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Nucleon structure as a background for determination of fundamental parameters
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We consider deep inelastic (quasi)elastic lepton-nucleon scattering and investigate the possibilities of
eliminating or suppressing theoretical uncertainties induced by the nucleon structure in measuring the
standard model parameters or in searching for new physics. On the basis of rather general assumptions
about nucleon structure we have obtained new relations between cross sections and neutral current pa-
rameters which are weakly dependent on the nucleon structure. We also investigate the dependence of
the QCD A parameter extracted from the data on the unknown large-scale nucleon structure and pro-
pose a modification of the conventional QCD predictions in which the dependence on this uncertainty
factor is suppressed.

PACS number(s): 13.60.Hb, 12.38.Aw, 13.40.Fn, 25.30.—c

I. INTRODUCTION

Precision measurements of the standard model (SM)
and the QCD parameters as well as the search for new
physics manifestations require special efForts for elimina-
tion of the factors poorly controlled theoretically. In ex-
tracting fundamental parameters from the data these fac-
tors bring uncertainties and play the role of some specific
background. Further we will investigate deep inelastic
(DIS) and (quasi)elastic 1N scattering, considering these
processes as a source of important information on funda-
mental parameters and new physics manifestations. In
this case the main uncertainties come from the nucleon
structure characterized by the structure functions (SF's)
or form factors of the nucleon (FNN). Neither of them
has been calculated on the basis of the first principles of
the theory yet. Therefore the values of the fundamental
parameters extracted from the data may have large sys-
tematic errors due to the uncertainties in the theoretical
description of the nucleon structure.

Below we investigate the possibilities of elimination or,
at least, suppression of these uncertainties.

This paper consists of two parts devoted to the elec-
troweak sector of the SM and QCD sectors, respectively.

Considering the electroweak sector (in Sec. II) we
search for the combinations of the lN scattering cross
sections in which nucleon structure dependence can be el-
iminated on the basis of a rather general hypothesis. A
well-known example is the Paschos-Wolfenstein relation
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Here o.Nc and o.cc are the neutral and charged current
cross sections of the deep inelastic scattering v(v) on an
isoscalar target N . Despite the fact that the cross sec-
tions depend on the SF's, this dependence disappeared
from the specific combination and the right-hand side of
the relation is expressed only in terms of the SM parame-
ters p and sin 0~.

In Sec. IIB we obtain new relations of this kind for
deep inelastic and (quasi)elastic v(V) and longitudinally
polarized el—~ or pI—~ scattering on nonpolarized nu-
cleons and nuclei.

Considering the QCD sector (in Sec. III) we investigate
the dependence of the extracted value of the well-known
A parameter on specific uncertainties induced by the
large-scale nucleon structure. It enters into conventional
QCD predictions for DIS through the initial condition
SF f' (x) of Q -evolution equations. At present f' (x)
cannot be calculated within QCD and for practical pur-
poses it is necessary to employ some parametrizations. It
may give rise to the dependence of the A parameter ex-
tracted from the data on a special choice of the parame-
trization. We propose modified predictions of QCD for
DIS for which this dependence is suppressed.

II. KLECTROWEAK SECTOR

The fields Z and Z, are mass eigenstates. Z is the lightest
boson identified with that observed experimentally. The
neutral currents can be written in the general form

Jp. g {ELffL1 pfL +eRf fR ) pfR ]
1

(2)

The chiral constants ez ~ are given in the Appendix for
two special cases: for the exact SM without extra bosons
Z,- and for the superstring-inspired extension of the SM
with one extra Z' boson [2,3].

When studying lN scattering it is convenient to follow
the effective NC Lagrangian [4]

&Nc— —{IizpLJs. "+tttzp4Jtt "]
2

A. Effective Lagrangian and IN scattering cross sections

We start with the standard model neutral current (NC)
Lagrangian extended to include neutral extra gauge bo-
sons Z, , representing possible tree-level new physics:

LNc

=ed�

"J„+g,Z"J„+g g;Z/'J„'
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which is obtained from the initial Lagrangian (1). Here
[lL R

=
—,
'

( 1+y~ )l, l =v, e,p]. Effective hadron currents
(i =L,R ) are introduced:

J ""=X
I E;P«')qLy"qL+E;8(Q')qR y"qR ]

q

—(
I al( g2) y3P+ pl( g2) g 3p

(4)

+y,'(g') v'~+a,'(Q') ~ 0~] .

Here V and V are the isovector and isoscalar vector
currents: 2 and A are the isovector and isoscalar
axial-vector currents. We will use both forms of effective
hadronic currents.

The effective chiral constants E q and effective isotopi-
cal constants a,', /3,', y,', 5,' have absorbed photon and Z-
boson propagators and depend upon Q . These constants
contain the SM parameters and possible new physics in
neutral current interactions. Their specific forms for the
previously mentioned case of the extra Z' boson are given
in the Appendix. With the accuracy of the improved
Born approximation these effective constants absorb lead-
ing electroweak corrections as well.

Therefore to measure the SM parameters (sin H~, p)
and to investigate new physics manifestations in NC lN-
scattering one should extract these effective constants
from the data separating them from the nucleon struc-
ture. The latter is a source of theoretical uncertainty and
is represented by a distribution function (DF) in DIS and
form factors of the nucleon (FFN) in (quasi)elastic
scattering.

We will consider a way of separating effective chiral
and isotopic constants from the nucleon structure within
a reasonable approximation. We accept the QCD-parton
picture for DIS and isospin invariance of strong interac-
tions and CVC (conservation of vector current) for
(quasi)elastic scattering.

On the basis of the effective Lagrangian (3) we can ex-

press the cross sections of DIS and (quasi)elastic lN
scattering in terms of effective EP~ and a,', g,

'
y,', 5, con-

stants. They take a rather universal form for deep inelas-
tic scattering,
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and (quasi)elastic scattering
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The following universal functions are introduced:

q»(e„eR ) =aox g tf, (x, Q')[leL(q) I'+(1—y)'IeR(q) I']+f, (x, Q')[leR(q) I'+(1—y )'leL(q) I']], (14)
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where o0=2G MEln , f (x, Q ),f -(x, Q ) are the distribution functions (DF's) of quarks and antiquarks in the nu-
cleon; N=p, n; M is the nucleon mass; and F&3d z(Q ) are the FFN. E is the initial lepton energy in the lab system,
Q =2MExy =Sxy.

FFN Fk(N)(Q ) and Fk (Q ) are determined from the matrix elements:

(p, n lJI";) lp, n ) =u(p2) F~(p, n )y"—
pv

5 I
FMi(pn) ) y FA, i(p n) u(pl )

(16)
cc ~ & cc&=-(p, ) F,"y — F" yy''F„" (p, ) . —
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Following the isotopic symmetry of strong interactions
and the CVC hypothesis, one can put down

F =F~ —F"VM 1,2 1,2

d2 CC d2 CC
(vn)+ (vp )

d2 CC d2 CC
(24)

&NI &„'IN &
=~(p2)y„y'] (p] )Fg(Q2) . (20)

B. Factorization and elimination
of the nucleon structure dependence

We are searching for the combinations of cross sections
for different processes where the dependence upon the
structure functions and form factors of the nucleon
characterizing its structure are canceled.

I et us begin with deep inelastic IX scattering and in-
troduce the quantities

d2 NC d2 NC

(l, ,n )+ (lL ~p),
d2 NC d2 NC

(l ) „„(l p),
d2 CC d2 CC

(vn )+ (vp)

d2 CC d2~CC
(eL p)+ d(eL n—)

dx dy dx dy

(21)

(22)

(23)

Fv;(~, „)(g )=r+;F~&(g ) —r, F", (Q'), i =L,R, (18)

F~;(l, „)(Q )=r+;F2(Q )
—r;F2(g ),

Fl (Q2) —+plFCC(g2)+g!FO (g2)

wh«e r+; =
—,'(a,'+3y,') and F~&'z are the electromagnetic

FFN. According to the definition, Gf]r"=F~]'"+F~z" is
the magnetic FFN; the isoscalar axial-vector FFN F„ is,
in the matrix element,

They can also be expressed in terms of the cross sections
of scattering on nuclei:

d 2~NC d 2~NC
(lr 2]N), b, '+L~= (12(LN),dx dy ' ' dx dy
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(ll] L A2)
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1 1 do 1 do.
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where X is the isoscalar target, A&, A2 are the nuclei
with different iso spin and atomic weights
&],&„p=n]/&] —n2/&2, and n] 2 is the number of
neutrons in the nucleus A, 2.

Using formulas (6)—(10) and (14), we find

(
—)I
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(26)

(27)
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(29)

(30)

(31)

(32)

(33)

where

f(x, Q') =f.'(x, Q') —fd(x Q'),

h, 2(x, Q )=f~+"(x,g )+f~+"(x,g )+f]'+"(x,g )+fl'+"(x,g ),

(34)
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do +JP~ ( „)= (el p, n ~eL p, n )P) n dg2

do
d 22 (eg p, nisei( p, n )

do doC= (vn~ei p) — (vp~e2( n)
dg2 dg2

do do
(el p~vn) —

(e2( n ~vp) .
dg2 dg

(37)

(38)

(39)

Because of the instability of the free neutron it is im-
possible to observe the direct ln (quasi)elastic scattering
process. Instead we can investigate lepton scattering on a
neutron inside the nucleus, the simplest of which is a
deuteron. In the proper kinematic domain with a slow
spectator nucleon and large enough square momentum
Q transferred from the lepton to the active nucleon [5]
we can adopt the impulse approximation. Then cross
sections of the ldll'pn, nn, pp processes can be written
down as an incoherent sum of ln and lp (quasi)elastic
scattering cross sections:

do
di =JVI. (p)+AL, (n)= 2 (11d~li. np)

dg
do

( l~ d ~ l~ np ), (40)

d„=IVI'(p)+A'~(n—)=
2 (el. d ~el. np)1 1

do- + +
dg

do
d

(e~ d~e2i np),

do do
C = (vd ~el pp ) — (vd —+e„nn )

dQ2 dQ

do do
(el d~vnn) — (e!!d~vpp) .

dg dQ 2

(41)

(42)

Following formulas (11)—(13), and (15), we obtain
I 2 I I 1
i(p, n) ~( ) Q )(Fvi(p, n) +Mi(p, n) ) Ai( , )pn

C=cos 0 co(E, Q )(F +F )F (44)

ME 4ME

Lets us use the scaling law for the FFN:

Pn
(45)

and fpP, fq are the DF of quarks in the Proton and neu-
tron, respectively, fqp+"=fp+f", eI = —1, ei(=1. The
dependence upon the nucleon structure is accumulated in
f and h;, which are common factors in formulas
(26)—(33).

Now we obtain similar relations for (quasi)elastic lN
scattering. Let us introduce the differences

do do
2 ( lI p, n ~ ll.p, n )

—
2 ( lJip, n ~ lz p, n ),P dQ2 dQ2

(36)

Fo FCC
2

where p =2.79, p„=—1.91 are the magnetic moments
of the proton and neutron.

Relation (45) is well known and valid with a high accu-
racy in a wide interval of Q . The scaling law for the axi-
al FFN (46) is less reliable. It may have some grounds,
for instance, in @CD, based on local duality [6] or a di-
pole extrapolation of the results of perturbative calcula-
tions [7]. However, the experimental status of this rela-
tion is not quite clear. The normalization constant X is
calculated or taken from experiment. In the nonrelativis-
tic quark SU(6) model )(,=0.6. Some difference in values
of A, in different approaches as well as deviation from
scaling law (46) do not lead to a noticeable influence on
the effects under discussion. This is explained by the
small contribution of 5F„ to the initial formula (19) due
to the small value of the parameter 5. One should
remember that in the SM at the tree level 6=0.

On the basis of formulas (17), (19), (45), and (46) we
transform (43) into

~1 ) ~(E Q2)(FcC+FcC)FCC(3yll2+i2! )(gal+Pl )

(47)

d! ) ei( E g 2
)(FCC+ FCC )FCC( (2

1pl + 3y!Ql gl! ) (48)

where )M
= (p +)Li„)/()Li —p„).

Formulas (26)—(33), (44), (47), and (48) are initial ones
for obtaining the relations independent of DF and FFN.
From the cross section combinations b„JV, C one should
choose two combinations so that DF and FFN would be
canceled if the combinations are divided by one another.
For example, in the ratio 5 I /b, the DF f(x, g ) is
canceled. Thus, one can easily obtain all the relations of
this kind from formulas (26)—(33), (44), (47), and (48). We
do not write them down in the general form, confining
ourselves to the approximation Q «Mz = 10 GeV in
the SM limit. If the given approximation is inapplicable,
e.g. , in experiments at the DESY ep collider HERA
where Q = 10 GeV, one should use the formulas in
the general form.

Since electron scattering is due to both weak interac-
tion 8' and electromagnetic interaction IEM, the struc-
ture of the relevant formulas is IEM+IEMW+8' . In
the Q region considered, the leading term is the one with
the maximum power of IEM. As to the neutral current
parameters and the dependence upon the Z'-boson con-
tributions, they all are included in 8'. So below we give
the relations that do not involve the dominating term
IEM which is of little physical interest. In the formulas
we shall only retain the leading term of the IEM 8' type
corresponding to electroweak interference. In this case
the accuracy is worse by no more than 1 —2%, for
Q &200 GeV . In the given approximation the desired
relations have the following form.

For vX scattering,
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( —) ( —)i, b,= —(1—y)

~+L+~+L
(1—2Xw+ 20X )

6++6+
(51)

L+6
Xw(1 —2Xw), (52)

2

(1—2Xw), (53)

Xw+6 (54)

(p, n)
2

[1—2Xw(1+(M)],
4cos Oc

(55)

~i() )+~i(n) p'
( —,

' —Xw) .
cos Oc

(56)

For eN scattering (i =L,R),

= —,'p XwI [1+(1—y) ]

X(1—2Xw)+[1 —(1—y) ]], (49)

(1—Xw)(1 —y) —Xw
(50)

(1 —Xw) —Xw(1 —y)

relative normalization of v and v beam Aows make it
preferable to use relations without combinations of cross
sections from different beams, i.e., combinations of v%
and vN scattering cross sections. These are relations (49)
6' i /b, and b, " i /b . Their disadvantage is that they
contain differential cross sections d o. /dx dy and, conse-

( —)
quently, require data on v X scattering in a narrow-band
beam (NBB). This limits the statistics for extraction of
the parameters (p, Xw). The situation is quite the oppo-
site for relations (51)—(56), among which there is the
Paschos-Wolfenstein relation [formula (53)]. They are
formulated for total cross sections, which is much more
favorable for gathering statistics, but these are combina-
tions of vX and vX scattering cross sections. As a result,
there are uncertainties related to different normalization
of v and v beams.

Among relations (57)—(60) for eN scattering we would
like to single out the last three relations for ANc (60).
Their definition does not include the cross sections for
charged current eX scattering, which is a rare process
occurring only due to weak interaction. These relations
do not involve the parameter p. As a result, the extrac-
tion of the remaining parameter Xw from the data be-
comes more reliable. We also notice that ANc is very
sensitive to Xw.

K= laRNC= =8 for Xw=0. 23 .d ~ = 1

dXw Xw(1 —2Xw)

(62)

6++6+
M

pe'; (e),1+2 g' (57) So the error bXw induced by the error ~Nc in the mea-
surement of ANC is suppressed by a large factor K =8:

i(p, n) X(1+(u, ) M
2

pe~( e
2cos Hc g2

(58)
1 ~Nc

AXw =-
+NC

(63)

o

, pe'; (e),
cos Oo g

(59)

+"R (p, n)

L

dR ~+R —~+R

2Xw —l

2Xw
(60)

2 0
bo'= J dx I dy, a=NC CC . (61)

Relations (49)—(60) can be used for extraction of the
SM parameters p and Xw =sin Ow from the experimental

( —)
data on deep inelastic and (quasi)elastic v N and eN
scattering.

Specific di%culties of vX experiments associated with

The double differential cross sections d o. /dx dy, enter-
ing into b„(22)—(33) can be replaced in formulas (57) and
(58) by the difFerential cross sections do /dg, and in for-
mulas (50)—(53), and (60) they can be replaced both by
do /dy, do /dg and by the total cross sections ho taken
in any region of variables x,y. According to the
definition,

The sensitivity of other relations, including the Paschos-
Wolfenstein relation, is much lower and does not exceed
K= l.

The relations we have obtained are subject to radiative
corrections. We do not consider this problem since it re-
quires special effort. We expect the radiative corrections
will not destroy the obtained relations. The reason is
based on the similarity in the structure of all obtained re-
lations including the Paschos-Wolfenstein relation. For
the latter it was shown [8] that because of this special
structure the radiative corrections are effectively self-
canceled and can be neglected.

III. QCD SECTOR

A. On model dependence of the QCD
predictions for deep inelastic scattering

Now we turn to the sector of the SM and consider
QCD predictions for deep inelastic IN scattering. Unlike
the electroweak sector, the subject under consideration is
the nucleon structure represented by the DF. The uncer-
tainty factor is a long-scale nucleon structure poorly con-
trolled in QCD.

QCD governs the g evolution of the DF within the
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renormalization group improved perturbative theory, for-
mulated in terms of the running coupling constant
a, (Q ). Its Q dependence is usually parametrized by
the well-known A parameter. We will investigate the
problem of extraction of this parameter from the experi-
mental data on the deep inelastic lN scattering structure
functions (SF's) I'k(x, Q ). Here we consider the nonsing-
let SF F3(x,Q ) and the nonsinglet component of SF
F

& 2. The former can be directly measured in deep inelas-
tic v(v)K scattering. The case of the singlet component
of the SF is much more complicated and is not con-
sidered in our approach. In the leading order of the per-
turbative theory QCD predicts that SF's obey the equa-
tion

In this way we obtain QCD predictions mostly on the x
domains covered by the experimental points. Thus the
value of the parameter A extracted from the data origi-
nates mostly from the data points, not by the special form
of parametrization used for analytical representation of
these data in the formulas. This is because the depen-
dence on parametrization comes only from domains in
the vicinity of the crucial points x = 1,0 unconstrained by
the data points.

B. Modified QCD predictions

Let us consider Eq. (68) at continuum values of n and
differentiate it m times with respect to n. The result is

(f(s))„=(f' (0))„e "

Here we use the notation f(x, Q ) =F3,E, z..

(64)
(69)

a, (Q /A )s= ln
&o a, ( Q,' /A')

(65)

Q() is an arbitrary reference point; 13o and d„ in the lead-
ing order of the perturbation theory are

1
Po= (11—

—,'nf )
16~

1 2 n

1— +4+
24~2 n(n+1) .

z j

(66)

(67)

and nf is number of quark fIavors.
The moments of the SF are defined as

(f(s) )„=f dx x"f(x, Q ) .
0

(68)

To solve the evolution equation (64) it is necessary to
know the initial conditions f' (x,p) which are a SF at
the reference point Q =Q().

This function depends on the large-scale nucleon struc-
ture and presently cannot be calculated within QCD in a
reliable way. Therefore to make an advance in the solu-
tion of the evolution equation one may try to use some
models for f ' calculations. This results in model depen-
dence of any further analyses including the extraction of
the A parameter from the data.

Another way to cope with the problem is the extrac-
tion of f' directly from the data. In this case the prob-
lem is converted into another one. In fact, for calculation
of moments according to formula (68) one needs to re-
store f ' in the whole interval x H [0, 1] whereas the data
points cover only the middle limited part of this interval
and do not approach the end points x =0 and x = 1. The
tails of f remain unconstrained by the data and
(f (0) )„becomes dependent on the extrapolation to
the end points. This dependence is more essential for the
x ~1 tail of the f' (x,p). The dependence on the x ~0
tail is reduced due to the damping factor x" ' in the
definition (68) of (f (0) )„.

In our approach we reformulate QCD predictions (64)
in terms of new objects [instead of the ordinary moments
(68)] which contain a new damping factor suppressing
contributions from both domains x ~1 and x ~0.

The object (f(s) ) '„' possesses the property we are look-
ing for. It contains the damping factor y„(x)=x "ln x
which suppresses the contribution from vicinity of the
end points x=0, 1. The suppression becomes stronger
with larger m and n. The function y„has a maximum at
point xo =e '" " and the dominant contribution to
the integral (69) comes from the interval around point xo.

To obtain QCD predictions for the objects (f )'„' we
differentiate both sides of Eq. (64):

(f(&) )(m) y Ck (fIC(p) )(m)(e n )(m —k)

k=0
(70)

C are the binomial coeKcients.
This equation does not give a solution of the problem

we consider, because it contains (f' )'„' with low k
values including k =0. Our goal is to exclude terms with
a low k(k ( I ) and obtain predictions localized in the re-
gion excluding end points x =0, 1. The degree of locali-
zation will be controlled by the value of the parameter I.

Let us consider the system of I algebraic equations ob-
tained from the original one (70) at different values of
m =l 2l

(f(s))'"
l

Ck(f IC(0) )(k)(e n )(!—k)

k=0

(71)

+b„'(s)(f(.) )(„'] . (72)

a„' and b„' are calculable functions. Substituting expres-
sion (72) into expression (70) with I =21 we obtain

l l

g r'"'(s)(f(s))"+ '= g q„'" (s)(f' (0))"+"'
k=0 k=0

(73)

Functions r„"k(s) and q„"k(s) have a rather complicated

2l —1 s(f( ) ) (2I —1) y Ck (fIC(0) ) (k)( n )(2l —1 —k)

k=0

Let us express (f ' (0) )'„"' with k ( I in terms of those
with k &l:

21 —1

(fIC(0))(k &!) y [&i(&)(fIC(p))(i)
i =1
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I

R „'(s)= g r„"k(s)x "ln'+"x,
k=0

l

Q„' (s) = g q„"I,(s)x "ln'+"x .
k=0

(75)

(76)

It is easy to show that these functions are mainly located
within the interval e ' "~x ~e ' '. The localization
becomes more perfect at larger values of l and n and for
sufFiciently large ones we write down approximate sum
rules for the nonsinglet SFf(x,s):

f dx IR„'(x,s)f(x, s) —Q„'(x,s)f(x, O)] =0, (77)
min

ere x min xmax
Equations (75)—(77) can be applied to the deep inelastic

lX scattering data analyses and extraction of the A pa-
rameter. These equations give a basis for the procedure
which is weakly dependent on SF parametrization.

We expect that perturbative next-to-leading QCD
corrections and nonperturbative twist corrections do not
essentially modify the result. It is well known that these
corrections become large only in the regions near the end
points x =0, 1. Therefore their contributions to Eqs.
(75)—(77) are suppressed as any contributions from those
regions. For the same reason we can neglect contribu-
tions from the singlet component of the SF which are
essentially only near x =0.

In principle, contributions of these corrections can be
taken into account starting not from the leading order
equation (64), but from the system of next-to-leading or-
der equations with singlet components of the SF in-
volved. However the procedure we proposed here be-
comes much more complicated and we do not consider
this case.

Equations (75)—(77) can be applied to the analysis of lN
scattering data and extraction of the A parameter value.
In our paper [9] we analyzed the data on this basis [10].
General conclusions are the following. The dependence
of the extracted value of A on a specific choice of the SF
parametrization is essentially suppressed. This statement
has been verified directly for several diff'erent parametriz-
ations. However at the same time the error AA in the
definition of A increases. For the data [10] it is about
AA/A=0. 7 —1. Therefore more precise data are neces-
sary to obtain a sensible result for the extracted value of
the parameter A in the framework of the proposed ap-
proach.

In Eqs. (75)—(77) and the extraction of A we have
suppressed the dependence on the SF parametrization.
The latter is a theoretically uncontrollable factor con-

analytical form and can be found in our paper [9] at
several values of l, n, and k.

Equation (73) is a solution of the initial problem. It
contains (f ) „" only at k ~ I which are weakly dependent
on the contribution from the vicinity of the end points
x =0, 1.

It is useful to transform Eq. (73) into the integral form

f dx IR„'(x,s)f(x, s) Q„'f—' (x, O)] =0, (74)
0

where

nected with the large-scale nucleon structure. Instead,
we obtained a large error AA, which demands much pre-
cise lN scattering data than presently available. The situ-
ation looks as if we have converted a theoretical problem
into an experimental one.

It is very essential to point out that in our approach
AA is a representation of the real constraints which ex-
perimental data impose on the A parameter.

A and AA weakly depend on the hypothesis involved in
the extraction procedure. The situation is difFerent when
extraction is based on conventional QCD predictions
(64). The error in this case is smaller bA/A=0. 2 —0.5,
but the dependence on SF parametrization is uncontroll-
able. Therefore, the reliability of this result may be ques-
tionable.
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APPENDIX

Here we give the chiral constants taking into account
the contribution of the superstring inspired Z' boson as a
possible representative of beyond the SM physics. They
are

gz
e', "(f)=E' (f)cos8+ e'(f)sin8, i =L,R, (A 1)

e,' '(f)=e (f)cos8 e' (f)sin8- ,
g i

(A2)

gz' 5~ —X~.

TABLE I. Chiral constants e«, parametrizing
fermion —Z'-boson interactions. [Here g=(1/2V10)sin8s,

6

A, ={1/2&6)cosOs .]

Ferrnion

5$—
A,

—
A,

—3g

(A3)

Here Xi=sin 8~, T3L(f) and Q (f) are the third
component of the weak isospin and the electric charge of
the fermion f. The chiral constants e' are given in Table
I.

Angle OE, involved in their definition, characterizes
6

the scheme of the E6 gauge symmetry breaking and is a
free parameter of the theory. The relation between the
coupling constants g, and g, also depends upon symme-
try breaking. The following result of the renormalization
group analysis is known in the general case [2]:

2
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The effective current constants have the form

MElq X QEM(l)QEM( )+ Q
(i)j Xll, (1—X~ )

~';"(l)e,'"(q) g e "(l)~'"(q)
M2+Q2 g M2+Q2

M
rz! ( Q

2
)
—

X Q EM( l ) + 12
I

( Q
2 )rzz+ b I

( Q
2 )tzz'

pl (Q2) 1 (Q2)pZ+b 1 (Q2)pZ'

M1 (Q2) X QEM(l)+ 1 (Q2)yZ+b 1 (Q2) Z'

(A4)

gl (Q2) gl (Q2)QZ+b1 (Q2)gZ' (A5)

~ (Q')= 2
1 —X~

M
EI"(l)cos8

M, +Q
Rz

g i

M
EI '(l)sin8

M2+Q
2

RzgzI 2 M~ M~
b,'(Q )= E', "(l)sin8 +eI '(l)cos8

g, g, M! +Q M2+Q

where X=2qra/2/GM =0.6 X 10 . In the tree approximation a'= 1 —2X~, p'= 1, y'= ——', X~,
a' = —p' = —y' =2sin8E /&10, 5' =2cos8E /V2. Mixing angle 8 is tan 8=(Mo —M& )/(M2 —Mc),
Mo =M~/cos8~.

(A6)

5'=0,
where
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