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Conventional approaches to supersymmetric model building suffer from several naturalness problems:
they do not explain the large hierarchy between the weak scale and the Planck mass, and they require
fine-tuning to avoid large flavor-changing neutral currents and particle electric dipole moments. The ex-
istence of models with dynamical supersymmetry breaking, which can explain the hierarchy, has been
known for some time, but efforts to build such models have suffered from unwanted axions and
difficulties with asymptotic freedom. In this paper we describe an approach to model building with su-
persymmetry broken at comparatively low energies which solves these problems, and give a realistic ex-

ample.
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I. INTRODUCTION

In recent years, supersymmetry has emerged as a lead-
ing candidate for the origin of electroweak symmetry
breaking. Supersymmetry offers a cure to the hierarchy
problem (or at least to the problem of quadratic diver-
gences) and, in a desert scenario, yields a successful
unification of coupling constants. Extensive effort has
been devoted to the phenomenology of what has become
known as the “minimal supersymmetric standard model”
(MSSM). This model has no difficulty accommodating
present experimental constraints. The features of the
MSSM are often understood, or at least motivated, by
considering N =1 supergravity theories.

Yet there are a number of reasons to be concerned
about this rosy picture; these concerns can also be
motivated within the framework of supergravity theories.
First, the supersymmetry-breaking scale is put in by
hand. The promise of supersymmetry to explain the
hierarchy is unfulfilled. Furthermore, the masses of su-
persymmetric partners are not calculable, and must also
be put in by hand to be above the experimental bounds.
Moreover, in these N =1 models, the new physics associ-
ated with the “hidden sector” responsible for supersym-
metry breaking is completely inaccessible. This last ob-
jection is not fundamental, but it is a disappointing
feature of these theories. Finally, and perhaps most seri-
ously, there is the “flavor problem.” The pattern of soft
breakings in these theories is highly restricted by flavor-
changing neutral currents. Usually it is simply assumed
that at some high-energy scale, the squarks and sleptons
are degenerate. In the framework of standard supergrav-
ity theories, however, there is no reason for such relations
to hold, and indeed they do not in generic superstring
compactifications [1]. More generally, it is hard to un-
derstand how theories in which the quark and squark
masses are generated at some very high-energy scale can
give rise to significant squark and slepton degeneracy [2].
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There have been many speculations on solutions to all of
these problems; still the picture is not completely satisfy-
ing theoretically, and most of these speculations involve
physics which is experimentally out of reach for the fore-
seeable future.

In this paper we wish to consider an alternative picture
of supersymmetry breaking, which has not been con-
sidered since the earliest days of supersymmetry model
building. We wish to explore the possibility that super-
symmetry is dynamically broken, by new physics associ-
ated with (multi) TeV energies. We will construct such a
model, where the squark and slepton masses are calcul-
able. The model has many desirable features; in fact, it
will solve all the problems listed above. It will also make
some predictions, not only about the size of soft breaking
terms, but also about the particle content at the weak
scale. In particular, beyond the particles of the MSSM, it
predicts the existence of at least one singlet and a set of
mirror quarks and leptons, all at experimentally accessi-
ble energies.

Models exhibiting dynamical supersymmetry breaking
(DSB) have been known for some time [3]. The authors
of Ref. [4] attempted to construct models with supersym-
metry broken in the multi-TeV energy range, but ran into
a variety of problems. Two problems, in particular,
seemed generic: there were light Goldstone bosons, or
axions, and QCD was not asymptotically free, hitting its
Landau singularity a few decades above the scale of the
new, supersymmetry-breaking physics. In the present
work, we will exhibit a model which solves both prob-
lems. The would-be axion will gain mass as a result of
another strong group in addition to QCD, and the model
will be structured so that QCD is nearly asymptotically
flat. Ordinary particles, quarks, leptons, gauge bosons,
and their superpartners, “learn of’ supersymmetry
breaking through gauge interactions. As a result, there is
automatically sufficient degeneracy in the squark and
slepton spectrum to insure adequate suppression of
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flavor-changing neutral currents. SU(2) X U(1) breaking
will arise through loop corrections to Higgs boson masses
involving top quarks, in a manner discussed long ago [5].
Breaking the electroweak symmetry without fine-tuning
will also require the presence of a light SU(2) X U(1) sing-
let, and new superfields with vectorlike interactions.

The model we will present here is meant as an ex-
istence proof. It has certain drawbacks. None of these
are fatal, nor is it clear that any of them are generic.
Indeed, we strongly suspect that a more elegant model is
lurking somewhere. Perhaps the most serious problem is
just that the model is rather complicated, involving four
additional gauge groups. It is not, however, nearly as
complicated as recent proposals for technicolor models,
and the symmetry group is not larger than some encoun-
tered in string compactifications. Moreover, unlike tech-
nicolor models, it is not necessary for large numbers of
groups to become strong within a few decades of one
another. Apart from the group actually responsible for
breaking supersymmetry, there is one other group which
cannot be too weak; otherwise there is a light Goldstone
boson which is inconsistent with the red giant and super-
nova limits. We will see that at high energies this re-
quires at most a very mild fine-tuning. There is also the
potential for generating a large Fayet-Iliopoulos D term
for hypercharge. Solving this will require an approxi-
mate equality of certain gauge couplings. This equality
will be seen to be “natural” in the sense that it does not
receive large radiative corrections. Such an equality
could arise within the framework of grand unification or
superstring theory. Finally, there are potential cosmolog-
ical problems which could be solved by higher-dimension
operators: domain walls and long-lived massive states.
Still, the model has virtues: a hierarchy between the
weak scale and the shortest distance scales is naturally
generated, flavor-changing processes and new sources of
CP violation are naturally suppressed, and it is otherwise
consistent with all present day experiments. Of course,
the cosmological constant problem remains as a most
troublesome naturalness issue.

II. DYNAMICAL SUPERSYMMETRY BREAKING

The hierarchy problem has two aspects, both of which
one might hope to address within the framework of su-
persymmetry. One is the problem of quadratic diver-
gences of scalar masses. The second is the existence of an
extremely small dimensionless number, which we can
think of as the ratio of the weak scale to M, or some
unification scale. It was Witten who first clearly stated in
what sense supersymmetry might solve this second prob-
lem [6]. He noted that (in the case of global supersym-
metry) any small vacuum energy signifies supersymmetry
breaking. Yet if supersymmetry is unbroken at the classi-
cal level, it remains unbroken to all orders in perturba-
tion theory as a consequence of nonrenormalization
theorems. However, the proof of this statement is in-
herently perturbative, and the result need not hold
beyond perturbation theory. Thus effects of order
e 9 gz, where g is some coupling constant, might give
rise to supersymmetry breaking and explain the large
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hierarchy. Witten also formulated a set of conditions un-
der which supersymmetry breaking might or might not
occur. Most important of these was the existence (in per-
turbation theory) of a massless fermion which could play
the role of a Goldstone fermion. He also showed that a
certain index (the “Witten index”’) must vanish if super-
symmetry is to be broken, and showed this index to be
nonzero in a number of interesting cases [7].

Subsequent work showed that in many cases, nonper-
turbative effects do violate the nonrenormalization
theorems. In some cases these are due to instantons and
can be calculated explicitly in a systematic semiclassical
expansion; in some cases they can be understood in terms
of other nonperturbative effects, such as gluino condensa-
tion. It will be helpful for what follows to review the re-
sults for “supersymmetric QCD” [8]. For our purposes,
this is a theory with gauge group SU(N) with N  chiral
multiplets in the N representation, Q,, and N, in the N
representation, Q. Before including a mass term or oth-
er superpotential term for the “quark” fields, the theory
has a nonanomalous SU(N;)XSU(N,)XU(1), XU(1)
symmetry, where the last two symmetries are a baryon-
number-like transformation and an R transformation
with charges chosen to avoid anomalies. This model also
contains, at the classical level, a large set of degenerate
vacuum states, described by several parameters, referred
to as “flat directions” of the potential. These are just
directions in which the D terms vanish. It is not hard to
convince oneself that up to symmetry transformations,
for N, <N the most general zero-energy state is described
by the expectation values:

a; 0
a
0 ay, _
Q= 0 0 =Q . (2.1)
0 0

The case where N, =N —1 is the easiest to analyze. In
this case, in these flat directions, the gauge symmetry is
completely broken. Moreover, by choosing the vacuum
expectation values (VEV’s) large enough, one can make
the theory arbitrarily weakly coupled [the effective cou-
pling is a(My), the asymptotically free coupling of the
theory evaluated at the scale of the gauge boson masses].
In these vacua the light degrees of freedom are a set of
Goldstone bosons and their superpartners. These can be
described by a matrix-valued field ® 7 fZQfo. In these
vacua, in order to determine if supersymmetry breaking
occurs, one must compute the effective action for these
light degrees of freedom. In particular, supersymmetry
breaking requires that one generate a superpotential for
these fields. Any superpotential must respect the original
flavor symmetries of the theory. The SU(N,)XSU(N,)
symmetry implies that the action must be a function only
of det(®). The U(1); symmetry then determines the
form of the superpotential uniquely:
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A2N+1
 det(®) ’

where A is the scale parameter of the SU(N) group. A
completely straightforward instanton calculation precise-
ly yields the various component field interactions implied
by this Lagrangian [8].

For N [ <N —1, one can repeat most of the analysis
above. In particular, the symmetries determine the form
of any superpotential uniquely, in terms of the N, XN,

(3N—Nf)/(N'Nf

(2.2)

—l/(N——Nf) )

W =bA 'det(®) 2.3)

A somewhat different analysis is required to show that
this superpotential is generated in this case. For
N;> N —1, no superpotential is generated.

What are the implications of this superpotential?
These examples illustrate that the nonrenormalization
theorems do break down nonperturbatively. However, at
least at weak coupling, these theories do not have a good
ground state, and at best admit a cosmological interpreta-
tion. If one adds mass terms for the quarks, the potential
is stabilized, and one finds N supersymmetric ground
states, in agreement with Witten’s calculation of the in-
dex. If one wants to find theories in which supersym-
metry is broken and one has a good ground state, it is
necessary to study chiral theories. In Ref. [4], a number
of chiral theories were studied which do exhibit DSB.
The main conditions for this are (1) the absence of flat
directions in the classical theory and (2) the existence of a
nonanomalous, continuous symmetry which is spontane-
ously broken. These conditions are not hard to under-
stand. The second implies the existence of a Goldstone
boson. Unbroken supersymmetry would imply the ex-
istence of a scalar partner for this field, but this would
imply the existence of a flat direction, contradicting (1).
One can imagine loopholes to this argument, but these
conditions seem to be a good guide to finding theories
with DSB.

III. STRATEGIES FOR MODEL BUILDING

Having established the existence of models with
dynamical supersymmetry breaking, it is natural to try
and build realistic models of low-energy supersymmetry
incorporating it. There are two strategies one might
adopt. First, one might use these models as hidden sec-
tors for N =1 supergravity models. Aspects of this prob-
lem have been discussed elsewhere [9]. However, even if
this program is successful, it has little predictive power;
the superparticle spectrum remains a function of un-
known parameters, and the origin of degeneracy among
squarks and sleptons remains mysterious.

Alternatively, one can consider the possibility that su-
persymmetry is broken at comparatively low energies,
and that the breaking of supersymmetry is fed to the su-
perpartners of ordinary fields through gauge interactions.
The most straightforward (though perhaps not the most
clever) way to proceed is to take a model of the type dis-
cussed above with DSB, and gauge a global symmetry,
identifying it with one of the usual gauge interactions.
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The squarks, sleptons, and gauginos will gain mass
through loop effects. Previous efforts to realize this
scenario floundered on two problems. First, there is
often a problem with the asymptotic freedom of QCD.
Models with DSB and large enough global symmetry
groups to gauge an SU(3) subgroup typically contain
large numbers of triplets and antitriplets. For example,
in Ref. [4], the simplest such model had gauge group
SU(11) and gave rise to 11 new flavors of quarks, while in
a supersymmetric theory if one requires that QCD not
have a Landau pole below the unification scale of 10'¢
GeV at most four new flavors of quarks are allowed at
the weak scale.

A second problem is the existence of unacceptable
Goldstone bosons or axions. As we have noted, all
known examples of dynamical supersymmetry breaking
require the presence of a spontaneously broken global
symmetry, and with it a massless Goldstone boson. In
many cases, this boson is an axion, once QCD is taken
into account. In any case, the decay constant of this bo-
son is of multi-TeV order, and thus it is typically incon-
sistent with astrophysical limits.

Here we will describe a model which avoids both of
these problems. The dangerous Goldstone boson will
gain mass as a result of anomalies with respect to another
strong gauge interaction, known as “R color.” The prob-
lem of nonasymptotic freedom will be avoided by using a
slightly more complicated strategy than that described
above. The extra gauged symmetry in the “supercolor
sector” (i.e., the sector responsible for breaking super-
symmetry) will not be identified with the standard model
gauge interactions, but with R color. There will be some
additional fields carrying R color as well as ordinary
gauge quantum numbers, which will cancel R-color
anomalies and act as the “messengers” of supersymmetry
breaking. As a result, QCD will be only barely
nonasymptotically free.

One unpleasant feature of the model, which differs
from earlier models of DSB, is that it has classically flat
directions. The degeneracy is lifted by nonperturbative
effects, but a supersymmetric minimum appears at
infinite value of some scalar fields; the theory has no
ground state. However we can find a local minimum of
the potential which violates supersymmetry. For small
coupling, this minimum will be essentially stable against
tunneling. We will not worry here about how the
Universe might have found itself in this state.

IV. THE MODEL

A. Fields and Lagrangian

Let us now turn to the actual model. Apart from
SU(3) XSU(2) XU(1), the gauge group of the model is

SU(7)XSU(2)XSU(3), XSU(3)g . (4.1)

The SU(7) XSU(2) groups will be referred to as ‘“‘super-
color.” The SU(7) gets strong, and nonperturbative terms
in the superpotential generated by the SU(7), in conjunc-
tion with the D terms from the SU(2), will be responsible
for supersymmetry breaking. The matter fields of the
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model consist, first, of the usual quark and lepton
superfields, a pair of Higgs boson doublets, and a singlet
S. The latter particle will be necessary for achieving
SU(2) XU(1) breaking. To describe the additional fields
of the model, it is convenient, first, to ignore the standard
model fields and interactions, and impose a global SU(7)
symmetry. The usual gauge interactions will lie within
this SU(7). This procedure will allow us to turn immedi-
ately to the essential dynamical features of the model.
Later we will return to the realistic situation where the
global SU(7) symmetry is explicitly broken to an
SU(3) XSU(2) X U(1) gauged subgroup. Under

SU(7)XSU(2)XSU(3), XSU(3)x XSU(7)g ,
the additional fields are

0=(7,1,3,1,1), 0=(7,1,1,3,1),
(7,2,1,1,1), #=(7,1,1,1,1),

g=
d=(7,1,1,1,1),
X=(1,1,3,3,1), X(1,1,3,3,1), 4.2)
f=1,1,3,1,7), f=(1,1,1,3,7),
1=(1,2,1,1,1) .
The superpotential of the model is
W=A,0XQ +(A,/3)det(X3)+ Asqil
+(A,/3)det(X 3)+AsfXS . (4.3)

Note that the model is anomaly-free. When we return to
consider the ordinary SU(3) XSU(2) X U(1), we will sim-
ply embed this group in the standard way in an SU(5)
subgroup of SU(7). We will thus take f and f each to
breakup into a triplet, a doublet, and two singlets. The
coupling A5 will then actually represent four independent
parameters, which we refer to as A5%%",

We will suppose that SU(7) is the strongest group (i.e.,
the one with the largest A parameter), and that all of the
couplings in the superpotential are small. In this approx-
imation, the SU(7) sector of the theory is an example of
supersymmetric QCD with seven colors and five flavors.
Grouping the 7 and 7’s of the theory into fields @ and @,
this theory has flat directions of the form of Eq. (2.1) [it is
necessary to use the approximate SU(5)XSU(5) flavor
symmetry to bring these fields to this form]. Nonpertur-
batively as described above, a superpotential of the form

Wop =A% /(det®)' 2 (4.4)
is generated, where
=(0;0;) . (4.5)

For small couplings A;, we want to study the potential
W=W,+W, (4.6)

(and the D terms for the various groups). We expect that
for small A;, the minimum of the potential will lie at large
values of the fields, justifying this analysis. Provided
A; <<g, (the gauge couplings), we should be able to find
the minima by looking at flat directions of the D terms.
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Of course, the full theory does not have the SU(5) X SU(5)
symmetry used above, and so one must consider a more
general set of flat directions of the D terms. The struc-
ture of the complete potential is quite complicated, and
we will not be able to survey the entire field space. In-
stead, we will look for a local minimum of the potential
in a particular direction in the field space. This will be
described by the expectation values

a 0 0
0 a 0
o=1|0 0 a |=0, X=diag(x,x,x)
0 0
4.7)
00 0 0
00 0 0
00 0 0 h
q= b 0O , U= d ’ J: f ’ L= 0
0 ¢ e g
00 0 0
00 0 0
with
|FI2=1bl>—1dI?, lg|*=lc|*—le|?, s
|n]2=|c|>~b|? . .

We establish that there exist a local minimum of the po-
tential of this form. Note that this minimum leaves over
an SU(3) gauge symmetry which is a linear combination
of the SU(3),, SU3)g, and an SU(3) subgroup of SU(7).
Thus SU(3), known as R color, will subsequently also get
strong. There is an unbroken SU(2) subgroup of the
SU(7), which will play no role in the subsequent discus-
sion. The fields f, f, and X play no role in the dynamics
which break supersymmetry; but simply serve as
“messenger” particles which communicate supersym-
metry breaking to ordinary superfields.

The rest of the model, which we will refer to as the or-
dinary sector, just consists of the MSSM, without the bi-
linear uH  H, term in the superpotential (this can be el-
iminated by imposing a Z; discrete symmetry). We get
rid of this term because otherwise electroweak symmetry
breaking would require an unacceptable fine-tuning of u.
Instead, breaking SU(2) X U(1) will require the addition of
a gauge singlet S and vector like superfields D,D,L,L
transforming as (3,1, —1)(3,1,1),(2,1,1),(2,1,—1) un-

der the ordinary SU(3) X SU(2) X U(1) interactions.

B. Overview of symmetry-breaking in the model

Before going through the detailed analysis of the mod-
el, we summarize the basic features. Having established
that the minimum of the potential is of the form of Eq.
(4.7), one of our main goals is to determine the masses of
squarks, sleptons, and gauginos, as well as Higgs boson
particles. These will arise as a result of the gauge cou-
plings of the f and f fields. The scalar components of
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these fields, as well as the fields X, can gain mass at one
loop through graphs such as those shown in Fig. 1. It
turns out, that for a range of parameters, the mass
squared of these fields are negative. Minimizing the re-
sulting potential yields a VEV for X of the form

X =diag(x,%,%), f=F=0. 4.9)
The fields f and f receive an additional contribution to
their mass from the VEV of X. Below the scale of these
VEV’s, one has an unbroken SU(3) gauge theory without
matter fields at all [the S(3) gauginos gain mass at one
loop].

Ordinary gauginos gain mass through diagrams of the
type shown in Fig. 2. Squarks and sleptons gain masses
through diagrams of the type shown in Fig. 3. For a
range of parameters, these contributions can be shown to
be positive. Note that the masses of squarks, sleptons,
and gauginos depend in a simple way on their gauge cou-
plings. Squarks are generically heaviest, lepton doublets
and Higgs bosons are lighter by roughly a factor a,/a;,
and singlet leptons are lightest. In order that SU(2); be
broken, it is necessary that one Higgs particle obtain a
negative mass squared. This can occur for the Higgs bo-
son which couples to top quarks [5], as a result of the dia-
gram of Fig. 4. While this diagram is nominally one
higher order in the loop expansion, it is enhanced by the
fact that the squark masses are larger than the doublet
masses by a factor a;/a,, and by a logarithm, and can be
larger than the positive two-loop contributions. For a
range of parameters, as a result, the Higgs boson mass
squared can be negative. In this model, however, there is
no H H, term in the potential, so in order that there be a
suitable quartic coupling for the Higgs boson field, it is
necessary to include a singlet field, with couplings SH | H,
and S°. Furthermore, in order to obtain a sensible break-
ing of SU(2) X U(1) with masses for all the quarks and lep-
tons and without fine tuning it will be necessary to add
new vectorlike fermions carrying SU(3)XSU(2) X U(1)
gauge charges, which couple to the singlet and gain mass
from its VEV.

Finally, we have to worry about the various global
symmetries of the model. The vectorlike symmetries are
preserved at this minimum, but the U(l); symmetry is
broken, giving rise to an axion. This symmetry has no
SU(7) anomaly. However, the axion does get a mass from
the unbroken SU(3) R color, which is of the order of the
scale at which this group gets strong, squared, and divid-
ed by its decay constant. This mass can easily be of the

heavy gauge fermion Qa.x ':' \
H H
v .
R R \ /
11X AR S o .
heavy gauge
heavy gauge boson boson

_ FIG. 1. One-loop diagrams contributing to the masses of the
X, f, and f fields.

L

gauginos  \\ f,i
FIG. 2. One-loop diagrams contributing to the masses of the
gauginos.

order 10 MeV, so its production in stars can be adequate-
ly suppressed. There remain a number of cosmological
worries about this model; these include domain walls and
stable massive particles, and will be dealt with later, as
will the question of Fayet-Iliopoulos terms. We now turn
to a detailed discussion of each of these points.

C. Supersymmetry breaking

First, let us turn to the problem of minimizing the po-
tential. It is not hard to see that the minimum in the
direction of Eq. (4.7) cannot be the global minimum; the
global minimum has zero energy. At the classical level
the theory has a flat direction with

X =diag(x,0,0)=X , (4.10)
all other fields vanishing. Once one considers the nonper-
turbative piece of the superpositional, this direction is no
longer flat. However, it is possible to let X — o0, O — 0,
and the fields ¢, %, d, and L tend to zero in such a way
that the total energy tends to zero. Note first that for
large  x, the unbroken symmetry  is an
SU(2) XSU((2) XU(1). One Q flavor gains mass, as does a
(2,2) field from X. After integrating out massive states,
there is no dimension-four term in the superpotential for
the light @’s. In order to minimize the nonperturbative
contribution to the potential, then, one wants to let Q get
large (though not as fast as X), while the other fields get
smaller more slowly. For example, the scaling

O~x4~Q, g~x"Vi~u~d

gives an energy tending to zero as x /2. As explained in
the Introduction we will not worry about the global

FIG. 3. Two-loop diagrams contributing to squark, slepton,
and Higgs boson masses.
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. .5

FIG. 4. Loop correction to Higgs boson mass in the low-
energy effective theory, which gives negative contribution pro-
portional to the square mass squared.

structure of the potential and simply assume that
somehow the Universe finds itself in the vacuum of in-
terest, and does not tunnel out.

Let us turn to the problem of minimizing the potential
in the direction of Eq. (4.7). The problem is easiest to an-
alyze in the limit A3 <<A;<<A,. In the limit A;—0, the
auxiliary fields Fy and Fj should vanish. Fy=0 gives

x2=(A,/A,)a? 4.11)

while F;, =0 gives an expression for a in terms of det®:

a =1M AN T2 4.12)
where we have defined
a*detd=93 . (4.13)

Now one can plug this expression for @ into the remain-
ing terms in the potential:
2 2

+

2 2

ow

oW
+ |22
dq

ou

aw
ad

aw

al (4.14)

We can obtain the dependence of the VEV’s b —h on the
couplings A,, ..., A; by scaling arguments. A simple ex-
ercise gives

(byc,d,e, f,g,h)~Ay V4N 1601716 (4.15)

One can check that, for a finite range of parameters, the
minimum of the potential is indeed of this form, with an
unbroken SU(3).

For finite but small A, the relations

Fp=0, Fy=0, 4.16)

are not exactly satisfied. To determine the corrections,
we need to compute the shifts in the VEV’s @ and x to the
next nontrivial order in A;. Again, it is not hard to deter-
mine how these scale with couplings. The shift in aq, 8a,
can be determined by computing the a tadpole, dV /9a,
and dividing by the a mass squared. Using our scaling re-
sults above, one finds that

Sa ~A)\Z/l6}\%/4)\’1—21/16 .

8x is smaller by a factor V'A;/A,. We can estimate Fy
and F,, by writing
3*w *w
Fy= +
X 3aox ba ox?

5x (4.17)

with a similar equation for F,. Note that the second
derivatives here are just elements of the lowest-order

mass matrix. In the limit A, <<A,, one finds that Fy is
largest:

~ A2713/2495/69 —5/8
Fy~A2A3/29\37/6);

>>Fp~A2A)/ 203018 . (4.18)

Note that the spectrum of particles in the supercolor
sector is nearly supersymmetric. The breaking of super-
symmetry is represented by the small values of the F
components (small by powers of the couplings in the su-
perpotential), which give rise to small splittings within
the multiplets. The gauge bosons associated with the
broken SU(3); XSU(3), are also nearly supersymmetric.
The spectrum is simpler to work out if the gauge cou-
plings of these groups, g; and gy are identical; as we
have already remarked in the Introduction, this condition
must, in fact, be satisfied if the model is to be realistic.
The expectation value a is larger than that of x, so,
neglecting the x VEV there are two massive gauge bo-
sons, with mass squared g?a?, and (2g2+2g,g; )a? and
one massless eigenstate corresponding to the unbroken
SU(@3). If we assume g; <<g,, the former is the lighter
state; it is simply the linear combination

BF=(1/V2)(A}+ A}) . (4.19)

This hierarchy of VEV’s will be important when we es-
timate the loop contributions to various masses. At the
classical level there are many massless states, such as f,
f, and X. To determine whether these fields obtain ex-
pectation values, one needs to compute their masses.
These will arise from the one-loop diagrams shown in
Fig. 1. In the limit in which we are working, in which su-
persymmetry breaking is small, one can evaluate the
masses perturbatively in powers of Fy. This is con-
veniently done using supergraph techniques. The re-
quired diagrams are then indicated in Fig. 5. Because of
the hierarchy of VEV’s, it is not necessary to consider di-
agrams such as that of Fig. 6, with external X’s; it is also
not necessary to consider diagrams with external Fy’s.
To evaluate the diagrams it is convenient to choose the
supersymmetric analog of R, gauge [10]. In this gauge,
the gauge propagator is simply

fER f.iX

<F> <FE> <F> <FR>

£.X 18

11X

FIG. 5. Supergraphs contributing to the scalar masses. Solid
lines are chiral superfields; wavy lines denote gauge fields. X’s
denote vacuum insertions.
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<F>

FIG. 6. Examples of diagrams suppressed by powers of cou-
plings.

8*6,—0,)
A= T2 a2 (4.20)
p—My
The 6O integrations are trivially performed, and one ob-
tains for the scalar mass

g* FxF}

- 4.21)
167> M}

mi=—C€

@ is a group-theory factor which is easy to work out in
each case. For example, under the surviving SU(3), X
decomposes as a singlet, x* and an octet, x ¢, for these, @
equals £ and I, respectively. For the f and f fields, all of
which are triplets, @= 2.

We wish to determine the pattern of symmetry break-
ing at this stage. In particular, we will ask if the effective
potential has a local minimum at which SU(3) remains
unbroken; this requires that only the singlet x° obtain a
VEV. To investigate this, we need to determine the form
of the quartic terms in the potential, which arise from
two sources. First, there are the terms in the original su-
perpotential. In terms of canonically normalized fields,
this superpotential takes the form

Ay | x53 1

=-_ Lt .s a2+ a3 22

w 73 |3 2xx o(x%) |, (4.22)
where

X=x*/V3+V2x°T*. 4.23)

If this were the end of the story, it is easy to check that
the SU(3)-preserving extremum of the potential (includ-
ing the loop-generated mass terms) is unstable. If one
simply looks for an extremum with x°70, x“=0, one
finds that the octet masses are tachyonic.

However, this is not the whole story; there are addi-
tional tree level supersymmetric-breaking quartic cou-
plings in the effective low-energy theory which describes
the X fields. To understand this, consider the terms in
the potential of the full theory associated with the auxili-
ary D fields for SU(3), and SU(3);. These terms are non-
vanishing for X fields of the type we are describing
[remember that X transforms as a (3,3)]. If supersym-
metry were unbroken, this would be irrelevant at low en-
ergies. Integrating out the massive gauge multiplet, these
D terms would not appear (corresponding to the fact that
effects of small VEV’s for X would be canceled by shifts
of the massive fields). The cancellation of the D terms
would arise from the diagram of Fig. 7. In this diagram,
the exchange of the massive scalar in the gauge multiplet
(one of the superpartners of the massive gauge boson)

p
. %
% Q>
AN oS
~ ,'
A .
P ‘=
; <
. heavy N
L AN
NS &,
.

FIG. 7. In the supersymmetric limit, D terms in the potential
associated with broken gauge generators are canceled by ex-
change of the massive scalars in the vector multiplet.

precisely cancels the quartic couplings associated with
the D terms.

When supersymmetry is broken, however, this cancel-
lation is not complete. The scalars in the multiplet are no
longer exactly degenerate with the gauge bosons. As a
result, there is a quartic coupling remaining in the low-
energy theory. Even without a detailed computation, it is
easy to determine the sign and order of magnitude of this
coupling. Suppose, first that the gauge coupling was
zero. Assuming, as we have above, that the F terms all
have small VEV’s, there will be a nearly degenerate Gold-
stone supermultiplet, consisting of a Goldstone boson, a
light fermion, and an additional scalar particle. This sca-
lar will have a positive mass squared of order |A{F)|?,
where A is the coupling to the Goldstino; this is a conse-
quence of a famous sum rule. It is easy to check this in
simple examples. In the present case, this leads to a posi-
tive quartic coupling of the X fields.

Our remarks above can be summarized by the state-
ment that, in addition to the terms in the potential aris-
ing from the above superpotential, the potential contains
the supersymmetry-breaking terms

Veott = —mZlx*[?—=m2|x >+ (g} /2)y |x*|*|x7|? ,
where the last term arises from the incomplete cancella-
tion of the SU(3), and SU(3);, D terms, and is of order
|F|2/M*, where F is a typical F term in the supercolor
sector, while M is a typical mass. It is easy to see that,
for a range of parameters, the potential has a local
minimum at which

x2=3m?2/\}, x°=0, f=f=0. (4.24)

What does the theory look like at this minimum? The
SU(3) symmetry is still unbroken, but, due to the VEV of
x*, all of the fields which carry SU(3) quantum numbers
gain mass. [Note that the gaugino of the SU(3) gains
mass also at one loop.!] Thus, we have an effective pure
SU(3) gauge theory. This R-color theory is now quite
asymptotically free, and, depending on the precise values
of the SU(3), and SU(3); couplings, can get strong rather
quickly.

INote that, because both the scalar squared masses and the
gaugino masses arise at one loop, the gauginos are generically
lighter than the f, f, and x fields, and will contribute to the re-
normalization group evolution for a decade or so.
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The asymptotic freedom of R color is phenomenologi-
cally essential. It gets rid of a Goldstone boson produced
by the supercolor interactions. As we have noted earlier,
the theory possesses an R symmetry, explicitly broken by
SU@3); and SU(3); anomalies. This symmetry has an or-
dinary color anomaly and is spontaneously broken by the
supercolor sector, giving rise to a not very invisible axion
with couplings to ordinary quarks. In order to be con-
sistent with astrophysical bounds, this pseudo Goldstone
boson must gain a mass of order a few MeV, at least. The
mass of the axion is on the order of A% /A,. Since, as we
will see, supersymmetry breaking and SU(2) X U(1) break-
ing in the ordinary sector are only achieved at two and
more loops, we must have the supercolor scale be rather
large compared with the weak scale; A;~ 107 GeV. Thus
the scale A; of R color must be greater than ~ 100 GeV;
this in turn requires that the SU(3); » couplings be rather
large, but there is a finite range of g; ,gx for which this
condition is satisfied, and yet the couplings do not blow
up below Mp.

D. The “low-energy”’ spectrum

We now wish to ask about the spectrum of “ordinary”
squarks, sleptons, and gauginos. We will see that, in the
effective theory below the scale of the f, f, and X fields,
the gauginos gain mass at one loop, while squarks and
sleptons gain positive mass-squared at two-loop order.
The problem of SU(2) X U(1) breaking will be taken up in
the next section.

We first have to address another potential problem in
the model: the appearance of a Fayet-Iliopoulos D term
for hypercharge as we integrate out the heavy fields f and
f. Such a term is phenomenologically dangerous since, if
it is large, it could lead to very light squarks and sleptons,
or even squark VEV’s. Suppose g;7gg, and AL#AL.
Then the diagram of Fig. 8 leads, in general, to a nonzero
Fayet-Iliopoulos term. The relation A;=A¢ is renormal-
ized at one loop, and so we assume it does not hold. Thus
it is necessary to insist that g; =gy, to a rather high de-
gree of accuracy (roughly of order a /). If this were the
case, the full theory, ignoring ordinary quarks and lep-
tons, would possess a left-right symmetry which would
ensure the absence of a D term. Of course, any such sym-
metry is broken by the gauge couplings of quarks and lep-
tons, so one must ask how natural the relation g; =gy is.
First, note that radiative corrections to this relation will
arise only at high loop order. Second, recall that in string
theory, one typically has equality of various gauge cou-
plings at tree level. If that were the case here, the subse-
quent evolution of these couplings would induce only
small differences in g; and gg. Thus it does not seem im-
plausible to make such an assumption.

From now on, we will assume that g; and gy are equal,
and that any Fayet-Ilipoulos term is very small. We turn
to the computation of the gaugino and squark and slep-
ton masses. Again, we consider first the effective theory
below the supercolor scale. In this theory, the f and f
fields have soft supersymmetry-breaking corrections to
their masses. If we integrate out these fields, gauginos
will obtain mass at one loop from graphs such as those
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squarks, sleptons, Higgs boson

FIG. 8. One-loop diagram contributing to a Fayet-Iliopoulos
term in the effective theory.

shown in Fig. 2. These will lead to masses of order
a; (Fg)
" (X
Note the result that the gaugino masses are proportional
to their gauge couplings squared, just as in the usual
grand unified N =1 minimal supergravity models. This
result only holds when (Fg) is small compared with
(X). Otherwise gaugino masses depend on A% and A%
and for A{7A¢ need not satisfy the grand unified theories
(GUT) relations.

Squark and slepton masses will arise at two loops from
the diagrams shown in Fig. 3. These diagrams are loga-
rithmically divergent. The upper cutoff should be inter-
preted as the supercolor scale (if one wants to obtain the
subleading terms, it is necessary to “open up” the mass
insertions, computing three-loop diagrams including su-
percolor fields). It is not difficult to compute the logarith-
mic term. [In this computation, it is perhaps worth not-
ing that the separate diagrams exhibit a log?(A) behavior,
but the final answer only contains a single logarithm.]
One obtains

(4.25)

a;

MZ

2

8m2ln
f
mf

>

where Cp is the quadratic Casimir of the matter represen-
tation [e.g., 4 for color triplets, 3 for SU(2) doublets] and
Sm} is the supersymmetry-breaking mass shift of the f
and f fields; note that this quantity is negative.

The main features to note about this result are that it is
positive (so color and electric charge can remain unbro-
ken), and that the scalar masses, in this approximation,
depend only on gauge quantum numbers, so flavor-
changing processes are adequately suppressed. Also, the
squark and slepton masses are logarithmically enhanced
compared with the gaugino masses.

In summary, the superpartner spectrum in these mod-
els is computable, although unfortunately it depends on
several new coupling constants. However, assuming that
the superpotential couplings k’s'd are comparable, we can
make the following rough predictions for the squark,
slepton, and gaugino masses:

m,~V In(M?>/m})m, ,
R (4.26)
m~(g5/g3)m, ,

fﬁeN(g%/g%)mq ’
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where 7, is the mass of the (nearly degenerate) squarks,
i, is the mass of the slepton doublets, and 7, is the mass
of the slepton singlets. As we will see in the next section,
the weak scale is determined by a three-loop negative
contribution to the Higgs boson mass squared, which is
comparable to 7. Thus we expect /i, ~v=250 GeV,
which gives for the approximate size of the other scalar
superpartner masses 7, ~ 100 GeV, i, ~900 GeV. The
slepton SU(2) singlets could be within reach of the CERN
e e collider LEP II

E. SU(2) XU(1) breaking

In this section we turn to the problem of electroweak
symmetry breaking. At two loops, we have obtained pos-
itive masses for all of the scalar fields in the low-energy
theory. If SU(2)XU(1) is to break, at least one Higgs bo-
son field must acquire a negative mass squared. For this
to happen, a three-loop negative contribution to the mass
squared must be larger than the two-loop contributions.
As pointed out long ago [5], in a model such as this one it
is easy to obtain a negative mass squared for the Higgs
boson which couples to the top quark. The point is that
the loop corrections of Fig. 4, while suppressed by a fac-
tor 3g?/(16m%) are enhanced both by a logarithm of
m } /m 2 and by the fact that the top squark mass itself is
proportional to a? rather than a?, as for the lowest-
order Higgs boson mass squared. Thus for top quarks in
the presently allowed mass range, this three-loop graph
can give a negative contribution to the Higgs boson mass
squared which is larger than the two-loop positive contri-
bution. To see the logarithmic enhancement, it is con-
venient to study the effective theory below the mass scale
m of the messenger particles. In the low-energy theory,
the graph in Fig. 4, which is proportional to the large
squark mass squared /7 2 causes the mass squared M 2 of
H, to run. (There will be other contributions to the
renormalization-group equations in the effective theory,
e.g., from trilinear scalar terms and gaugino masses, but
these are smaller.) M? is positive at m r» and decreases
rapidly. If M? becomes negative at a scale above i, then
H, will get a VEV. However, in order to give masses to
all quarks and leptons, both H; and H, must get VEV’s.
The symmetries of the model prevent the generation of a
m?3,H H, term in the potential. Furthermore, it is not
easy to obtain a negative mass squared for H,, since, in
general, the bottom quark Yukawa coupling, g,, is not as
large. One can, of course, try to choose couplings so that
(H,) <<(H,). In this case the bottom quark Yukawa
can be large. However, an examination of the
renormalization-group equations shows that this requires
a certain amount of fine-tuning (better than 10%). Even
if H, does obtain a VEYV, it is necessary to add additional
fields to obtain suitable breaking of SU(Q2)XU(1). As is
well known, in the MSSM, which only has soft supersym-
metry breaking, if H; and H, both obtain negative mass
squared, the potential is unbounded below. The present
case is somewhat different because not all the
supersymmetry-breaking terms induced in the effective
theory by radiative corrections are soft; however, the

nonsupersymmetric dimension-four terms are much
smaller than the supersymmetric terms and do not help
give an acceptable symmetry breaking. Moreover, in the
absence of an H H, coupling, the theory has a Peccei-
Quinn symmetry and one obtains a standard axion. To
get around this we add a singlet field, with couplings

Ws=XASH H,+(X,/3)S> . 4.27)

In order to understand the absence of other terms, one
can invoke a discrete symmetry. The terms in (4.27) gives
rise to an effective quartic coupling of the Higgs boson
fields, which prevents the runaway behavior. So one
might hope that with this modification, with a negative
mass squared only for H;, we could obtain a sensible
breaking of SU(2) X U(1).

The S scalar will obtain a mass at one higher order in
the loop expansion than the Higgs boson fields, and trilin-
ear terms involving the scalar are also of higher order.
So, to get a feeling for what may happen, we simply ex-
amine the potential

V=—m?H|*+m?H,*+(g?/8)(H|r°H,+H}r°H, )
+(g2/8)(HH,—HIH,*+|X,|%(|H,S|*+ |H,S 4%
+ K€ H  Hy; +X,8%% . (4.28)

However, a detailed study of this potential shows that
there is always a scalar field with a mass less than about
40 GeV. In fact, as it stands, this potential possesses a
global symmetry which leads to a massless pseudoscalar.
Corrections to the potential, such as the nonsupersym-
metric cubic terms, will break this symmetry, and give
the light pseudoscalar a mass of order a few GeV.

This situation is unacceptable, given the strong LEP
limits on the decay Z —sscalar+pseudoscalar. Prelimi-
nary estimates of further radiative effects indicate that
these will not help much. So we need to consider some
further modification. The simplest possibility seems to be
to add a set of vectorlike quarks. In order to maintain
the successful grand unification of the SU(3)
XSU(2)XU(1) coupling constants, we can also add vec-
torlike leptons. We take these fields to have the quantum
numbers of a 5 and 5 of ordinary SU(5). Denote the cor-
responding quarks by D and D. These can couple to the
S field, SDD, and the D field can couple to the Higgs
field, H,, H,qD, where g is an ordinary quark doublet
field. If these additional couplings are large enough,
several things will happen. First, the S field will also ob-
tain a large negative mass squared at one loop. It can
thus obtain a large expectation value, giving rise to a
mass for the fermionic components of the D and D fields
(and the corresponding leptons). Second, the field H,
could obtain a large negative contribution to its mass
squared at one loop. Also, the large S VEV, in conjunc-
tion with the VEV of H,, will induce a VEV for H,. So
with this modification, a sensible breaking of SU(2) X U(1)
can arise. The parameter space of this model is quite
large, and we will not attempt a complete exploration
here. However, it is clear that there are finite ranges of
parameters for which a sensible spectrum is obtained,
with all the scalars heavier than the Z. There is generi-
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cally a light pseudoscalar, with mass in the GeV range,
which is mainly a gauge singlet. Note that with this
minimal set of extra fields, QCD is no longer asymptoti-
cally free above the scale of the f and f fields. However,
it is almost asymptotically free, and does not hit its Lan-
dau pole until extremely high energy.

One potential problem with this scenario is that the
charge 1 quarks in g will mix with those in D, giving rise
to flavor-changing neutral currents (FCNC’s) involving
the Z. However, S receives no positive two-loop contri-
bution to its mass squared, and will get a larger VEV
than H,,. Thus the D will be heavier than the weak
scale, which greatly suppresses its mixing with the light d
and s quarks. The necessary suppression of the most
severe FCNC, K; —utu™, is easily achieved by requir-
ing that all superpotential couplings of the lightest two
families be smaller than about 10™!, including couplings
of the form H zquﬁ. This assumption is consistent with
the small masses for these two families and is natural, in
the sense of ’t Hooft [11], since a chiral flavor symmetry
is restored in the limit that all couplings of the lightest
quark flavors vanish.

F. Conclusions

We have seen that it is, in fact, possible to construct
models with dynamical supersymmetry breaking at rela-
tively low energy. We have exhibited a model in which
the following occurs.

(a) SU(2) X U(1) is properly broken.

(b) All superpartners have adequate, calculable masses.

(c) There is enough degeneracy among quark and lep-
ton masses to assure absence of flavor-changing neutral
currents. This occurs naturally as a result of the acciden-
tal flavor symmetry of the gauge interactions.

(d) There is no new source of CP violation in the low-
energy theory, explaining the absence of large particle
electric dipole moments.

(e) There are no dangerous axions or Goldstone bosons.

(f) All couplings are small up to very high energies.

(g) It is still possible to unify SU(3) X SU(2) X U(1).

(h) The superpotential is the most general cubic poten-
tial allowed by the gauge symmetries and is the most gen-
eral consistent with a set of (anomalous) discrete sym-
metries.

(i) The gravitino is light, of order a keV, and hence pro-
vides no cosmological problems [12].

The model we have described should be viewed as an ex-
istence proof. Probably the most serious drawback of
this particular model is that the potentially dangerous ax-
ion only gains adequate mass if a certain gauge coupling
is in a particular range (the lower limit set by the mass;
the upper limit set by the requirement that the gauge
coupling not blow up too soon). It would be nice to find a
more natural model which does not suffer from this
difficulty.

Some features of the model appear to be generic. First,
the squark and slepton masses are, to a good approxima-
tion functions only of their gauge quantum numbers.
Second, the need for additional fields in order to break
SU(2) XU(1) is almost certainly general. The choice we

have described here, of an additional singlet as well as a
set of vectorlike fermions, is the simplest possibility we
have found.

Finally, we would like to comment on some cosmologi-
cal issues and problems with this model. Perhaps the
most serious potential problem is one of domain walls.
The model possesses several spontaneously broken
discrete symmetries. Fortunately, all of them possess
anomalies with respect to one of the strong gauge groups.
The corresponding domain walls will thus disappear by
the mechanism of Preskill et al. [13].

In general, however, one might expect nonanomalous
discrete symmetries to arise (this occurs, for example, in
the model without the mirrors). However, it is not clear
that the problem is severe. Indeed, the clue to a solution
lies in the solution of Preskill ez al. These authors noted
that, even if the scale of the spontaneous breaking is 10’s
of GeV, the tiny lifting of the degeneracy (12 orders of
magnitude smaller) by QCD is enough to cause collapse
of the walls, simply because the expansion of the
Universe is so slow. Suppose, then, that one has some
discrete symmetry without anomalies in the low-energy
theory. If this summary is broken by nonrenormalizable
terms, this will lead to a breaking of the degeneracy.
Even if this effect is quite small, it can be sufficient to get
rid of the domain walls. For example, dimension-five
operators with coefficients slightly larger than 1/M, or
dimension-six operators associated with a scale of order
10° GeV or smaller should be enough. This solution to
the domain-wall problem can be relevant quite generally,
and has antecedents [14] in earlier work on axions and
technicolor.?

In these models, one must also study the possibility of
stable or nearly stable massive particles, such as the f fer-
mions. Again, it may be necessary to invoke higher di-
mension operators to allow these to decay and avoid
cosmological problems. This problem may not be gener-
ic, but specific to the model under study.

In any case, we believe that models with low-energy
dynamical supersymmetry breaking in the visible sector
are a plausible alternative to more conventional hidden
sector supergravity models. They solve some of the most
troubling problems of the hidden sector models, and they
provide a dynamical solution of the hierarchy problem.
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ZRecently it has been discussed for spontaneous breaking of P
and CP symmetries [15]. However, in the cases which have
been studied, there are low dimension operators in the low-
energy theory which can break the symmetry. Moreover, the
must plausible context for spontaneous breaking of these sym-
metries is in theories in which these symmetries are gauge sym-
metries, in which case there is no explicit breaking of the sym-
metry [16].
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