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We apply a simple approximate relativistic amplitude-unitarization generalization of nonrelativistic
Schrodinger-equation dynamics to the scattering of longitudinal mass-degenerate W and Z gauge bosons.
The strong energy dependence of our amplitude near the WW threshold then makes possible a nonper-
turbative self-consistent nonelementary neutral Higgs scalar bound state (H) just below this threshold.
We must, however, include a constant term approximating high-energy inelastic effects in addition to H
exchange. Everything, including the H mass, can then be determined in terms of the small phenomeno-
logical WWH coupling and W mass, which serves to set the energy scale of the problem; this is the same
number of arbitrary parameters as in the underlying electroweak theory. The partial-wave amplitude
containing the H is then in approximate agreement at zero energy with the one given by the perturbative
crossing-symmetric H-pole-only tree-graph amplitude. We find unacceptable zero-energy disagreement,
however, if, instead of an inelasticity term, we insert a subtraction constant approximating the effect of
short-range high-mass exchanges to obtain our H. Similar self-consistent H bound-state solutions can
also arise near the ¢7 threshold in ¢f scattering with H exchange.

PACS number(s): 14.80.Gt, 11.20.Fm, 11.50.Ge, 12.50.Lr

There is a recurrent interest in the possibility that the
electroweak-symmetry-breaking Higgs scalar (H) may be
a bound system rather than an elementary particle [1].
Recently, Sivers and Uretsky [2], building on an earlier
preliminary exploration by Lee, Quigg, and Thacker [3],
found a self-consistent bootstrap [4] neutral scalar reso-
nance H in the unitarized-amplitude scattering of mass-
degenerate W*,Z° weak-isospin triplets near the WW
threshold. Additional short-range high-mass exchanges
approximated by a large subtraction constant were also
required. A related calculation with two arbitrary con-
stants was carried out by Hikasa and Igi [5].

In our Padé-approximant amplitude-unitarization
scheme we find that there are, in fact, two simple ways in
which we can go beyond elastic unitarity and H exchange
in order to guarantee a self-consistent H. One possibility
is to introduce a term which approximates the presence
of high-energy inelastic effects. We then find that we can
approximately reproduce both the phenomenological
perturbation-theory couplings and the zero-energy ampli-
tude given by a crossing-symmetric tree-graph approxi-
mation.

An alternative possibility, which resembles the Sivers-
Uretsky scheme, is to introduce a subtraction term which
approximates simple high-mass exchange. Here we find
that, while we can again reproduce the phenomenological
perturbation-theory couplings, the zero-energy amplitude
is then many times larger than the corresponding pertur-
bative tree-graph approximation. Given the general suc-
cess of such electroweak approximations at low energies,
this difference is simply too extreme to be acceptable.

Standard fundamental electroweak theory has at least
two arbitrary parameters, e.g., a dimensionless coupling
constant and a mass to set the energy scale of the prob-
lem. In our scheme everything is determined in terms of
the W mass and the WWH coupling ( < V' below).

0556-2821/93/48(3)/1310(5)/$06.00 48

In our dynamics we follow Refs. [2,3] in retaining only
the longitudinal components of the W and Z vector bo-
sons so that we effectively have a spinless problem.
Strictly speaking, this is a high-energy approximation
which requires energies >> the W mass for its a priori
justification. However, we shall see that the self-
consistency of our dynamics relies predominantly on the
rapid energy dependence of our amplitude near a channel
threshoid, which permits a bound state close to such a
threshold. This and other basic dynamical features
should not be affected much by the introduction of trans-
verse W and Z, although the actual numerical values of
our H parameters would be modified somewhat.

Our actual dynamics is based on a simple relativistic
generalization of ordinary nonrelativistic Schrodinger-
equation dynamics for two-body scattering [6], and is ba-
sically an amplitude-unitarization procedure. Suppose §
and g’ are the initial and final center-of-mass three-
momenta, and s is the kinetic energy for nonrelativistic
scattering with the Yukawa-potential superposition

Virl=—y > gne ™/r, (1)

corresponding to the exchange of particles of mass m.
The amplitude 4 then has a branch point at g2=0. If we
take the corresponding cut to run from s =0 to oo in the
s plane, and apply the Cauchy integral formula to
(A —y W), we obtain the dispersion relation

A=y WD)+ [ “ds'ImA(s',0)/n(s'=s) @

for any fixed value of the momentum transfer
t=—(g'—q)*. Here yW(t)=y3.&m/(m*—1t) is the
first Born approximation (Fourier transform) of ¥ (r) and
is the (constant) large-s limit of A for fixed t. Equation
(2) can be easily verified to the second Born approxima-
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tion, but continues to be valid to all orders.
For elastic scattering, S-matrix unitarity gives

arImA (s,)=p(s) [ d*q" A*(s,t,) A (5,8,) , (3)

where p(s)=gq is the usual nonrelativistic phase-space fac-
tor, t,=—(3"—q)% t,=—(@'—gq") q" is the
intermediate-state momentum, and d’“q” the infinitesimal
solid-angle element for the g’’ direction. Exchange po-
tentials, corresponding to the interchange of particles in a
collision, can be reduced in the usual way to effective
direct potentials by introducing appropriately sym-
metrized amplitudes.

Equations (2) and (3) together constitute a nonlinear in-
tegral equation for A4 completely equivalent to the
Schrodinger equation with the same V. But they can be
readily generalized to the relativistic case [6], where A4
now becomes the invariant amplitude, s and ¢ the usual
Mandelstam variables, and p the relativistic phase-space
factor; for two equal-mass (u) particles, for example,

p(s)=[(s —4u?)/s1'%0(s —4u?) , 4)

where 6(x)=1 for x 20 and 6(x)=0 for x <0. With
spinless t-channel exchange, the direct potential W con-
tinues to depend only on z. Relativistic exchange poten-
tials arising from spinless Mandelstam wu-channel ex-
change likewise depend only on u. As in the nonrelativis-
tic case, they can be reduced to effective direct potentials
by again introducing appropriately symmetrized ampli-
tudes. Higher-spin energy-dependent exchanges will be
discussed later.

Unlike the Bethe-Salpeter and other similar equations,
Egs. (2) and (3) do not give spurious singularities and/or
inelastic contributions. They can be solved, at least for-
mally, by iteration, starting, e.g., with 4 =y W as a first
approximation. We then basically get an expansion in ¥,
which takes on the form

A)(s)=y W (s)+y*B,(s)+ - -+ (5)

in the Ith partial wave, where ¥y W and y2B can be
represented by the “unitarity” diagrams of Figs. 1 and 2
for two-body W,Z scattering; it is understood that we
must also add in the corresponding diagrams with
crossed lines. Figure 2 is given by Egs. (2) and (3) with
A — vy W on the right-hand side of Eq. (3). We can readi-
ly extend our scheme to include the effect of inelastic pro-
cesses by adding graphs with additional intermediate
states.

A truncated version of the expansion (5) no longer
satisfies unitarity. We can restore unitarity, and achieve
much more rapid convergence, by rearranging the series
of Eq. (5) into [N,N] [7] or [1,N] [8] Padé approximants,
where

yn+ - +yny

N,M]=
[ ! 1+yd,+ - - - +yMd,,

) (6)

with the n; and d; chosen such that an expansion of Eq.
(6) in powers of y agrees exactly with the expansion of
Eq. (5) up to the ¥V ™M term [6—8]. We shall restrict our-
selves to the [1,1] approximant, which then gives

w,z : : w,Z
H
W,z wW,Z
FIG. 1. Two-body W,Z scattering with H exchange giving
YW.

Ay(s)=yW,/(1—yB,/W,) . %)

This not only satisfies unitarity, but is exact for factoriz-
able models with A4;~3,y"uK"™, which are often
reasonable approximations for Eq. (5) [9].

Treating the approximately mass-degenerate W*,Z° as
a weak-isospin () triplet with average mass
myz~my ~85 GeV/c?, Fig. 1 gives an I =0 contribution

yW=Bm3i[1/(mk—t)+1/(mif—u)]+R , (8)

where m; is the mass of particle i(=H, W, ...) and the
1/(m? —u) “exchange-potential” term comes from cross-
ing the two final-state lines in Fig. 1; we have added in a
term R to represent all other exchanges. Standard elec-
troweak phenomenological perturbation theory would
give

B=(mgc?/246 GeV)2 /167

with our amplitude normalization. If € is the center-of-

mass  scattering angle, the /=0 projection
W, =%f l_le cosf gives, with u=my,,
yWo(s)=4Bm}k /(2m}—4m} +s)+c , 9

where we have made the small-x approximation
In[(1+x)/(1—x)]=2x, which is accurate for small

x =(s —4m},)/2m}+s —4m},) ,

and adequate for higher energies; the remainder ¢ van-
ishes if we do not make any further corrections or addi-
tions (from R) to y Wy,

If we use the fact that By(s) has a branch point at
s =4m?,, with a corresponding cut in the s plane running
from s =4m3, to o, and apply the Cauchy integral for-
mula, the resulting dispersion relation for B(s) gives

y230<s)=fo“’ds'[p(s')IyWo(s')lz/m'—s)]+K(s) , (10)

where we have used Fig. 2 or Eq. (3) with 4 —y W on the
right-hand side. Here K represents all other corrections
and contributions to 2B, (coming from other singulari-
ties in the s plane). It can usually be dropped in a reason-
able first approximation if y2B,, is given by Fig. 2 alone.

W.Z w,z
H
wzl] " w,Z
wz H w,Z

FIG. 2. Unitarity diagram for two-body W,Z scattering giv-
ing ¥?B.
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Equation (7) can now be readily seen to give
Ao(s)—y Wy(s) at the s =4mE, —2m} pole of Eq. (9).

A neutral scalar H manifests itself as a pole contribu-
tion

Aog(s)=3Bm}/(mf—s) (11

to the I =0 amplitude A4,, with an extra imaginary part
in the denominator if it is a resonance above the WW
threshold. If it is a nonelementary composite state, it
would arise from Eq. (7) if

Redg '(m})=0 (12)
with pole residue

1
3pmp

We do not find any sensible self-consistent solution of
Egs. (7)-(13) with ¢ =0 and K =0. We find, however,

= — .a— —1
‘as Redy (s) (13)

s=mH
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that a solution is possible with a large enough K0 in
Eq. (10).

A K ~a =const#0 term in Eq. (10) would represent
the contribution of high-energy inelastic effects associat-
ed with the production of two or more particles, which
mostly have s thresholds (s;) well above the WW thresh-
old at s =4m$,. In effect we would then be adding in
graphs similar to Fig. 2 but with higher-mass vertical-line
intermediate states. This is equivalent to inserting an
effective factor [1+r6(s —s;)] into Eq. (4) and then ab-
sorbing the 76 contribution into K in Eq. (10). Such a K
would then have a slow s dependence with large s;. With
¢ =0, Eq. (7) then gives, for s <4m?3,,

Redg ' (s)=1/yWy—[K +B2 (5)]/(y W,)?
—(4mi /s — 1)V, (14)

where

T(B/yWo) T =[2+2m}, /m}+sm} /mi(mE—2mi)(1—2m% /m%) V2 In[my /mpyV2+(mp/2m3—1)12]

—1—=s/2(m}—2m})+2(4m} /s — 1) *tan " [(4m}, /s —1)1/?]

which has a Taylor expansion in (4mJ —s) around
s =4m}, since tan " '0=0 here. Using Eq. (9) with ¢ =0,
Egs. (12) and (13) then give

(1—mp /4m3,)~ 172
=02m% /3BmE)+[5V2In(1+Vv2)+2) /7
+o[(1—mp/4m})?], (15)

which immediately gives a self-consistent my near 2my,
for any given 3 << 1, including the phenomenological

B=[mpyc?/(246 GeV)]*/167~=0.0095
H

of standard electroweak perturbation theory, where it is
in principle an arbitrary parameter. From Egs. (12) and
(14) the inelastic-effect constant K ~a must then have the
approximate value

K=~(Bm2 /2m})—B3V2In(1+V2)—2]/27 (16)

if we are to have such a self-consistent H. The strong en-
ergy dependence of our amplitude near the WW-ZZ
threshold arising from the last term of Eq. (14), and lead-
ing to the large first term of Eq. (15), also plays a crucial
dynamical role in making possible this self-consistent H.

With a small (m, —my,) mass splitting, which intro-
duces an additional arbitrary parameter in our scheme,
we replace Eq. (4) by

p(s)=[2(s —4m%,)'?6(s —4m},)
+(s —4m2)'20(s —4m2)1/3V’s (17)

and keep my, =~m, elsewhere in first approximation. We
then find that there are two possible self-consistent H
solutions for B<<1, corresponding to two slightly

r
different values of K. In one, H is immediately below the
WW threshold, and in the other, between the WW and
ZZ thresholds. The latter would have my,—m, and an
extra factor of 1 in the last and first terms of Egs. (14)
and (15), respectively, and give a peak in the WW — WW
cross section.

Returning to my =m, and turning next to s =0, we
find that, for the 8=0.0095 of standard electroweak per-
turbation theory, Eq. (14) now gives an I =0, / =0 ampli-
tude within 13% of the one given by the perturbative
crossing-symmetric pole-only tree-graph amplitudes 47
of Ref. [2], which have the form

A°=PmE[3/(mE—s)+1/(m}—t)+1/(m}—u)], (18)
A'=Bmi1/(mh—t)—1/(m}—u)], (19)

A2=Bmi[1/(mE—0+1/(mE—u)], (20)

and incorporate the poles of Egs. (8) and (11); (Ref. [3]
also includes constant terms of the same order which will
not affect our general conclusions). There is, of course,
no reason why Egs. (14) and (18) should agree exactly in a
nonperturbative scheme such as the one we are using,
and even a perturbation expansion would generate com-
parable corrections to Eq. (18). The general success of
electroweak perturbation theory at low energies, howev-
er, would lead us to expect the two amplitudes to have at
least approximate agreement at s =0. In fact, we find
that this agreement improves if we make the more realis-
tic finite-A K ~a A /(A —s) approximation for our inelas-
tic effects, as long as A is large enough to permit the
above type of self-consistent H in the first place. In the
B—0 limit the agreement becomes exact, with
myg—>2my,, if we have A=28m32,+A(B), where A(B)—0,



48 SELF-CONSISTENT DYNAMICS OF A LIGHT COMPOSITE . .. 1313

but A(B)/B— ; an example would be A < V'3,

An alternative to a strong-inelasticity K0, ¢ =0
scheme is one with large heavy-mass exchanges, which
we approximate by taking a constant R0 in Eq. (8) or a
constant ¢#0 in Eq. (9); this would arise if we had, e.g.,
an additional exchange of the same form as the H ex-
change of Fig. 1 or Eq. (8), but with my— . The in-
tegral of Eq. (10) will then diverge unless we replace it by
a subtracted dispersion relation, which is equivalent to
taking

K(s)=K,— fowds’p(s’)h/ Wo(s)2/m(s'+s4) (1)

in Eq. (10), and combining the integrals of Egs. (10) and
(21) to obtain convergence. Any additional constant con-
tribution (of order y?) arising in Eq. (2) or (5) can then be
absorbed in y W, to obtain a modified constant ¢ in Eq.
(9), leading in turn to a modified expansion (5) and Padé
approximant (7). The constants K, and s, are then
chosen so as to prevent the appearance of double poles in
the resulting 1/ 4, obtained from Eq. (7). This amounts
to taking K,=0 and

so=2m}h—4m3 +4Bm}p /c
in Eq. (21), and leads to

w P Y Wo(s" )y Wo(s') —c]
VWo(S)/AO(s)=1—fO ds'p YWo YW,

w(s' —s)y Woy(s)—c] ’
(22)

which is equivalent to the purely elastic N /D equations
of Ref. [2], at least if the “left-hand cut” is approximated
by the s =4m 3, —2m} pole of Eq. (9). Equation (22) can
be readily seen to give A,(s)=y W(s) at this pole.

With Eq. (22) we now find that Egs. (12) and (13) do
lead to a self-consistent H near the WW-ZZ threshold for
any given f[<<1, including the phenomenological
B=0.0095 of standard electroweak perturbation theory,
but only if

c=mw/2V21In(1+V2) .

The strong energy dependence of our amplitude near the
WW-ZZ threshold again plays a crucial role in making
possible this self-consistent H.

Turning next to s =0, however, we find that Eq. (22)
now gives an I =0 A, value (=~ /2) many times larger
than the value (0.0665) given by Eq. (18). While some
difference between these values might again be expected
in a nonperturbative scheme such as the one we are us-
ing, this difference is simply too extreme to be acceptable,
given the general phenomenological success of elec-
troweak perturbation theory at low energies; it is there-
fore also not likely to be ameliorated by the introduction
of transverse W and Z. It is possible, however, that it
may not arise with a better treatment of high-mass ex-
changes which properly takes into account the energy
dependences we might expect with higher-spin ex-
changes. With both inelastic effects and ¢#0 we contin-
ue to have an I =0, / =0, s =0 amplitude which is larger
than the one given by Eq. (18), although the situation is

not as bad as it is in the complete absence of inelasticity.

If we extend our scheme to include particles with mass
> my, such as the ¢ quark, and consider, e.g., {7 scatter-
ing, we find, as before, that Eqs. (12)-(14) can give a self-
consistent H near the 7 threshold with B— ' <<1 and an
appropriate value for a constant K representing high-
energy inelastic effects; since the ¢ is an isoscalar, we must
replace 34—2f' in Eq. (11) if B—f’ in Eq. (9), remember-
ing that the 1/(m}—u) “exchange-potential” term is
now absent in the equivalent of Eq. (8). We have ignored
the effect of the spin of the ¢ but its inclusion should not
change any of our basic conclusions. The effect of the
WW and ZZ channels is also relatively small and was
neglected. At s =0 we find that our modified Egs. (9) and
(10) now give an / =0 amplitude (7), e.g., with m, =150
GeV, which is roughly equal to the one given by the
crossing-symmetric pole-only tree-graph amplitude of Eq.
(18) with B—2p’, 3—1 and no 1/(m;2,—u) term, al-
though the agreement is not quite as close as it was for
W,Z scattering. There is again no reason for the agree-
ment to be exact with our nonperturbative scheme.

We have not as yet explored the possibility of higher-
spin resonances, which may perhaps lead to B<<1 H
solutions requiring a smaller inelasticity contribution.
The exchange of such states in the ¢ and u channels
would mean an energy-dependent potential, since we
would have extra s-dependent factors multiplying the ¢
and u poles of the type encountered in Eq. (8). In the non-
relativistic case such potentials are dealt with without in-
troducing any divergences by allowing the g,, coefficients
in Eq. (1) to vary explicitly with energy. For any given
fixed energy 5 we then have the same equations (2) and (3)
as before, but with the replacements

W(t)—»W(,5)=3 g, ((3)/(m?—1),

A(s,t)—> A(s,t,5), A(s',t)— A(s',1,5),

and

A (s,t;)— A(s,t;,5)

for i=1,2 [6]. The actual physical amplitude is then
A (s,t,5) at s =5. The generalization to the relativistic
case is otherwise the same as before, with s,¢,u becoming
again the usual Mandelstam variables, and p(s) the rela-
tivistic phase-space factor [6], which reduces to Eq. (4)
for equal-mass scattering.

Eventually we must go beyond the longitudinal W,Z
approximation and include the full spin complications of
the W and Z and any other particles we might bring into
our model. We must also construct more explicit models
for the inelastic effects which played such an important
role in Egs. (14)-(16), and go beyond the kind of
simplified [1,1] Padé approximant we used in Eq. (7).
These improvements may require considerably more care
in dealing properly with the singularities of the resulting
equations than was necessary with Eq. (7). Considerable
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care must also be exercised in making any kind of
discrete or lattice approximations, since these could easi-
ly introduce large errors in view of the rapid energy
dependence of our amplitudes near two-body thresholds.

However, we do not expect our main conclusions, which
relied so critically on this latter already-present qualita-
tive feature, to be significantly affected by any improve-
ments we might make in our calculations.
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