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Photon-photon scattering, pion polarizability, and chiral symmetry
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Recent attempts to detect the pion polarizability via analysis of pp —+ vr7r measurements are
examined. The connection between calculations based on dispersion relations and on chiral pertur-
bation theory is established by matching the low-energy chiral amplitude with that given by a full
dispersive treatment. Using the values for the polarizability required by chiral symmetry, predicted
and experimental cross sections are shown to be in agreement.

PACS number(s): 13.65.+i, 11.30.Rd, 11.50.—w, 13.60.Le

I. INTRODUCTION

The reactions pp ~ vr vr and pp ~ sr+sr represent
currently interesting theoretical and experimental labo-
ratories for chiral perturbation theory (yPT) [1] and for
dispersion relations [2]. For charged pion production the
yPT prediction is in good agreement with the data, as
shown in Fig. 1 [3,4]. However, in the case of neutral
pion production, the one-loop chiral perturbation theory
calculation [4,5] disagrees even near threshold, with both
a dispersive treatment and the data, as can be seen in
Fig. 2 [6]. This situation at first appears surprising,
as a dispersive calculation should obey the chiral stric-
tures at low energy, while a chiral calculation should obey
the unitarity properties to the order in energy that one
is working. Of course, the chiral result is known to be
an expansion in the energy, and it is always possible for
higher orders to modify the first-order result [8]. How-
ever, in most other calculations the modifications are not
very large near threshold. One of the purposes of this pa-
per is to resolve the theoretical issue of the connection
between the chiral and dispersive methods, and to under-
stand the origin of large corrections to the pp ~ vr x
amplitude near threshold. We do this in Sec. II by match-
ing the two descriptions, and providing an analytic solu-
tion to the dispersion relation which is consistent with
the low-energy chiral properties. This exercise indicates
that the two descriptions are in fact completely consistent
in their respective limits, and suggests that rescattering
effects required by unitarity are the dominant source of
corrections to the lowest-order chiral prediction.

In addition, the two-photon reactions have been uti-
lized phenomenologically in order to extract the pion
electromagnetic polarizability [9]. For this purpose, one

II. MATCHING THE CHIRAL AND DISPERSIVE
DESCRIPTIONS

In this section our main interest is to understand how a
dispersive treatment matches on to the calculation of chi-
ral perturbation theory and to learn why there exist large
corrections to the chiral results even near threshold. In
a recent paper, Pennington has run a series of numerical
exercises which suggest that the necessary modifications
come from multiloop effects, which are of higher order in
the chiral expansion [10]. Our analytic study, discussed
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needs as accurate a description of the amplitude as pos-
sible, and we use our results from Sec. II. to construct an
improved picture of the transition amplitude in Sec. III.
The connection with the polarizability and a review of
the present experimental status is given in Sec. IV, and
our results are summarized in Sec. V.
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The dispersive prediction shown therein is that which we
describe later in this paper, but it is similar to the pioneering
dispersive calculation performed by Morgan and Pennington

PIG. 1. The data points shown are the pp —+ sr+a cross
section (with ] cos 8] ( Z—:0.6) measured by the Mark II col-
laboration (Ref. [3]). The dashed curve is the Born approx-
imation prediction, while the solid line is that from one-loop
chiral perturbation theory.
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is the center of mass velocity of the produced pions. For
convenience in comparison with experimental results it
is useful to present also the total cross section for events
having

I
cos8I less than some fixed value Z:
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FIG. 2, The data points shown are the pp —+ vr 7t. cross
section (with

I
cos 8I & Z:—0.8) measured by the Crystal Ball

Collaboration (Ref. [4]). The dashed curve is the prediction
of one-loop chiral perturbation theory, while the solid curve
is a full no-free-parameter dispersive calculation, as described
in the text.
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In the charged pion case the Born and Seagull contribu-
tions to this multipole must also be included, so that the
full amplitude becomes

below, con6rms this conclusion. In fact the results turn
out to be quite simple, and we will be able to neatly
identify the source of the corrections.

We begin by setting up a bit of formalism. We shall as-
sume, consistent with the chiral expansion, that when we
are in the near-threshold region the only relevant higher-
order eKects are in the helicity-conserving S-wave ampli-
tude, which we write as

with cross section

P(s) Ia(s) I

—2 Rea(s)

+2 P4(s) sin 8

[1 —P2(s) cos2 8]

(6)

Here

jt'Q ~ 7l '7t'

where

a(s) = 1 + f (s) - fB...(s) (8)

where I = 0, 2 refers to the isospin of the Anal 7t~ state.
For neutral pion production and working in the gauge
wherein e2 k2 ——e2 kq ——ey k2 = eq kj ——0 the
transition amplitude is

fB...(s) = 1 —P2(s) /1+ P(s) )
2P(s) ( 1 —P(s) )!ln

I

fBorn( ) fBorn(

Amp = 2ie eq e2f (s)

and the cross section is given by

is the Born approximation value for the helicity conserv-
ing S-wave multipole. Again in order to compare with
data we integrate Eq. (7) to yield

cr (Icos8I & Z) = 2Z
I IaI +2 —2Rea+

I
+ ln

I I
[2Rea —3 —p2(s)]

urn p(s) r'
~ [1 —p2(s)]2 ) 1 —p2(s) (I + p(s)Z'i

s

(10)

In the threshold region the phase of fI(s) is required
by unitarity to be equal to the corresponding mvr phase
shift 61(s). When s ) 16m, inelastic reactions involving
four pions are allowed. However, the inelasticity is small,
being of order E in the chiral expansion and also sup-

pressed by phase space considerations. In practice, the
inelasticity is negligible up to KK threshold, s 1 GeV,
and consequently we will neglect inelasticity throughout
our analysis.

The functions fI(s) are then analytic functions of s
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f s ds' 6r(s')
Dr s = exp

7t 4~2 8 S —S —l6

The result must have the form

fr(s) = gr(s)Dr '(s), (12)

where gr(s) is an analytic function with no cuts along
the positive real axis. Morgan and Pennington consider
a function pr(s) which has the same left-hand singularity
structure as fr(s), but which is real for s ) 0. They
then write a twice subtracted dispersion relation for the
differenc [fr(s) —pr(s)]Dr(s), with the result [7]

except for cuts along the positive and negative real axis.
For positive s, the right-hand cut extends from 4m2 (
s ( oo and is due to the s-channel an state. For negative
s, the left-hand cut is due to t-, u-channel intermediate
states such as p7r ~ vr ~ pm or pm —+ p ~ per, and
extends from —oo & s ( 0.

The single-channel final state unitarization problem
has a simple solution in terms of the Omnes function

pr(s) = fr'""(s) ImDr(s) = —p(s)trC (s), (15)

where trcA(s) are the lowest-order (Weinberg) urer scat-
tering amplitudes [14]

where cr, dr are subtraction constants. The combination
inside the square brackets is real with any pr(s) which is
real for s ) 0. By Low's theorem fr must reduce to the
Born term at low energies [12],

fr(s) = fr '"(s) + O(s) = pr(s) + cr + drs+ . , (14)

so that we can set cr = 0 if we choose pr(s) = fr '" +
O(s). The only assumption made thus far has been the
neglect of inelastic channels.

Analyticity and unitarity do not determine the remain-
ing subtraction constants do, dz. However, by matching
the dispersion relation with the low-energy chiral repre-
sentation one can express dp, d2 in terms of known chiral
low-energy constants. This methodology was developed
in Ref. [13],and we apply it here. At low energies we set

fr(s) = D '(s) pr(s)Dr(s) + (cr + sdr)
CA 2s —m 2

32~Fz
s —2m

(16)

s ds' pr (s') ImDr (s')
vr 4m' s' s' —s

(13) Since these are simple polynomials of the form tcA(s) =
&+ &s, the dispersive integral can be evaluated exaetly2

which yields a representation for the scattering amplitude [15]

fr (s):—fr ""(s) + gr (s)

= Dr '(s) Dr(s) ln !2p(s) &1 p(s)r—
tCA(0) g

, I+&r(s)
127rm.' )

[1 - P'( )]t'"( )1 '!
qP(s) -1

tr (s) + s
!

dr—1 CA

7r

s ds' 1 —P (s') (1+P(s') P(s')tr (s') 1 —P (s) 2 (P(s) + 1 cA 1 cA s
2 s' 2P(s') ( 1 —P(s') s' —s —ie 4ir (P(s) —1 7r 127rm2

(17)

fChiral
(

1 —P'( ) &1+P( )&
2P( ) &1-P( )~

!ln!

1 —p'(s) cA
1

2 p(s) + 11
tr s ln

47r p(s) —1)
CA

7r
r( )+ (Lo—+—Lio)s+",p2

Here Ar(s) represents the remainder which accounts for
the difference in the true dispersion integral from the
lowest-order inputs given in Eq. (15). At low energies
Er(s) O(s ). Equation (18) can be compared with the
one-loop O(Z4) chiral amplitude which has the form [4]

the renormalization scale and has magnitude [16]

Lo + L&o = (1.43 6 0.27) x 10 (2o)

tCA(0)
dr =

+2 (Ls + Lio) + 12~m2

determined from radiative pion decay. Thus chiral sym-
metry fixes unambiguously the subtraction constants
which appear in the dispersive analysis:

where I9 + L]p is a combination of known chiral low-
energy constants. This combination is independent of

Note that both left- and right-hand sides of this equation
have identical imaginary parts and behave as O(s ) for s 0.
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The two formalisms match very nicely at low energy
yielding a parameter-free descriptive of the low-energy

pp —+ urer process.
At this stage we can inquire into the origin of the large

corrections found in the pp —+ vr vr amplitude. Do they
arise simply from the unitarization of the amplitude [i.e. ,

DI(s) P 1] or are new inputs needed in the amplitude
[in which case Ag(s) would be most important]? We will
argue that the rescattering physics in DI (s) is most
important, and that the main corrections are due to well-
known ingredients. In the next section, we will attempt
a full phenomenological treatment but here let us explore
the case with Ei(s) = 0 and a simple analytic form for
DI '(s). The condition ImDI(s) = Ptz~~—(s) defines the
[0,1] Pade approximation for the Omnes function [16],
i.e. ,

j.5—
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FIG. 3. Shown is the pp —+ vr vr cross section predicted
by one-loop chiral perturbation theory (dashed line) and by
the simple analytic Pade solution to the dispersion relations
(solid line).

P(s),„&P(s)+ 1 ~

P(s) —1) ' (22)

and allows one an approximate but simple analytic rep-
resentation for the pp —+ urer amplitude, so we will use
this form in the remainder of this section. The constant
kp = 2s', is chosen to match the small s behavior of the

experimental Dp (s) function, and k2 = —sp, is cho-30m.
sen from a fit to I = 2 7tm scattering. For more details of
both of these ingredients, see Sec. III. The resulting form
for the pp —+ vr x amplitude is

1 m 2 (p(s)+11
48vr2F~ s g p(s) —1)1+ ln

x [(2s —m )Dp (s) + (s —2m )D2 (s)
4+ 2 (L9 + Alp)s[Do (s) —D2 (s)]3F2

f (s) =-

(23)

which, when the Pade forms of DI (s) are used, provides
a consistent analytic solution to the dispersion relation
while also displaying the correct chiral properties to O(s).
In Fig. 3, we plot the resulting cross section, in compar-
ison with the data and the lowest-order result. It can
be seen that the Omnes functions produce a substantial
modification even near threshold. Of these, the more
important is Dp (s) which reflects the strong attractive
sr~ scattering in the I = 0, J = 0 channel [17,18]. The
use of an empirical determination of Dp (s) in the next
section will further increase the amplitude. While refine-
ments can be added to the calculation of the amplitude,
we conclude that the major ingredient which modifies
the threshold behavior in pp ~ m vr is the final state
reseattering corrections.

That such corrections might be important is perhaps in
retrospect not so surprising. Chiral perturbation theory
represents an expansion in energy with a scale of order
Ax 47rI' 1 GeV [19]. For center-of-mass energies
~s & 0.5 GeV one would expect that yPT should give
an accurate representation of the scattering amplitude,

and this is indeed the case for the pp ~ 7r+m. process.
However, for pp ~ vrPvrP there exist no Born or O(E4)
counterterm contributions. The O(E4) amplitude arises
entirely from one-loop effects and is consequently nearly
an order of magnitude smaller than its charged pion coun-
terpart. It is this smallness which accounts for the impor-
tance of higher-order effects, and one should be alerted to
the possible significance of such corrections in other such
processes such as Kg ~ 2p, KL, ~ x pp, g —+ m pp, etc.

III. FURTHER REFINEMENT

The analysis of the previous section was done in a
particularly naive limit in order to expose the essential
physics in the clearest fashion. Although this provides a
good description of the threshold region, in phenomeno-
logical studies one may be interested in a more complete
calculation. We provide this in the present section. In
particular we add the following ingredients.

(i) The Omnes function Dp (s) has been determined
from the experimental phase shifts by Donoghue et at.
[13]. We use this in place of the Pade approximation Eq.
(22)

(ii) The Born amplitude is not sufficient to fully de-
scribe the ppvrvr vertex which receives further contribu-
tions from p, cu, Al exchanges. We add these to the for-
malism. The resulting amplitude is similar to that of
Morgan and Pennington [9] with the exception of the re-
lated ingredients of I9 + L&0 and Al exchange. As we
describe more fully below, the Al contribution is in fact
more important at low energy than is the effect of the p
and 4J.

The Omnes function involves an integral over the ver
scattering phase shifts. These are known experimentally
up to above 1 GeV, and at low s the Omnes function is
not very sensitive to the phase shifts beyond their known
range. Donoghue et al. have taken this data, added chiral
constraints at low energy where the data is somewhat
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poor, and performed a numerical evaluation of Do (s)
[20]. The result is somewhat larger in both the real and
imaginary parts than the Pade approximation used in the
last section. The form of the I = 2 Omnes function is not
as important because D2 (s) remains closer to unity. In
this case we use the Pade form, given in Eq. (22). The
constant k2 is chosen so that the vrvr scattering amplitude,
defined by

t2(s) = tz (s)D (s) (24)

matches the experimental phase shifts over the region
4m2 ( s & 1 GeV . We find that the constant k2 =

provides a good Fit throughout this region. We30m2
note that Gasser and Meissner compare the I = 0 Pade
approximation with the full Omnes function and with a

two-loop chiral calculation and find that the Pade form
does not completely characterize the chiral logarithms
properly [21]. While it is important to keep in mind
that the Pade procedure is only an approximation, the
numerical difFerences are not large if the free parameter is
chosen properly. We expect that in the I = 2 channel the
Pade form should be numerically a good approximation.
Use of these result in the dispersive formula of Eq. (13),
with pr(s) = fI o'"(s), yields the curve in Fig. 4.

The px —+ per Compton amplitude receives important
modiFication at low energy from p and the Al exchange,
as shown in Fig. 5. These have been analyzed in detail
in Ref. [22]. In particular, the Compton amplitude in-

cluding these poles in a vector dominance model is given
by

with

T (Pi, » i —q2)&, (P2 —qi, »2)

(» i —q2)2 —m'

1 1

&~(Pi, Pi + qi) & (P2 + q2, P2)
TpI pl) qi ~ q2 = 2gpv-

4vra (pi + qi) —m~

Fv ( q2 ql+ 2 gPI' ~ 2 2+ 2 2 q Pql" 2 2 q &q2I' 2 2
%~V ~2 ~V ~l mV ~1 ~V ~2

] Pl '(Pl+pl) ] Pl '(Pl g2)

A mA2 mQ2

+ )2 m' —(

T (Pi, »i —q2)&p(P2 —qi, »2)
(pi —q2) 2 —m2

8
+ 2 L9[(ql + q2)gy qlpqi —q2iIq2 ]

—
+2 (L9 + LiO)(ql q2gp, —q2 ql )F2

with

( 2L9 21 2I9
Tp(pi »2) = (pi+»2)p I

1+ F, q I

—(pi —p2)p F, (pl —p2).

2

&~(Pl P2) = (Pl+P2)~+ 2F„2,) (Pl+P2)~q' —(Pi —P2)P(Pi —»2) ~

This is to be compared with the chiral form of the amplitude

T, (» i, Pl + qi) &~(» 2 + q2, » 2)
4xn Tp pl ql q2 = 2gpI

(pi + ql) —m~'2 2

(25)

We see from this that this parameter L9 is due to p
exchange, Ll& involves p + Al while the combination
I9 + Llo is purely Al exchange if the Kawarabayashi-
Suzuki-Fayyazuddin-Riazuddin (KSFR) relation, m~ =
~2m~, is used [23]. These features are by now well
known. Thus the lowest-order form of these has already
been included in the previous analysis through the con-
stant I9 + I 10. However, as the energy is increased the
momentum dependence in the propagator becomes more
important and should be explicitly included. There is
also the effect of p and u exchanges from Fig, 6. The
p7Ip and u~p couplings are of the form

20
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I I I
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Because of the powers of momentum in the vertex, the
eEect of these diagrams are suppressed at low energy,
being of order E in the chiral expansion. It is interesting
that Al exchange is more important than p and cu at low

energies, and this point has been overlooked in Ref. [9].

FIG. 4. Shown is the pp ~ vr m cross section predicted.
by one-loop chiral perturbation theory (dashed line) aud by a
dispersive treatment using an Omnes function generated from
experimental vnr phase shifts in the S-wave I = 0 channel
(solid line).
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p, co p, co

(a) FIG. 6. Shown are p and u exchange diagrams which acct
the Compton scattering amplitude at O(p ).

A1 Al

6msv I'(V —b aery)

n (m2v —m2)s
' (29)

(b)

The connection with our previous formalism may be
found by taking the limit s —+ 0, whereby we find

FIG. 5. Shown are p and Al exchange diagrams which af-
fect the Compton scattering amplitude at O(p ).

Thus the 9-wave projections to be used in the dispersive
integral should be [24]

lim p~o(s)s~0

lim p~o(s)

lim p o(s)s~O

lim p~2(s) =
2 s,

2(Ls+ Lio)
s-+0

O(s2),

I = 2——limp 2(s) = O(s ).

(30)

p, (s) = f, ""(s)+ pal(s) + pal(s) + p~i(s),
PAO = PA2

(L" + I' ) m2 —m2 )'1 + P(s) + t1
9 10 A ~+s

&(s) ~1- &(s)+ '. )
3R, m',

, (1+)9(s) + ~ )p" = 2' p(') l" Ill-~()+-')I ' (28)

We observe that the contribution from u, p exchange is
O(s ) and is outside the original chiral expansion, as
claimed, while that from Al exchange accounts for the
O(s) chiral contribution from Is + L lo. Thus since this
piece is automatically included in the Al exchange term,
we must modify the associated subtraction constants to
become

Pp2 ——0,
1

P(u0 = Pu)2 =
2

R m' 1+P(s)+ ', l
2 P(s) 1 —P(s) + ~ )

ln
i

—s

tcA(0)
12~m'.

where s, = 2(m, —m2 ) and R~ = 1.35 GeV 2, R~ = 0.12
GeV 2 are determined from the condition

The contribution of the vector meson exchange terms can
then be included by de6ning the general Compton scat-
tering amplitude as [24]

1 ~Pl ' glPl ' g2 Pi Qi Pl g2
Ty, (pl Ql (t2) = A(g2y, Q1 n na& ) + &

l g„+p»pi — n,pi — C1 pip l
(32)16vra Qi Q2 gl '

Q2 gl '
Q2

The neutral pion production cross section then can be written as

tb gO 2
ts (~ccs9~ & Z) = dt ~Acs —cs B

~
+ (cs —tu)),

where

2 1 8Z
tb = m ——sk P(s)2 2 (34)

and

0 2 2 s t'm'+ t m'+u')
sA = ——[fo(s) —f2(s)] + —[po(s) —p2(s)] —— ) Rv

~ 2 +3 3 2 - (,t —m2v u —m2v )V=p, ~

s . f 1B = —— ) Rvi
2 (t —mv

(35)

while for charged pion production
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('
2 + z ~B+~2

vr+vr: rr (~cos8~ (Z) =, dt
~

~A+8 —m B+~ + 2 (m —tu)) (36)

with

1 1sA+ = ——[2fp(s) + f2(s)] + —[2pp(s) +pz(s)]3 3

s fm'+t m'+ul
+

2 i, t —m~ u —m2)P P

1- --'+, '
Lg+ I yo 2m~

t —m~
2mA

u —m~

B+ = — +
t —mz u —mz)

Note that here the functions fr employ the modified sub-
traction constant Eq. (28) and that the dispersion inte-
grals utilize the full function pr(s) defined in Eq. (26).
The integration over t is performed analytically while the
dispersive integration is done numerically. This then is
our final form and yields results for neutral and charged
pion production as shown in Figs. 2 and 7. Note that
in the low-energy region both cross sections are in good
agreement with the experimental data. We should not
expect consistency in the higher-energy sector —~s
700 MeV—as important resonant efFects associated with
the fp(975), fq(1270) have not been included [25].

IV. PION POLARIZABILITY'

(a) n& ——(6.8 6 1.4 + 1.2) x 10 fm,

(b) n~ ——(20 + 12) x 10 fm,

(c) nz ——(2.2 + 1.6) x 10 fm

(38)

(Refs. [27—29), respectively). For neutral pions, only the
pp ~ ~sr reaction has been employed, and separate anal-
ysis using very different assumptions have yielded the re-
sults

The electromagnetic polarizability is a fundamental
property of an elementary particle which measures its de-
formation in the presence of an external electric-magnetic
field [26]. In the case of an atomic system this prop-
erty can be probed by detection of the effects induced
by the interaction of an electromagnetic signal with a
"box" filled with such atoms. An example is provided
by the recent measurements of the proton polarizability
as a byproduct of low-energy Compton scattering mea-
surements on a hydrogen target. In the case of the pion,
of course, an appropriate target is not available. Nev-
ertheless, it is possible to probe the pion polarizability
by measuring the Compton scattering amplitude, just as
in the nucleonic analog, by exploiting either the process
of radiative pion-nucleon scattering vrN —+ 7rNp [Fig.
8(a)], pion photoproduction in photon-nucleon scattering
pN —+ AN+ [Fig. 8(b)] or direct pp —+ ver measurements
[Fig. 8(c)]. None of these experiments is straightforward.
However, in the case of the charged pion each has been
used to measure the polarizability, yielding somewhat
discrepant results:

400 I

(d) ~n& ~

= (0.69+0.07+0.04) x 10 fm,

(e) ~n& ]
= (0.8+2.0) x 10 fm

(39)

300—

P.OO

100—

0 I

0.2
I I i I I I

0.3
I

0.4
I I I k I I I I I I I

0.5 0.6 0.7

(Refs. [29,30], respectively). Such measurements are of
particular interest in that, as we shall show, for both
charged and neutral pions chiral symmetry makes what
should be a very reliable prediction for the size of the
polarizability [31],

sr+6& ——27 x 10 fm,
(40)

———0.5 x 10 fm,

E (GeV)

FIG. 7. Shorvn is the pp —+ ~+a cross section predicted
by the Born approximation (dashed line), by one-loop chiral
perturbation theory (dot-dashed line), and by a full dispersive
treatment as described in the text (solid line).

and thus the possible discrepancies indicated by the data
are potentially very significant.

In this section we examine the pp —+ arm process as a
probe of the polarizability. In particular we have seen
that dispersion relations coupled with chiral perturba-
tion theory can be used in order to obtain a very ac-
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curate description of the pp —+ urer cross section in the
region ~s ( 1 GeV and this analysis can be modified
in order to provide an experimental measure of the po-
larizability. The connection of the Compton amplitude
with the polarizability may be found by noting that for a
particle with electric-magnetic polarizability ct@/pM the
associated energy is

1 2 1 — 2U = ——4+a,@E — 47—rPMH .
2 2

(41)

Since, using our choice of gauge E —iwR, 8 = ik x 8 we
can identify the polarizability in terms of the low-energy
(cross channel) Compton scattering amplitude via

= 2.68 x 10 fm,

t —m2-
(43)

—261 x 10 fm,
2D f () t —3m'~

lim
~

A (0st)+ 8 (s, t))t~m~, s~o m& 8

—0.50 x 10 fm,
t —m

A
Amp=Bi Rg

~

m7r
+ 47' 0,'@4)yh)2

1.26 x 10 fm,
+sr x ki ~ s2 x k247tpM +'~ ~ ~ .

We find then [32]

where we have defined

B+(s, t) = B+(s, t) —BB+„„(s,t). (44)

(a)

Note that these forms do not obey the conventional stric-
ture ct~z ———pM which is obtained in the chiral limit [33].
However, this condition is satisfied if we take m ~ 0 as
can be seen from the relations [32]

-~+ -~+ Rp+ )9M = 4Am~
m2 —m2

p vc

—0.064(0.39 + 0.04) x 10 fm,
(45)

n~ + PM
——4am ) mv —m

—0.76(1.04 + 0.07) x 10 fm .

N

Thus the violations of this condition arise from the vector
meson exchange contributions, which are O(E ) in the
chiral expansion [1]. It is also interesting to see that
both of the equations (45) are positive in agreement with
the dispersion relation requirement

~crtot(w)
(d

(46)

(b)
experimental evaluation of which gives the bracketed val-
ues indicated in Eq. (45) [9]. In terms of these definitions
the pp ~ urer amplitudes can be parametrized as

f +(s) = 1 —P2(s) /1+ P(s) &

»(s) &1 P(s)&-!in]

(~~' —PM )s+ O(s', sm'. ),

(47)

f o(s) = (n~ —pM)s+O(s, sm ),4o,

FIG. 8. Indicated are the various ways of obtaining ex-
perimental values for the pion polarizability: (a) radiative
pion-nucleon scattering, (b) pion photoproduction in pho-
ton-nucleon scattering, and (c) direct pp ~ urer measure-
ments.

where the explicit form of the O(s ) terms can be read
off from Eq. (13). (Note that in this case, unlike that
of Compton scattering, the photons are colinear in the
center of mass so that electric and magnetic polarizabil-
ity terms cannot be separated and always appear in the
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combination na —PM. ) Then instead of using the chiral
symmetry requirements as input we can modify the linear
component of the Compton amplitude in order to gauge
the sensitivity of the pp —+ urer as a probe of pion polar-
izability. Results of such variation are shown in Figs. 9
and 10 for charged and neutral production, respectively.

In the former case, it is clear that the experimental
cross section is in good agreement with the chiral sym-
metry prediction n@ = 2.7 x 10 fm . However, even
100% changes in this value are also consistent with the
low-energy data, as is clear from Fig. 9. We conclude
that although pp ~ x+x measurements certainly have
the potential to provide a precise value for the pion polar-
izability, the statistical uncertainty of the present values
does not allow a particularly precise evaluation. In this
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FIG. 10. Shown is the pp ~ vr m cross sec-
tion predicted by the full dispersive calculation and
with a& —— —0.5 x 10 fm (solid line), with

n& —— —1.3 x 10 fm (upper dotted line), and with

ns ——+0.3 x 10 fm (lower dotted line).

FIG. 9. Shown is the pp ~ ~+sr cross section
predicted by the full dispersive calculation and with

n& ——2.8 x 10 fm (solid line), with nz ——4.2 x 10 4 fm3

(upper dotted line), and with ns = 1.4 x 10 fm (lower
dotted line).

regard our conclusions are in agreement with those de-
rived from the one-loop chiral amplitude, although the
uncertainty in az quoted by Babusci et al. in Ref. [9]
seems somewhat smaller than that indicated in our anal-
ysis. Both results, however, appear to be inconsistent
with the value (6.8+1.4+1.2) x 10 fm quoted in Ref.
[27].

In the case of neutral pion production our predicted
cross section is also in good agreement with the low-
energy data and therefore also with the chiral predic-

0
tion for 6& . However, as shown in Fig. 10 there
is very little sensitivity to the polarizability and even
much improved measurements will not change this sit-
uation. In this regard our conclusions are in strong
disagreement with those of Babusci et at. [9] wherein
the one loop chiral analysis was used in order to pro-
duce a rather precise value for the neutral polarizability:
~hz [

= 0.69 + 0.07 + 0.04 x 10 fm . This is because,
as shown above, higher loop corrections to the one-loop
chiral prediction as given by the dispersive analysis make
essential corrections to the lowest-order result and bring
agreement with the low-energy data without any need to
modify any of the input parameters.

V. CONCLUSIONS

Above we have shown how analyticity can be com-
bined with the strictures of chiral symmetry in order to
allow a no-free-parameter description of the low-energy
(E ( 0.5 GeV) pp —I x~ process. Specifically, build-
ing on the work of Morgan and Pennington, a doubly
subtracted dispersion relation for the helicity-conserving
S-wave amplitude, with the subtraction constants deter-
mined in terms of known chiral counterterms, augmented
by the Born values for other multipoles, has been shown
to be in good agreement with experimental data for both
the charged~p —I sr+sr and ne—utral —pp —+ vr vro-
channels. We have also shown how these results can be
used in order to experimentally determine values for the
pion polarizability o&. In the case of the charged pion
process, wherein the overall shape of the cross section is
dominated by the Born contribution, the one-loop chiral
correction which determines the polarizability is the lead-
ing correction term and additional (multiloop) effects re-
quired by analyticity are found to be small. The value of
the charged pion polarizability 6& determined thereby is
in good agreement with both the chiral symmetry predic-
tion as well with that determined in an earlier one-loop
chiral analysis of the same data. This value disagrees at
the three o. level with that found via radiative pion scat-
tering and calls strongly for a remeasurement of the latter
process, as currently proposed at Fermilab. In the case
of the neutral pion reaction, there exists no Born term
and the requirements of analyticity as embodied in the
dispersion analysis are found to make a substantial mod-
ification to the one-loop chiral prediction, which involves
considerable cancellation between I = 0, 2 production
amplitudes —the full dispersive calculation is consider-
ably larger in the threshold region than is its one-loop
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analog. Use of such a one-loop calculation led recently
to a published value for the neutral pion polarizability
which was about 40%%uo larger than the chiral requirement
[29]. However, the authors of this report noted that their
result might well change if multiloop contributions were
to be included and we have determined that this is in-
deed the cas" a full dispersive calculation including the
strictures of chiral symmetry is in good agreement with
the measured neutral pion cross section. Indeed, we con-
clude from our work that there exists no evidence in ei-

ther pp —+ ++vs or pp —+ + x for violation of the chiral
symmetry predictions for the pion polarizability.
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