —m2 + m2)2 —4u)2kp2

+n(~ ) D2 + D3p
(kp2 + m2~ —m') 2 —4(u2kp2

D4p
(k,' + m' —m' )' —4~' k,' ) ' (34)
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where p = ~p~,

B, = 4- &6k,'A, —2~,qk,',
4 &,b, 823

B2 ———
~

4+ 4ko + ko

B3:2ko(ko mx, + m ) rj m + I)2(m~, m ) + I)~r12(ko m~, + m )]

B4 ——2k (k —m +m ) rI
2 2 2 2 —2 ~ —2 k091~
0 0 Ag ~ 3 ( 2 )

l
ko(ko —m +m )q16~'E2)

and

Dg ——2koggg)
2

D2 ——2ko(ko + m~ —m ) IP mz —rI&(m& —m ) + rjz&2(ko + m& —m )

D3 ——2k (k +m~ —m )
ko~. &

0 0 g ~ 3 ( 2 )
(36)

D4 —
~ 4 2 ~

kp(kp + m —m ).
q16~4E2)

(37)

The Ih, q2, and A4 are given in Appendix B and rI = (qq —q2) . We use the notation ~ = gp + m2 (~
p2 + m2& ) and n(v ) = 1/(e -~ —1).
There is only one diagram which contibutes to the self-energy of the w meson at the one-loop level (Fig. 2).

The explicit expression for this self-energy is given in Appendix C. We can see that the self-energy is transverse
(kill = 0). We apply the following equation to determine the effective mass of the w meson:

ko —m —E~(ko, k m 0) = 0,

where

E (kp kM0) =G (kp, kMO)

@2' n(~p) Cgp2 n((u~)

(27r) 2 (up (k02 + m2 —m2 )
2 —4u) 2k02

p2

(k,' —m', + m')' —4~*k,' )
(38)

3 2

(16vr4E2 )
3 2

q 167r4E2 )
The A~-meson self-energy is calculated from the dia-

grams in Fig. 3. Since the self-energy is not transverse
and k"k II „' g 0, there is no simple expression for the
self-energy, and the general relation (27) should be used.

b = —k"k H„,1 p-

(i"II„p —kpb),

P = —(k IIoo —&2~k~kop —
koan),

o. = 2(II"„—p —h), (40)

The expansion coeKcients are related to the components
of the self-energy as

~ 4

r 'la

/
/I \

I 1
I

/
I \
I I
I I

(b)

FIG. 2. One-loop contributions to the u-meson self-energy. FIG. 3. One-loop contributions to the AI-meson self-energy.
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and the results are given in Appendix D. The b and p are
not zero due to the nontransversality of the self-energy.
The propagator can be obtained from Eq. (25):

D" = —A"1 - 2 (dB" —cC""+ bD" ), (41)a c2+ 2bd

where the a, b, c, and d are related to the n, P, p, and
b by

The poles can be determined from the equations

a=k —m~ +o. =0

and

(43)

c + 2bd = p —(8 —m~, )(k —m~ +P) = 0. (44)

(42)

The effective mass can be defined as the solutions of
Eqs. (43) and (44) in the limit k ~ 0.

We 6nd, in the limit k ~ 0, that

h(kp, k -+ 0) = -g' p dp n(~ ) t'

(2vr)' (u ( 2 )
2@~2[(kp2 + m2)(kp2 —m2 + m2) —4(u2kp2]p2

(k,' —m' + m')' —4(u2kp'

2gzm (kp + m —m )
(k'+ m' —m')' —4u)'k'

p(kp, k~0) ~0,
n(kp, k -+ 0) = P(kp, k -+ 0), (45)

where the ( s are given in Appendix D. Thus the effective mass of the Aq meson can be determined from the single
equation

kp —m~ + n(ko, k -+ 0) = 0. (46)

o(ko, k m 0) = P(ko, k + 0)

p dp n(w ) 4 2 Eq + I'2p —Fsp
(2~)' ~ 3 (k,' —m' + m')' —4~2kp2

n((up) G~ + G2p2
(47)

where

C = —4((g + m (g+ kp(s),
+1 = 2(kp —m& + m )[(kp + mm)(7/j~m + '92kp) + 4'gl'g2kpm ]

—8kpm [7l] + rI2kp + Ih'92(ko + m )]

+2 = s(ko p + )[rI&(ko + m ) + 2ko(gx + g2 + 4qzrI2)] sko[4gxm + 3qzko + 3gzg2(ko + )]
8 2 2E3 ——
3 g~ ko

(48)

and

Gi ——2(ko + m~ —m )mp(gamp+ ko'g ) —8komp'gx'g

G2 ——s (kp + m —m ) (g~ m + 2kpg ) —8kpm @gal.

(49)

The equations for effective masses [Eqs. (33), (37),
and (46)] can be solved self-consistently. The results are
shown in Fig. 4. Even though the numerical values are

different for the two parameter sets, the p-meson mass
increases and the Aq-meson mass decreases with temper-
ature in both cases. The A~-meson mass is changed very
slowly when T ( 200 MeV, but the p-meson mass in-
creases contantly &om T 50 MeV for parameter set I.
For parameter set II the A~-meson mass decreases rather
rapidly with temperature, but the p-meson mass is al-
most constant. The p-meson and Aq-meson masses are
equal at T —220 MeV for both parameter sets.
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B.O

1.5

Effective Masses
I

j

I I I I

j
I I I I

j

I

@net
( )

ik mEcl(k)
(27r) s

x (k;k,.Dao(~, k) +. (uk;Do, (~,.k)

+Mk~D o(cd, k) + (rJ D (&. ., k))~—o)

(52)

1.0
where D„ is the retarded Green's function and related
to the imaginary-time propagator (D„') by analytic con-
tinuation:

0.5
D„((u, k) = 17„„(i~„mcu + ie, k), e m 0+.

In the covariant gauge, the photon propagator is given
by

0.0
0

I I I j I I I I j I I I I j I

0.05 0.1 0.15
TEMPERATURE (GeV)

0.8
G Q2 T / Q2 L I 2 A2

(54)

FIG. 4. Effective masses determined from the pole posi-
tions of the propagators for parameter set I (solid line) and
set II (dashed line). For parameter set II the p-meson and
u-meson masses are almost constant at all temperatures.

and the net electric field in momentum space is
A:;k~ E~'(k)

k2 + F~(~ = 0, k)
(55)

The potential between two static charges (Qi at xi and
Q2 at x2) then can be written

For the ~ meson, temperature efFects are small for
both parameter sets. As the temperature increases the
p-meson and w-meson masses split. For parameter set I
the splitting is rather obvious, but for parameter set II
the difFerence is small (about 10 MeV at T = 200 MeV).

(R xl x2) Q1Q2
d k;kR 1

(2~) s k2 + F~ (0, k)

(56)

IV. SCREENING MASS

For large R, we obtain a screened Coulomb potential with
inverse screening length m ~.

v(z) = Q'Q" (57)

Lattice calculations are performed in Euclidean space,
or imaginary time. To determine the pole of a propa-
gator in Minkowski space, or real time, an analytic con-
tinuation must be done. So far, lattices used in Monte
Carlo calculations are too small to carry out a meaning-
ful analytic continuation. Instead, the correlator of static
operators is considered:

where R = lKl and

m,', = F~ (cu = 0, k + 0).

For the p meson the propagator is given by Eq. (32).
The last three terms vanish in Eq. (52). Thus the net
"electric" Beld is

( ) = (&( )&(0)) —(&(0))(&(0)) (5o) ~;k,Z"(k)
k2 + Fp(~ = 0, k) + m2 (59)

where A and B are local operators and the averages, rep-
resented by angular brackets are taken over the Gibbs en-
semble at temperature T [6]. The large-distance behavior
of this correlator defines a screening mass p(T):

The screening mass can be obtained from the E by

m" = m' + Fp((u = 0, k m 0). (60)

S~~(z); b exp[ p(T) lzll as lzl + oo (51)

It is expected that the low-lying excitation of the plasma
may be related to the screening effects just as the plas-
mon in an ordinary electromagnetic plasma is associated
with the phenomenon of Debye screening.

In finite-temperature field theory, the static-screening
mass can be obtained from linear-response analysis
[1,32,33]. When we apply an external, static electric
field F,I to the @ED plasma, the net electric field in the
medium is

F ((u=O, k-+0) = —II (61)

We find that

F~(u =O, k+0) =4g (m +2p ).
27I

(62)

E is related to the time-time component of the self-
energy, and in the limit w = 0 and k ~ 0 it can be
written as
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There are no contributions from the diagrams which in-
clude more than one species of hadrons. For example,
there are none &om the Aq-vr loop [Fig. 1(c)) or from the
u-vr loop [Fig. 1(d)].

We can apply the same relations for the u-meson
screening mass as for the p-meson screening mass. We
find that the time-time component of the ~-meson self-
energy vanishes in the limit considered:

II (ur = 0, k -+ 0) = 0.

SCm —m~ ~4) (64)

—2(m2 —b&EDet k;k, E~'(k
2(k2 —m2~ + P)(m2~ —b) + p2

Thus the screening mass of the u meson has no temper-
ature dependence.

Because of the nontransversality of the Aq-meson self-
energy, we have a complicated relation for net "electric"
fields:

This is consistent with the rules mentioned above since
there is only a diagram which includes the p meson and
pion in the loop. We have But in the limit considered,

(65)

pm0,

dp n((u ), 2m'p
(2vr) 2 ~ m2 —m2

2 4
—4Ã~s —(*s )

— ~i, , )
4 n(~~) 2 2mpp

(66)

(67)

2 m 1

7r
(68)

and so we have

m~ = m~ —P(0, k m 0).

The results of our one-loop computations of the screen-
ing masses of the p meson, u meson, and Aq meson are
shown in Fig. 5. We get the same behavior with temper-
ature as the efI'ective masses determined from the pole
positions of the propagator. But the numerical values
are quite difFerent. The p-meson mass becomes equal to

Screening Masses

m )
———II (~ =0,km 0). (70)

The photon self-energy at the lowest order can be di-
rectly related to the neutral p-meson self-energy and the
u-meson self-energy:

the A~-meson mass at T 160 MeV for parameter set
I and at T 240 MeV for parameter set II. The mass
splitting of the p and ~ mesons are rather obvious.

We can also obtain the physical electric screening mass
of the hadronic system, which is defined as the inverse
Debye screening length. It is related to the photon self-
energy by

2.0 I I I

I

I I I I

~

I I I I ll~" =, (11~" 11:").
g

(71)

1.5
The electric screening mass can be obtained from
Eqs. (62) and (63):

1.0

2 n (d~
m, , ——— dp (m +2p), (72)

0.5

0..0 I i » i I & i i i I

0 0.05 0.1 0.15
TEMPERATURE (GeV)

0.2

which is exactly the same result as that in Ref. [34].
Note that there are no contributions from the loop di-
agrams which include two difFerent mesons as mentioned
in Sec. III [Figs. 1(c), 1(d), and 2 . This is consistent
with the theorem discussed in Ref. [34].

V. CONCLUSION

FIG. 5. Screening masses of the vector and axial-vector
mesons for parameter set I (solid line) and set II (dashed
line). For the ur meson the screening mass does not change
with temperature.

We have described hadronic matter by an efFective chi-
ral Lagrangian with pions, p mesons, ~ mesons, and A~
mesons. It is possible to obtain some information about
hot hadronic rnatter from the efFective masses of the
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mesons at finite temperature. We calculated the masses
of the mesons at finite temperature in two different ways:
the pole mass computed from the pole positions of the
propagator (Sec. III) and the screening mass determined
by the large-distance behavior of the hadronic correlation
function (Sec. IV).

Even though the numerical values depend on the pa-
rameters used, we found that the efFective mass of the p
meson increases with temperature. This result is consis-
tent with that of Gale and Kapusta who used an effective
Lagrangian with charged pions and neutral p mesons only
[10]. Inclusion of the Ai meson in the system changes
the numerical results but not the behavior with temper-
ature of the efFective p-meson mass. For the screening
mass there are no contributions from the diagrams which
include the Ai mesons. On the other hand, the Ai-
meson mass decreases and the p- and Ai-meson masses
get closer as temperature increases. The effective mass
of the u meson is not changed. too much with tempera-
ture, although the difference between the p- and ~-meson
masses becomes bigger as temperature increases.

The screening masses of the mesons show a behavior
with temperature similar to that of the pole masses, but
the numerical values are different. The screening masses
are not identical with the effective masses determined
from the pole positions of the propagators. However, the
qualitative properties at finite temperature are the same.
From these results we infer the following conclusions.

As temperature increases, a deconfinement phase tran-
sition is expected. The phase transition might occur
about Tg ——150—200 MeV. This phase transition is cru-
cial in our conclusion because obviously the efFective La-
grangian cannot be applied after the transition. There
are also some effects coming from the heavier mesons
which are not included in the present model. Thus we
view our results as reliable up to about T = 150 MeV.

The nonlinear cr model is based on the spontaneous
breaking of the chiral symmetry and cannot be applied
after the restoration of the symmetry. The results have
some ambiguities near the phase transiton in this sense.
If we regard the degeneracy of the screening masses as
the signal of the symmetry restoration, the results after
the degeneracy point do not mean anything.

B. Zweig rule

The w-meson mass is not changed too much by tem-
perature. Even if we start with the same mass for the
p meson and w meson at zero temperature, these masses
are split at finite temperature. Such a splitting of the
mass at finite temperature was also reported in Ref. [9],
which used @CD sum rules. The p-meson and cu-meson
masses can be written as the expectation values of the
Hamiltonian [36]:

A. Chiral-symmetry restoration

mp - (dd uu~H~dd ——uu),
m - (dd + uu~H ~dd + uu).

(73)
(74)

It is believed that the order parameter of the chiral-
symmetry breaking and restoration is the quark conden-
sate (qq). Chiral-symmetry restoration at high tempera-
ture has been inferred from the decrease of the conden-
sate as temperature increases [35]. Since the condensate
is not directly related to measureable quantities, we con-
sider instead the consequences of the restoration of the
symmetry in the hadron spectrum. It is expected that
pions, which are Goldstone bosons, get mass after sym-
metry restoration, and there may be chiral multiplets in
the hadron spectrum.

It has been suggested that the degeneracies of the
hadronic screening masses in the expected chiral mul-
tiplets indicate chiral-symmetry restoration [6]. Even
though the screening mass is not necessarily the same
as the real excitations in hot hadronic matter, it has in-
formation about the symmetry properties of the hadronic
matter. Lattice simulations have shown that there are de-
generacies at high temperature, and the conclusions are
consistent with the results obtained from the calculation
of the quark condensate [6,7].

We calculated the screening masses of the p and Ai
mesons at low temperatures (T ( T,h) and found that
the p-meson and the Ai-meson screening masses get close
as the temperature increases. This is consistent with
the lattice calculations which show the mass degeneracies
above T,h and suggest chiral-symmetry restoration. The
results obtained here suggest chiral-symmetry restora-
tion, but do not prove it.

The mass differences between these mesons are related
to the flavor-changing processes:

m~ —m (dd~H~uu). (75)

Thus the Zweig rule, which forbids flavor-changing tran-
sitions, might not work anymore at finite temperature.

C. Dilepton emission in the medium
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APPENDIX A: DEFINITIONS OF FUNCTIONS

(ko —k + m ) + 4(u'ko
A2 = —jko —k +m j+

8pk

kou)(ko2 —k2 + m2)

2pk

The angle integration in the self-energy can be ex-
pressed in terms of the integrals

(pky)"
(ko —k' + m') + 2~ko + 2pky

'

(pky)"
(k2 —k + m ) —2(uko+ 2pky'

ko~(ko2 —k2 + m2)
A2 = —2ko~-

2pk

(k2 k2 + m2)2 + 4 2k2

8pk

+ 222 1
Az —— pk —+ —[(ko —k + m ) + 4ur ko]

(pky)"
(ko —k2 + m2) + 2~ko —2pky

= (—1)"A„,

(pky)"
dg

(k, —k + m ) —2~ko —2pky

= (—I)"&-

where p = ~p~ and k = ~k~. For convenience define

(Al)

where

(k2 k2 + m2)3 + ] 2k2~2(k2 k2 + m2)

16pk

6ko~(k2 k2 + m2)2 + 8k3~3

16pk

(ko2 —k2+ m2+ 2pk)2 —4~2ko2

(ko2 —k2 + m2 —2pk)2 —4ur2k2 '

A+ = A„+B„,

A„= A„—B„.
(A2)

L =ln (ko2 —k2 + m2)2 —4(urko + pk)2

(k —k + m ) —4(~k —pk)

The one-dimensional integration can be easily done,
and the results are

AP PENDIX B: p-MESON SELF-ENERG Y

Ao+ = I+,1

2pk
There are four diagrams which contribute to the p-

meson self-energy (see Fig. 1):

Ao= L
1

2pk

ko —k +m + ko~

4pk
' 2pk'

rr~ = rr~( ) +rr~(') +rI~() +H~(").
glV PV PV PV PV

(1) The contributions from the pion loops, II„

(Bl)

ko~ k' —k' + m'

4pk
(A3) g& (~) —QP (~) + ~~ (~)

PV PV PV (B2)

IIoo = 4g~ (&) 7l,

(2vr)2 ~ ' ( 8pk ) ( 2pk ) (B3)

rr„(') = 4g' ( D +344k ) —D2
~

(B4)
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where

p= /x I

(1 —o)m 2(g ('1 —o ) m4 ( (1 —o.)m2 l
{1+o)m2& gl —o pl + o) mz ~

(1+o)mz
61 —ol g'+' o. 2 o'
(1+o ) 16m4 rn2(1 —o) g2I'2 1 —o

'

(a5)

Dg ——1 + ko + ko(ko —k )

g2
D, = 1+ (k,' —k'), + (k,' —k')' 4~4'

Lz ——L+(w = w, m = 0).

(2) The contributions from the Aq-meson loops, Ilp

rr ~"~ = rr'~'
p, v p, v (a6)

2

IIoo = g
p (gg) 2 p dp (~ ) 1 2 2 2 2 2 2H, (k, —k —m„, +m. ) —2(q, —q, g, )k

(2rr) 2 (u 2

[Hg (ko —k —m~ + m, )16pk

H I ~ (k' —k' —m' +~'
+4H (u (k —k ) —4Hsk ]L+ +

4p

+ n(cu ) 1—-H, (k, —k +m„, —m. ) —2(g, —g&g2)k
(d~

„[H,(k,' —k'+ m'„, —m.')'+ 4H, ~.'(k,' —k') —4H. k']L.'
&6pk

H2ko~ (ko2 —k + rn~ —m, )
4qk

~gp (II) 2 p'dp n(~ ) 1———H~(ko —k — ~ + ) + 6(g2 —ggg2)(ko —k )
2 2

[H2(ko2 —k2 —m~ + m ) + (4H2m +3Hs)(ko —k )]L+
&6~k

——H, (ko —k + rn~, —rn ) + 6{g, —ggrI2)(ke —k )
n(~a) 2 2 2

Ct)~

[H2(kz —k + m& —m ) + (4H2m —3H4)(ko —k )]L+ (as)
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where

(1- ) ', ) 4( (1 — ) ',

gF (1+cr) i (1+o)m& ) F gj + g (1+0)m~

p1+ ~i 2 f (1 —~)m', ) 4~
gF (1 —0.j ( (1+ 0.)m~ ) gF Ql —0.2

2 2

Hl ——(rjl —g2)
2 I1 0

mg

H2 = (l1l —g2)
gl2 (kp2 —k2)

mg

H2 —3(gl g2) H21

Hs ——q2 (m~ —m ) + g, q2(kp —k —m~ + m ),
H4 ——q, (m~ —m ) —q, g2(kp —k + m~ —m ),

L+=L+(e=e, m =mz, —m ).

(3) The contributions from the ur-meson loops, II„„p (III)

~p (III) ~p (d)
p, v p, u (B10)

p (III)
+00

2d""" "(-)
(k -k - ~ + )

(k —k —m +m ) +4(u k —4p k

8pk

kp(u (kp2 —k2 —m2 + m2)—
L

2pk

n(~ ) (k2 k2 2 2)2 (k —k + m, —m, ) + 4(u k —4p k

spI

kpcu~(kp2 —k' + m' —m') L.
2pk

(B11)

+~p (III) 2d n(~ ) (k2 k2 2 + 2)2 (kp2 —k2 —m2 + m2 )
2 —4m2 (kp —k2) -+

8pk

+ ( -) (k2 k2+ 2 2)2

(kp2 —k2 + m2 —m2 )
2 —4m2 (kp2 —k2)

8pk (B12)

where

( 3g'
8 2F

L =L ((d =ld7L,

L =L (td =cd~,
(B13)
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APPENDIX C: ~-MESON SELF-ENERGY
There is only one diagram for the w self-energy (Fig. 2). The IIpo and II~ are given by

p2dp n(~ ) 2 2 (kp —k —m2+m2)2+4~2ko —4p2k2

2 2' Cd~ 8pk

kp~ (ko2 —k —m + m )
2pk

+"( ') (k' —k' + ' — ')'
P

(k2 k2 + 2 2)2 + 4~2k2 4p2k2

8pk P

kp~p(kp2 —k + m —m2)

2pk

2d ) (k' —k' — '+ ')'—(k' —k' —m'+ m')' —4m'(k' —k')
8pk

(dP 8pk
(C2)

(C3)

APPENDIX D: Ay-MESON SELF-ENERGY

We consider two diagrams (Fig. 3) and obtain the self-energy

p dp n(cu ) 2 w kp[m2(ko2 —k ) —&2ko2] (p2ko2+ m2k2)(ko —k + m2) +
(2~)2 ~ ' 2pk 4pk

+[m (ko —k ) —3~ ko]A+, —(u kp(ko —k + m )A„,
1 2

2
——(kp —k + m )A+2 —3~ kpA„2 —A+2

4 (1(kp —k ) —I,2[m k —koP —sk P ]

p
—g

dp n(~ ) 2 k2 + 91p "o(ko k + m ) F1&2~ " koL+
(2vr) ' 4 1 — 2p ko +

4pk

cu ko(2g, P kp —g1g2(kp2 —k2+ m2)
4pk

+—kp[2g1(2p + m, ) —grq2(ko —k + m )]A+,
2

1+ ~~kp[91(kp k + m~) 2'91'92(kp + k )]A&1 + ('91~mko glg2kp)A@22

n(~ ) @1m kop m kpMpk (g1 Tj1772) 1L+ — ~ L + —kom (2@1 —g1g2)A„+1
~p 4pk P 4pk P

1 2+ —q,'kowp(m' —2k*)A„, ),2 '
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~A1 2 p2dp n(ur), , (u k02(rl12p2+ q22k2)

(2~) ' 2~ pk

2p 2
(k 2 + m2 ) q

2 k 2
(k 2 k 2 + ~ 2

) + 2p2 k 2

—[rl1p + rl2p —q1q2(ko —k + m, )]A„+1
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2

2' p 4Jk
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where
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