PHYSICAL REVIEW D

VOLUME 48, NUMBER 3

1 AUGUST 1993

Low-energy grand unification with SU(16)

Biswajoy Brahmachari
Theory Group, Physical Research Laboratory, Ahmedabad 380009, India
(Received 20 March 1992)

We study the possibility of achieving a low unification scale in a grand unification scheme based on the
gauge group SU(16). Baryon number symmetry being an explicit local gauge symmetry here, the gauge-
boson-mediated proton decay is absent. We present in detail a number of symmetry-breaking patterns
and the Higgs field representations giving rise to the desired symmetry breakings and identify one chain
giving low-energy unification. These Higgs field representations are constructed in such a way that
Higgs-boson-mediated proton decay is absent. At the end we indicate the very rich low-energy physics
obtainable from this model which includes quark-lepton ununified symmetry and chiral color symmetry.
In brief some phenomenological implications are also studied.

PACS number(s): 12.10.Dm, 11.15.Ex, 11.30.Ly

I. INTRODUCTION

Grand unified theories (GUT’s) [1] offer the possibility
of a simple, but unified description of strong and elec-
troweak interactions. Typically in these models at some
high energy all the interactions arise out of a single La-
grangian which is locally invariant under the gauge trans-
formations of a single simple Lie group called the
unification group. A large spectrum of GUT’s are pro-
posed in the literature which is broadly classified by the
unification group. In the minimal SU(5) model all in-
teractions unite at a single step at an energy around 10'*
GeV, therefore predicting the absence of any new physics
between the standard electroweak breaking scale (M)
and the unification scale (M) while the SO(10) model
admits intermediate breakings of symmetry. On the oth-
er hand there are models which are inspired by super-
string theories; one of them postulates the exceptional
group Eg as the unifying group. This specific model pre-
dicts at least 12 exotic fermions on top of the 15 standard
fermions. All these theoretically very attractive models
have at least one common prediction, namely, the decay
of proton.

There has been a desperate search by the experimental-
ists to see the signature of proton decay for the last de-
cade and a half. Contrary to theoretical beliefs proton
decay has not been discovered. At present the lower lim-
it of the half-life of a proton is a whopping 10%? years.
The nonobservation of proton decay has made all the
above models a little less attractive.

At this juncture one interesting possibility is that
unification is achieved at a low-energy scale which means
that the big desert of particle physics between the elec-
troweak scale and the unification scale becomes small but
other experimental constraints including that on the life-
time of proton remains satisfied. A grand unification
scheme based on SU(16) as the unification group offers
such a possibility. It is worth noting here that due to the
low unification scale such models are free from the prob-
lems of grand unified monopoles [3].
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Earlier works on low-energy unification in GUT’s con-
sidered SU(15) as the unification group [4]. Here we ex-
tend the idea to the left-right-symmetric version of such a
theory. We show that retaining all the good features of
SU(15) we can also incorporate left-right symmetry in in-
termediate stages. Unlike the SU(15) GUT here lepton
number is a local gauge symmetry which may survive to
a low-energy scale. A right-handed neutrino can be ac-
commodated naturally as all the fermions transform in
the fundamental representation of SU(16).

This paper is structured as following. In Secs. II and
IV we give the symmetry-breaking chains and the Higgs
field representations required for the breakings of symme-
try. In Sec. III we present some mathematical prelim-
inaries useful for the calculation of the mass scales. In
Sec. V we calculate the mass scales using the renormal-
ization group equations. In Sec. VI we study some phe-
nomenological consequences of this model and in Sec.
VII we state the conclusions. In the Appendix we give
some group theoretic essentials.

II. SYMMETRY BREAKING AND HIGGS FIELDS

To achieve low-energy unification we propose a num-
ber of symmetry-breaking chains. At the level of highest
symmetry the theory is invariant under the gauge group
SU(16). At and above this level the coupling constant is
that of the group SU(16). With the decrease in energy,
the group goes through a number of symmetry breaking
phases, and the theory becomes least symmetric at the
present energies with the residual symmetry of SU(3)
color and the symmetry of electromagnetic interactions.
It is noteworthy that the baryon number symmetry
remains exact up to a very-low-energy scale of a few TeV.
This makes the proton stable in the sense that the gauge-
boson-mediated proton decay is absent. Interestingly the
completely ununified symmetry group of the quarks and
leptons also appears at a low-energy scale together with
the chiral color symmetry. The appearance of this group
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at a comparatively low scale makes this model worthy of
phenomenological studies [10]. In this section we illus-
trate one chain in some detail to draw attention to the
underlying group theoretic points. In Sec. IV we shall
consider more possible chains before finally going to cal-
culate the symmetry breaking scales.

MU
SU(16)—G[SU(12) XSU(4)"]

Ml
—G[SU(6); XSU(6)g XU(1), XSU(4)]
M.

M
M

M5

—G5[SU(3), XSU(2);, XU(1)p XU(1),]
Mg

—G4[SU(3), XSU(2); XU(1)y]

MZ

—G4[SU(3), XU(1),,] -

Here the superscript g or [ denotes that quarks or lep-
tons have a nontrivial transformation law under these
groups and the subscripts L and R mean so for the left-
and right-handed fermions. The subscript ¢ stands for
the color gauge group of QCD.

In a previous paper [5] we have shown that in an
SU(15) GUT the effect of Higgs bosons plays a significant
role in the evolution of the coupling constants with in-
creasing energy and hence on the values of the mass
scales. This is due to the presence of high-dimensional
Higgs fields required to obtain the desired symmetry-
breaking pattern. The influence of the Higgs fields on the
evolution of coupling constants can be so serious that
they can alter the symmetry-breaking pattern altogether.
In the SU(16) GUT the symmetry-breaking pattern is
very similar to that of its SU(15) counterpart. So in the
SU(16) or in the SU(15) GUT’s the Higgs effects must be
taken seriously. Here we shall consider the Higgs fields
required to obtain the breaking chain and their contribu-
tion in the renormalization group equations in detail.

The Higgs structure is similar to that we proposed for
SU(15) GUT. We denote 1" as the totally antisymmetric
nth-rank tensor and 1”1 as the representation which has
m and n vertical boxes in the first and second columns of
its Young’s tableau. For the transition from the group
G, to group G, the G, singlet component of the Higgs
field should acquire vacuum expectation value. Turning
to the specific case of SU(16) we note that at the scale M,
the breaking can be achieved by giving the vacuum ex-
pectation value to the SU(12) X SU(4) singlet component
of 1*. Using the exact same procedure we see that break-
ing at the scale M, can be done by 1!*1, which leaves
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Breaking chain 1

Here at first we give the breaking chains that can give
rise to the standard model groups SU(3). XSU(2),
XU(l)y. We note here that there can be in general a
number of chains of descent to the standard model:

2
—G,[SU(3), XSU(2)§ XSU(6)x X U(1), XSU(4)']
3
—G;4[SU(3), XSU(2)] XSU(3)x X U(1)% XU(1)5 XSU(2)5 XSU(2)k XU(1)kP]

4
—G,[SU(3), XSU(2)§ XSU(2), XSU(3)g XU(1)x X U(1); XU(1)']

U(1)p unbroken. At the scale M, the breaking of SU(6),
to its special maximal algebra requires a somewhat large
dimensional Higgs field representation. We use the
14 144-dimensional Higgs field 1'#12 to break this group.
As a passing comment we note here that this Higgs field
will contribute significantly to the B functions of the re-
normalization group equations and make its presence
strongly felt in the determination of the mass scales. The
group SU(4)' can be broken by a Higgs field which trans-
forms as a 15-plet under SU(4)! and which is contained in
255 under SU(16). At the stage M, the breaking of
SU(6)g to SUB)g XU(1)g is a bit complicated. 255
breaks SU(6); to SU(3) XSU(3) X U(1); and, subsequently
the two SU(2); groups of the quark and leptonic sectors
respectively are glued by 1'#12. The breaking of the lep-
ton number local gauge symmetry U(1)*P can be achieved
by either 16 or the two index symmetric Higgs field of di-
mension 136. In the first case it carries a lepton number
of one unit and in the second case it carries that of two
units. We shall see that the choice of specific Higgs field
shall give interesting difference of physics in the context
of neutrino oscillations. At the scale My the breaking is
done by the 1* Higgs field, which is 1820-dimensional.
The baryon number is broken by either 1° or 1%. In both
the cases we get interesting physics. As an example in
the first case we get processes where baryon number
changes by 3 units and in the second case it changes by 2
units. It is well known that to give masses to the fer-
mions, the vacuum expectation value has to be given to
the component (1,2, —1) which is contained in either 1?
or 11. These Higgs-field representations are summarized
in Table I.
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TABLE 1. Higgs fields required for the breaking chain 1.

suie G G, G, G, G, G G
1820
255 (143,1)
14144 (4212,1) (189,1,0,1)
255 (1,15 (1,1,0,15) (1,1,0,1,15)
255 (143,1)  (1,35,0,1) (1,1,35,0,1)
14144 (4212,1)  (1,189,0,1) (1,1,189,0,1)
136 (1,10)  (1,1,0,10) (1,1,1,0,10) [1 1,1,0,0,1,3, ‘f ’
16 L4 (1,104 (1,1,1,04) [1,1,1,0,0,1,2,4
V'8
- - 1
1820 (66,6)  (6,6,0,6) (3,2,6,0,6) 3,2,3,-——,0,2,2,0 3,2,3,-——,0,2
{ V12 \/ V2 ‘
3 — 3 2 3 2 3 1
4368(1% (220,6) [1,20,—>=,6 | |1,1,20,—2=,6 | [1,1,1, ——, —=,1,1,-—= | [1,1,1, 1,- 1,1, —— - ——
2V’ } 2V’ ” V12 2\/6 SH v 12" 2V’ [ 2v'6’ V24
- - = 1 1 1. ¥
136  (78,1)  (6,6,0,1) (3,2,6,0,1) 3,2,3,——,0,1,1,0 3,2,3,75,0,1,0 1,2,0,— | [1,2,-—v 2
| V12 ( V24 ( 27 %
Let us now turn our attention to the group theoretic G,— (1,1,3,p,n,0)+(1,1,3, —p,n,0)

transformation properties of the fermions under the
different symmetry groups in the symmetry breaking
scheme. A minimal left-right-symmetric theory should
have at least one right-handed neutrino (vz) on top of
the standard twelve quarks, which includes three left-
handed doublets and six right-handed singlets under the
weak interaction gauge group SU(2),, and three leptons,
namely one left-handed doublet and one right-handed
singlet. At grand unification energies and above these
sixteen fermions should transform under some represen-
tation of the unification group. As a passing comment
here we state that this requirement makes SU(16) a very
natural choice of the unification gauge group, which has
a 16-dimensional fundamental representation. In the
model the fermions transform under the fundamental
representation of SU(16). Now as the energy becomes
lower the symmetry breakings occur and the transforma-
tion properties of the fermions change with each symme-
try breaking taking place. In the following we summa-
rize these transformation properties. We use the notation
that (m,n) is a representation which transforms under
the semisimple group SU(M)XSU(N) as an m plate un-
der the former group and as an n-plate under the later
group:

SU(16)— 16

G— (12,1)+(1,4)

G,— (1,6,n,1)+(6,1,—n,1)+(1,1,0,4)

G,— (1,1,6,n,1)+(3,2,1,—n,1)
+(1,1,1,0,4)

G,— (1,1,3,p,n,1,1,00+(1,1,3, —p,n,1,1,0)
+(3,2,1,0,—n,1,1,0)+(1,1,1,0,0,1,2,m)

+(1,1,1,0,0,2,1, —m)

+(3,2,1,0,—1n,0)+(1,1,1,0,0, —21/Zm)
+(1,2,1,0,0,4/2m)+(1,1,1,0,0,0)
Gs— (3,1,n,n)+(3,1,n,—n)+(3,2, —n,0)
t(l,2,0,n)+(_1,1,o,—2n)+(1,1,0,0)
G¢— (3,1,—2K)+(3,1,1K)
+(3,2, 11<)+(1 1K)+(1 1,—1K)
+(1,1,0) . (1)
Here the U(1) normalizations are defined in terms of
n__l_
2v'6 ’
1
2v2
—_1
P=35
K=v%

We know that in the electroweak breaking scale M the
generators of electromagnetic symmetry group U(1),,
arise as a linear combination of the generator of the U(1)
part of the weak isospin group SU(2); and that of the
weak hypercharge U(1)y by the equation

Q=T}+Y. )

Let us call this equation the U(1) matching condition at
the scale M,. Similarly, at the various symmetry break-
ing scales in the above breaking chain we have used
different matching conditions for the groups. These
matching conditions are stated below.

At the scale M, the lepton-number symmetry breaks as
the generator of U(1)P and the diagonal generator of
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SU(2)k mix with each other in the following way to gen-
erate the group U(1)":

Y'=1/1T3 +/2y" . (3)
R
At the scale M5 U(1); and U(1) break to make U(1),:
Y,=v1v,+y1Y'. @)

At the scale M, the baryon number ceases to be a lo-
cal gauge symmetry and conventional hypercharge ap-
pears from the linear combination of U(1)z and U(1),:

Y=—vV5Y =V %Y, - 5)
IIT. MATHEMATICAL PRELIMINARIES

In this section we briefly touch on two more
mathematically involved topics. To begin with we note
that the generators of SU(16) and that of the standard
model groups cannot be normalized in the same way. We
proceed further in the section by giving a short discussion
of the process of calculating the contribution of the Higgs
fields to the B functions. Let us fix all generators of
SU(16) so they are normalized to 2. In that case at the
standard model energies the generators of SU(3). and
SU(2); automatically become the generators of SU(16).
In contrast the generators of U(l)y are normalized to 1.
So in the renormalization group equations we have to
multiply the B function corresponding to the U(1), group
by the appropriate factor of 4. Similarly it is easy to see
that all other U(1) groups in the symmetry breaking
chain have to be multiplied by 4. Turning to the non-
Abelian groups it can be checked that the group SU(2)§
in all stages is normalized to 2; hence, to treat it at par
with all other groups one has to multiply the B function
corresponding to this by a factor of %. SU(3), and
SU(3); in all the stages are normalized to 1; hence, one
finds the aforesaid factor to be 2. To complete the discus-
sion on the normalization factors we note that all other
groups are normalized to 1, hence the relevant factor is 4.

At this point let us turn our attention to the expression
of the B function [b,;(N)] for the group SU(N):

1
(47)?

For U(1) groups N vanishes. Here n, denotes the number
of families of fermions and T(R) denotes the contribu-
tion of the Higgs fields which transform nontrivially un-

b(N)=—

[UN—1T—%n,]. (©6)

der the group under consideration. To calculate T we
have followed the following sum rule [9].

Suppose R; and »; (i=1,2,...) are different represen-
tations of a group SU(XN), which when vectorically multi-
plied satisfies the relation

RIXRZ:E r; . (7)
i=1

Also, for the representation of dimension r, the contribu-
tion to the renormalization group equation is T(R).
Then,

T(R;XR,)=R,T(R,)+R,T(R,)=T3 T(r,). (8

i=1

To use these equations one uses the following information
to start with:

T(N)=1,
T(N?>—1)=N,
N(N—1) | N-—2
T 2 }_ 2 >
T N(N+1) | _N+2
2 2
T(1)=0.

As an example consider 3 and 3 representations of
SU(3). When vectorically multiplied they give

3X3=1+8 (9)
so, using the sum rule,

T(8)=3T(3)+3T(3)—T(1)=3. (10)

IV. OTHER PATHS TO THE STANDARD MODEL

We have already noted that there can be a number of
paths to the standard model groups starting from the
unification group SU(16). Let us consider here two typi-
cal chains of descent. In the first case (chain 2) here we
shall break the U(1) groups as low as possible. It is in a
sense one extreme case as the B function coefficients for
the U(1) groups are very small in magnitude compared to
those of the other groups (the eigenvalues of the Casimir
operator vanish).

Breaking chain 2
MU
SU(16)— G [SU(12) XSU(4)']
Ml
—G[SU(6), XSU(6)g XU(1)z XSU(4)"]
M

M,

2
—G,[SU(3), XSU(2)§ XSU(6)x X U(1)z XSU(4)]

— G,[SU(3), XSU(2)f XSU(3)x XU(1)% XU(1)g XSU(2)} XSU(2)% XU(1)*P]
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M4

—G,4[SU(3), XSU(2)§ X U(1)% XU(1)z XSU(2)} XSU(2), XU(1)kP]

MS

—G5[SU(3), XSU(2)§ XSU(2)L, X U(1)§ XU(1)5 X U(1)k XU(1)eP]

M6

—G¢[SU(3), XSU(2), XU(1)y]

MZ

—G;[SU3), XU(1),p]

Note that all the U(1) groups remain ununified up to the scale M. At that scale they merge together to give the fa-
miliar hypercharge of the standard model. At the scale M the matching condition is

Y=—vEN-VE- VY- VEY. ay
Another interesting possibility is to break SU(16) via the left-right symmetric group of Pati and Salam [2]. The low-
energy phenomenology of the Pati-Salam group is widely studied. So it will be interesting to see how low the intermedi-
ate scales can come down to so we can make some concrete predictions of the model in view of the oncoming experi-

ments. Hence in the second chain that is discussed here (chain 3) the left-right symmetric group SU(3), XSU(2),
XSU(Q2)g XU(1)p_, will be kept as low as possible.

Breaking chain 3

MU
SU(16)— G [SU(12) X SU(4)"]

Ml
—G,[SU(6), XSU(6)x XU(1), XSU(4)']
M

M,

2
—G,[SU(3), XSU(2)§ XSU(6)g XU(1)z XSU(4)']

—G4[SU(3), XSU(2)] XSU(3)x XSU(2)% X U(1), XSU(4), ]

M,

—G,4[SU(3), XSU(2)§ XSU(2)% XU(1)p XSU(2)} XSU(2)k XU(1)eP]

M

—G5[SU(3), XSU(2) !X SUR)% T 'XU(1)5_, ]

M6
—Gg[SU(3), XSU(2), XU(1)y]
MZ

—G,[SU(3), X U(1)

em] N

We notice that U(1)5_; group is formed at the scale M
when baryon number symmetry and lepton number sym-
metry are broken together at the same scale. The match-
ing condition is

Yp_ 1=V 1¥z—/3Y"P. (12)

At the scale Mg the generator of the group U(1)z_,; and
the diagonal generator of the right-handed SU(2) group
form a linear combination to generate the conventional
hypercharge:

Y= —VIT VY 1

Applying principles similar to those we used for calculat-
ing the Higgs structure for the first breaking chain, we
can calculate the Higgs fields required to break SU(16) in
the fashion of chain 1. The essential difference in chain 2
is that the breaking of SU(2)} to U(1)k, which can be
conveniently done by 255 which has a component (1,15)

f

under G, and at the scale My the four U(1) groups are
glued by a combination of Higgs fields 1* and 1°. The
breaking chain 3 is much more symmetric and simpler
too. The Higgs fields that we require to break the chain
are also less complicated. To break the left-right symme-
try group we need the Higgs fields (1,1,3,—1/3),
(1,2,2,0), (1,2,2,0), and (1,1,3,\/_%) which can be easily
embedded in the group G in the representations (143,6),
(1,15), and (78,1) and hence in SU(16). The details of the
Higgs fields required for the chains 2 and 3 are given in
Tables IT and III.

V. MASS SCALES

To evaluate the mass scales we use the standard pro-
cedure of evolving the couplings with energy [7]. The en-
ergy dependences of the couplings are completely deter-
mined by the particle content of the theory and their cou-
plings inside the loop diagrams of the gauge bosons. This
is expressed by the renormalization group equation. The
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TABLE II. Higgs fields required for the breaking chain 2.
su(e) G G, G, G, G, Gs Gg
1820
255 (143,1)
14144 (4212,1)  (189,1,0,1)
255 (1,15) (1,1,0,15) (1,1,0,1,15)
255 (143,1) (1,35,0,1) (1,1,35,0,1)
14144 (4212,1)  (1,189,0,1) (1,1,189,0,1)
1820 (495,1) (IS,E,O,I) (6,1,E,O,1) (6,1,6,0,0,1,0,0)
255 (1,15) (1,1,0,15) (1,1,1,0,15) (1,1,1,0,0,1,3,0) (1,1,0,0,1,3,0)
- - = 1 1 1 1
1820 (66,6) (6,6,0,6) (3,2,6,0,6) 3,2,3,—=,0,2,2,0 1,2,——,0,2,2,0 1,2,2,——,0,-=,0
[ 4V [ V2 [ Vil 2
3 5 3 1 1 3 1 3
1820 (220,1) |1,20,—=,1 1,1,20, ——, L,,Ll,-——,—=,1,1,0| |1,l,-——,—=,1,1,0| |1,1,1,- ——,0,0
2v'6 ] 2V6 ] [ Vi’ 21/6 V12’ 2v'e V2a’ 2V }
560 (664)  (6,5,04) 32804  [323-—=021—=| (L2-——,021,—2 | [1,2,2-— 00—
’ Yy y ey E it ] ‘/I— “/8 » &y ‘/'1—2'7 » &y !‘/8 YLy &y ’\/12’ ’ ”\/8
_ _ 7 1 1 13
136  (78,1) (6,6,0,1) (3,2,6,0,1) [3 2,3, ‘/_ —,0,1,1,0 (3,2,3, 12,0,1,0 ‘1,2,0, V24 ] [1,2, 2\/20
one-loop RG equation is given by the equation given with each symmetry-breaking chain, one can relate
the SU(16) coupling constant agy s, With the standard
p—d——a(#)——-zbaz(#) , (14) model couplings as., a,;, and a,y at the scale of the
u© mass of the Z particle M,. At this point let us remember
where that there are three quark doublets and one leptonic dou-
2 blet under the group SU(2), in the standard model;
a—f— . (15)  hence, in the evolution of coupling a,; the quark and
m leptonic groups SU(2)§ and SU(2), do not contribute
The B-function coefficients are already defined. Now, us- equally to the standard model group SU(2),; instead,
ing the above information and the matching conditions they contribute with a relative factor 3.

TABLE III. Higgs fields required for the breaking chain 3.

Su(16) G

G, G, G, G, Gs G

1820

255 (143,1)
14144 (4212,1) (189,1,0,1)
14144 (4212,1) (1,189,0,1) (1,1,189,0,1)

255 (1,15) (1,1,0,15) (1,1,1,0,15) (1,1,1,1,0,15)

1820 (495,1) (15,15,0,1) 6,1,15,0,1) (6,1,6,1,0,1)

1820  (66,6) (6,6,0,6) (3,2,6,0,6) (3,2,3,2,0,6) (1,2,2,0,2,2,0)

3 3 3 1
212 72,4 70,1, 4 1,2,1,-—=,4 1,2,1,1,——,4 1,2,1,-—=,2,1,-—=
121 (572,4) ‘/~ V6 2V'6 2V'6 V'8
5 —
e (1436 (1,35,0,6) (1,1,35,0,6) (1,1,1,3,0,6) L1301 ] (L1347
_ - = 1 5 1 1 1. /3
—— 1 3,2,3,—-,0,1,0 1,2,0, —= L,2,-> 55

136 (78,1) (6,6,0,1) (3,2,6,0,1) 3,2,3, ‘/12,0,1, ,0 12 vV ] ‘ 2\/20]
11 (1,15) (1,1,0,15) (1,1,1,0,15) (1,1,1,1,0,15) (1,1,1,0,2,2,0) (1,2,2,0 1,2, ~\/20 ]
M3 (143,6) (35,1,0,6) (1,3,1,1,0,6) (1,1,1,3,0,6) [1 1,0,1,1,—= ‘/- ] [1,1,3,-\/%] 11’2:-\/%]
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Chain 1

83 (Mz)=gst016)(My)+2b,My,+(bep +beg My, +(bsy +beg \M;s
H(bsp Thap )My + (b3 +byg )IMys+2b3 Msg+2b3, My, ,
gz_f,z(Mz):gs_lJz(ls)(MU)+(%b12‘*‘%bi)Mm‘*'(%bs.L +1by)My,

+(3b9, +1b5 )My + (309, +1b5,

E1v(Mz)=ggi16)(My)+ (b, + 2bl )My +(2

MMy, +(2b§, +1b),

IM 45 +2by Msg+2by Mg, (16)

wber T b3+ 5 bimMm,,

+(_b6R+ blB+10b )M23+(10b1R+ blB+6blep+ib2R+)M34
+( gb?R+1blB+ b )M45+(9b1h+1blB)M56+2b YMGZ .

Chain 2

83 (Mz) =856 (My)+2b My, +(bg +beg My, +(byy, tbeg MM p;
H(bsp T h3p )My +2b3 Mys+2b3 Mss+2b;, M,
gZ_LZ(MZ):gglJz(l6)(MU)+(%b12+%bé My, +(3bey +1by )My,

+(3b9, +1b{)M )+ (304,

+%béL M3, +(3b94, +ib§L M5+ (3b9, +%b§L M ss+2b,y M, , 17

£bIP )M,
LEbTP )Mo +2b,y M, .

gl_yz(Mz):gsvtixe)(MU)'*'(%bu""ib My, + (5 b6R+lblB+ by My,
+(Fber ++b1p+ by IMyy +(Sblg +1bip+ 3bhe +
+(-b7R+lblB T6b2R blep)M45+( 5b1r T4 b1s+%b11R+
Chain 3
g3_02(MZ):gS_UZ(16)(MU)+2b12MU1+(b6L+b6R MM 15+ (b3 +beg )Mo
+(b3L +b3R )M34+2b3cM45+2b3cM56+2b3cm62 ,
82X (M) =gt 16)(My)+(3by, + 105 )My +(3be, +1b4)M

+(3b9, +1by

MMy 4+ (368, +1b M3+ (309, +1bh WM s +2b5 Mg +2b, Mg (18)

g ¥ (Mz)=gstie)(My)+ (b1, + 2by )My, +(Sbeg +1b1p+ ZbMp +(Sbeg +1bip+5b4)M )y,

+(%b3R+%b1B’+%b )M34+( bgR

Here M;; is defined as In(M;/M;). As a comment we
note that generally one would expect that the coefficients
of b7 ' and b5 _;, to be & and %, respectively, as it ap-
pears in the SO(10) model. It is worth noting that these
factors are dependent on the normalization of the U(1)
part of SUQ)%"! and that of the group U(l)z_;. This
point will be elaborated further in the Appendix.

To calculate the mass scales we also have to know the
numerical values of the B-function coefficients. To know
them one has to know the contribution of the Higgs sca-
lars to the B functions (7). In Tables IV-VI we give
these values.

Now with the quantities g ;/(M), g;2 (M), and
g3.2(M) at hand one can construct two different linear
combinations with them to form the experimentally mea-
sured quantities at the energy scale M,. It is easy to
check that the following relations hold between them:

1bIB+ 3bI

+ b IM s +(3b9g '+ L1byp_ 1)) M s +2b,y My

|
sin®(0y) =5 —3eX(g ¥ —gar) »
g (19)
[24 —
I=3 - =eXgl +381¥ — 3837 -

s

From the present experimental measurements at the
CERN e "e™ collider LEP the values of sin*(6,,) and a,
have been very accurately measured. We use for our pur-
pose the following values [11] for them and for the U(1)
coupling a at the scale M:

sin%(8y,)=0.2336+0.0018 ,

a,=0.108+0.005 , (20)
a= L
128.8
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TABLE IV. Contributions of the Higgs scalar to the renormalization group (RG) equation at vari-

ous energy scales in chain 1.

G G] G2 G3 G4 G5 G6
[12]=1492  [6,]=69 [3.]=42 [3.]=15 [3.1=9 (3.]= [3.]=0
[41=293 [6r]=93 [20]=63 [24]=225 [2{]=135  [2,]=0.5 [2,]1=0.5

[1p]=45 [6r]=93 [3;]=15 [3z]=9 [13]=0375 [14]=0.075
[4]=63  [15]=45 [13]=7.58  [1%]=3.16  [1,]=0.083
[4']1=63 [13]=0375 [13]=0.375
[2,]=18 [2.]1=9
[1*P]=2 [1,]=3.16

Having this information at hand one can straightaway go
to calculate the mass scales of symmetry breaking. (See
Tables VII and VIII.)

Let us discuss the calculation of the first chain in some
detail. Let us now assume that M,=M;=M ,. This
means that the groups SU(6); , SU(6)x, and SU(4)' happen
to break at the same scale. Similarly let us also assume
that M,=M;=Mpg. Now using the values of the T(R)’s
from Table II and solving for My, and Mg, in terms of
the other variables one gets

My, =—0.28—0.10M, , —0.10M¢, +0.04M ,; ,

21

Mye=19.80—4.81M, ,—2.93M, —0.21M ,; .

As the symmetry breaking at My occurs before it hap-
pens at M, My, is at least positive. So from the first
equation one infers that for a specific set of values of the
other parameters in the right-hand side there is a
minimum value to M ,5. Varying the parameters of the
equations one gets the following subset of the solution set
allowed by the equations. Taking M, to be around 91
GeV one can also calculate the unification scale and the
scale M where the completely ununified symmetry of the
quarks and leptons and the chiral color symmetry is bro-
ken. We note that as the parameter M ,; increases, i.e.,
as the separation between the scale M , and the scale My
increases, the scale Mz comes down. In a similar way let
us determine the breaking scales that we may get from
the solution of chain 2. Here we keep the U(1) groups as
low as possible in the hope that it will give rise to distinct
phenomenology at low energy. To begin with let us keep
M,=M;=M , and M,=Ms=Mp. The solutions are

My, =—0.70—0.01M, , —0.02M, +0.01M . ,

(22)

Mpe=5.35—0.44M, , —0.78M, —0.81M ,; .

To keep My, positive we have to have M ,5 larger than
70. This pushes the unification scale beyond the Planck
scale and hence makes the breaking chain uninteresting.

The third option that we have considered here is to
come to the low-energy groups via the left-right sym-
metric Pati-Salam group in chain 3. The solutions in this
case are

My =—0.99+0.13M, , +0.01M s, +0.02M 45 , 23)
23

M¢;=6.84-+2.64M, ,—0.22Ms—0.1M 45 .

The solution set of these equations is interesting, though
low-energy unification is not possible here. Let us at first
state a sample solution set. It is obvious from the equa-
tions that to keep My, positive one needs a rather larger
value of M, 4, which on the other hand pushes M¢, up.
The minimum value of M , is around 7.6, which gives a
minimum value of the unification scale of around 10!
GeV. In a previous paper [6] we have shown that with
the precisely measured value of sin%(8y,) that is available
now left-right symmetry at the low energy coming from a
grand unified scenario is ruled out. This analysis comes
as a confirmation of that result and it shows that even
having the number of parameters that we have in the
form of a number of breaking stages, left-right symmetry
cannot come down to a low energy for any choice of the
parameter space.

VI. PHENOMENOLOGY

A. Proton decay

Having the mass scales and Higgs structures in hand
we proceed in this paper to discuss the issue of proton de-
cay now. In all the breaking chains that we have con-
sidered here, the quark-lepton unification is broken at the

TABLE V. Contributions of the Higgs scalar to the RG equation at various energy scales in chain 2.

G G, G, G, G, Gs G
[12]=1459 [6,]=111 [3,]=103 [3,]=36 [3.]=0 [3.]1= [3.]1=0
[4'1=109 [6z]1=120 [2§]= [2¢]1=31.5 [2¢1=3.5 [22]=2.5 [2,]=0.5

[15]=75 [6x]=102 [3x]=36 [14]1=1.25 [24]1=2 [1y]=0.075
[4']=62 [13]= [14]1=7.58  [13]=0.375 [1%]=0.583
[41=78 [15]=0375 [2i1= [15]1=0.375
[27]1=27 [2k]=4 [1k]=1
[151=20 [1%P]=0.5 [1P]=12.5

[1r]=4.5
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TABLE VI. Contributions of the Higgs scalar to the RG equation at various energy scales in

chain 3.

G G, G, G, G, Gs Gs
[12]=1831 [6.]=171 [3.1=79.5 [3.1=57 [3.]=0 [3.]=0 [3.]1=0
[4']1=646 [6g 1=105 [2¢1=T1 [2¢1=T77 [2§]1=8 [247']1=4 [2.]=15

[15]=105 [6r]=117 [3r]1=54 [2%1=7 [2%7'1=4 [1y]=0.225
[4'1=149 [15]=3 [2&1=75 [15]=15 [1p-p)]=2.25
[4']=89 [13]=3 [2.]1=6
[41=51  [2k]=5
[1°P]=3.5

scale M;; while the quark-antiquark unification is broken
at the scale M,. As a result the leptoquark gauge bosons
(X,,) will acquire mass at the scale M, while the diquark
gauge bosons (Y,,) acquire mass at the scale M;. Under
the group G, their transformation properties are

X,=(6,1,—B,4)+(1,6,B,4)
+(6,1,B,4)+(1,6,—B,4) ,
Y,=—(6,6,—2B,1)+(6,6,2B,1) ,
where

1
B=3v%

Now, U(1); being an explicit local gauge symmetry of
the model, X,, and Y, contain different *“baryon num-
bers” and hence cannot mix directly to form an SU(16)
invariant operator.

The mixing can be induced indirectly through the term
D,¢,D"¢,, where D, is the covariant derivative of the
SU(16) invariant theory. D,¢,D"¢, will contain a term
X,¢$,X"¢,. When ¢, and ¢, acquire vacuum expecta-
tion values the mixing between X, and Y* occurs. But
this can occur only at the scale M; hence, the amplitude
is suppressed by a factor of O (MsM¢/M3M3).

To see how the gauge bosons couple to the Higgs fields
we note that all the gauge bosons at the SU(16) level
transform under the 224-dimensional adjoint representa-
tion. We also note the following tensor product at the
SU(16) level:

224X224=1-+224+224+14175+10 800
+12376+12376 . (25)

(24)

Being the product of two self-conjugate representa-
tions, all the terms in the right-hand side are self-
conjugate, and therefore couple only to self-conjugate
representations. From Table I one sees that the Higgs

TABLE VII. Mass scales from chain 1.

field which can induce a baryon-number-violating effect is
1°, which is 4368 dimensional.

The only self-conjugate combination made up with 1%s
is (4368)(4368), which again carries no baryon number
and, hence, does not give rise to any baryon-number-
violating process [8].

To see the Higgs-field-mediated proton decay at first
we note that the fermions are in the 16-dimensional fun-
damental representation. To give mass to the fermions
the coupling of the form [¢¥;¢ must exist. The
minimum-dimensional Higgs field which can do the job is
120. This field can give rise to Higgs-mediated proton
decay if 1° breaks the baryon number due to the presence
of the term (16)(16)(12)(12?) in the Lagrangian. In
that case we can choose 136 to give mass to the fermions.
In our choice 1° breaks the baryon number, hence it does
not couple to 120. Hence, there is no Higgs-mediated
proton decay.

B. N-N oscillations

Let us consider the SU(16) level operator
(13)(1°){1°)(16). This forms a singlet under SU(16)
and hence it is allowed in the Lagrangian. This term
gives rise to AB =3 processes. If instead we choose 136
to break the lepton number symmetry, then this process
vanishes.

In the preceding subsection we noted that if 1° breaks
the baryon number symmetry then one has to choose 136
to give mass to the fermions; here we note that then the
term (1'%12)(136)(136)(1°)(1°) will be allowed in the
Lagrangian, which may give rise to AB =3 processes. As
the term is of dimension 5 it will be suppressed by M.
With 1> we can construct the SU(16) level operator
(1°)(1°)(1*)(1?) which can break the baryon number
by two units and hence give rise to gauge-boson-mediated
N-N oscillations. To see the Higgs-field-mediated pro-
cesses we note that if 120-dimensional Higgs field couples
to the fermions and 1° breaks the baryon number then

TABLE VIII. Mass scales from chain 3.

M 45 M, Mz Mg, My, My My M, M 45 M My, M, M, My
7 0 0 18.4 0 10° 1012 7.61 0 0 0 26.92 1013 107
9.5 1 0 129 0 108 1012 6.84 5 0 0 24.89 102 10'8

10.75 1.5 0 10.3 0 107 101! 6.07 10 0 0 21.86 10! 10'®

12 2 0 8.7 0 10° 10! 5.30 15 0 0 19.35 10'° 10"

14.5 3 0 2.3 0 10* 10! 4.53 20 0 0 16.79 10° 10"
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the operator {120)¢ @ »{(120)(1®) can give rise to
Higgs-field-mediated N-N oscillations.

VII. CONCLUSION

In this paper we have seen that there exists one possi-
ble breaking chain in a grand unified theory based on the
group SU(16), where a unification scale of the order of
10" GeV is possible. There exists a very-low-energy
scale (Mp) which may be almost anywhere between the
unification scale and the electroweak scale, where com-
pletely ununified symmetry of quarks and leptons may ex-
ist together with chiral color symmetry. The scale My
decreases when the separation between the scale M 4, and
the scale My is increased. Qualitatively we understand it
in the following way. The B-function coefficients can be
looked into as the slope of the lines if one plots the in-
verse coupling constants with respect to energy. It can
be easily checked that, since at the SU(16) level all the
fermions transform under the fundamental representation
of the group and in the other levels they transform in a
more complicated way under the various groups in the
intermediate stages, all the groups cannot be normalized
in the same way. To compensate for the mismatch in the
normalizations, the B-function coefficient has to be multi-
plied by appropriate factors. Because of this the slopes of
the curves representing the inverse couplings also get
multiplied by the appropriate factors and the couplings
get united earlier giving rise to low-energy unification.

We have also seen that this model satisfies the experi-
mental constraints coming from proton decay experi-
ments in the sense that proton decay is suppressed. We
have shown that there exists at least one choice of the
Higgs sector where there is no Higgs-mediated proton de-
cay either.

For some specific choice of the Higgs fields there may
exist interesting physical consequences such as the N-N
oscillation. There is also the possibility of having the
see-saw mechanism to give Majorana mass to the neutri-
nos and this also may have observable consequences.

Last but not the least we emphasize again that there
exists very rich low-energy physics coming from this
model, hence keeping in mind the forthcoming high-
energy experiments at the Superconducting Super Collid-
er and CERN Large Hadron Collider and other places
this model is worthy of further investigation.
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APPENDIX

1. SU(16) tensor products

16 X 16=120, + 136, ,
16xX16=1+255,

16 X 120=560, + 1360 ,
120X 120=1+255+14 144 ,
136X 136=1+255+18240 ,
560, X 16=1820,+7140 ,
1820, X 16=4368,+24 752 .

(A1)

2. SU(16) branching rules

SU(16)=SU(12)XSU(4) ,

16=(12,1)+(1,4) ,
136=(78,1)+(12,4)+(1,10) ,
120=(66,1)+(12,4)+(1,6) ,
255=(143,1)+(12,4)+(12,4)+(1,15)+(1,1),

560=(220,1)+(66,4)+(12,6)+(1,4) ,
1820=(495,1)+(220,4)+(66,6)+(12,4)+(1,1) ,

14 144=(1,1)+(1,35)+(12,4)+(12,20)+(12,4)
+(12,20)+(66,6)+(66,6)+(143,1)
+(143,15)+(70,4)+(780,4)+(4212,1) .

(A2)

3. SU(12) tensor products

12X 12=66,+78, ,
12Xx12=1+143,

12X 66=220,+572 ,
78X 78=1+14345940 ,
66X66=1+1434+4212 ,
220, X 12=495+2145 ,
495, X 12=792+5148 .

(A3)

4. SU(12) branching rules

SU(12)=SU(6)XSU(6) X U(1) ,
12=(6,1,—B)+(1,6,B) ,
66=(15,1,—2B)+(1,15,2B)+(6,6,0) ,
78=(21,1,—2B)+(1,21,2B)+(6,6,0) ,
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143=(35,1,0)+(6,6,2B)+(6,6, —2B)+(1,1,0)+(1,35,0) ,
220=(20,1, —3B)+(1,20,3B)+(6,15,B)+(15,6,—B) ,

(A4)

495=(15,1, —4B)~+(20,6, —2B)+(15,15,0)+(6,20,2B)+(1,15,4B) ,
792=(8,1, —5B)-(15,6, —3B)+(20,15, — B)+(15,20,B)+(6,15,3B)+ (1,6,5B) ,
572=(70,1,—3B)+ (15,6, — B)+(6,15,B)+(21,6,— B)+(6,21,B)+(1,70,3B) ,
4212=(189,1,0)+(15,15, —4B)+(6,6, —2B)-+ (84,6, —2B)+(15,15,4B)
+(1,35,0)+(1,189,0)+ (8, 84,2B)+(84,6,2B) +(6,84, —2B)+(1,1,0)+(35,1,0)+(35,35,0)+(6,6,2B) .

5. SU(6) branching rules
SU(6)=SU(3)XSU(2) ,
6=(3,2),
15=(6,1)+(3,3) ,
20=(1,4)+(8,2) ,
21=(3,1)+(6,3) ,
35=(1,3)+(8,1)+(8,3),
70=(1,2)+(8,4)+(8,2)+(10,2) .

6. Normalization of U(1)5 _, and SUQ)%*’

Consider chain 3. Under the group G¢ the 16 fermions
transform as

[
(3,1,2,1/V24)(3,2,1,— 1 /V24)
+(1,1,2—3/V24)+(1,2,1,3/V24) .

The T3, parts of the right-handed SU(2) group are to
be taken as +1/V'24 so as to get the correct U(1) charges
at the standard model level. U(l)p _; is normalized to 2
while the U(1) generator of the right-handed SU(2) is nor-
malized to £, i.e., L. Taking this factor of 6 in the rela-
tive normalization one can easily get the familiar match-
ing conditions of the SO(10) model.

7. Anomaly cancellation and mass scales

A 16-dimensional fundamental representation of
SU(16) is not anomaly-free. To get the cancellation of
anomaly one has to introduce mirror fermions. But these
fermions will not alter the values of the mass scales ob-
tained here. This is because in the two equations used for
sin(0y,) and 1—2a/a; respectively the fermion contri-
butions to the B-function coefficients cancel.

[1] See for example, A. Masiero, in Grand Unification with
and without Supersymmetry and Cosmological Implica-
tions, International School for Advanced Studies Lecture
Series No. 2 (World Scientific, Singapore 1984), p. 1; see
also Unity of Forces in the Universe, edited by A. Zee
(World Scientific, Singapore, 1982), Vol. 1; P. Langacker,
Phys. Rep. 72, 185 (1980).

[2]J. C. Pati and A. Salam, Phys. Rev. D 10, 275 (1974); R.
N. Mohapatra and J. C. Pati, ibid. 11, 566 (1975).

[3] P. Pal, Phys. Rev. D 44, R1366 (1991).

[4] S. Adler, Phys. Lett. B 225, 143 (1989); P. H. Frampton
and B. H. Lee, Phys. Rev. Lett. 64, 619 (1990); P. B. Pal,
Phys. Rev. D 43, 3892 (1990); P. H. Frampton and T.
Kephart, ibid. 42, 3892 (1990); N. G. Deshpande and P. B.
Pal, ibid. 45, 3183 (1992); N. G. Deshpande, P. B. Pal, and
H. C. Yang, University of Oregon report, 1991 (unpub-
lished); P. Pal, Phys. Rev. D 45, 2566 (1992).

[5] B. Brahmachari, U. Sarkar, R. B. Mann, and T. G. Steele,
Phys. Rev. D 45, 2467 (1992).

[6] B. Brahmachari, U. Sarkar, and K. Sridhar, Phys. Lett. B
297, 105 (1992).

[7]1 H. Georgi, H. Quinn, and S. Weinberg, Phys. Rev. Lett.
33, 451 (1974); T. Appelquist and J. Carazzone, Phys. Rev.
D 11, 2856 (1975); L. E. Ibanez and F. del Aguila, Nucl.

Phys. B177, 40 (1981).

[8] For a discussion on the operator analysis of baryon-
number-violating effects see S. Weinberg, Phys. Rev. Lett.
43, 1566 (1979); also F. Wilczek and A. Zee, ibid. 43, 1571
(1979).

[9] R. Slansky, Phys. Rep. 79, 1 (1981).

[10] T. G. Rizzo, Phys. Lett. B 197, 273 (1987); F. Cuypers,
ibid. 206, 361 (1988); S. F. Novaes and A. Raychaudhuri,
Lawrence Berkeley Laboratory Report Nos. LBL-26995
and LBL-26996, 1989 (unpublished); V. Barger and T. Riz-
zo, Phys. Rev. D 41, 946 (1990); T. Rizzo, University of
Wisconsin-Madison Report No. MAD/PH/550, 1990 (un-
published); K. N. Bandyopadhyay, D. Bhoumick, A. K.
Ray, and U. Sarkar, Physical Research Laboratory Report
No. PRL-TH-91/33 (unpublished); P. Frampton and S. L.
Glashow, Phys. Rev. Lett. 58, 2168 (1987); Phys. Lett. B
190, 157 (1987); 191, 122 (1987); S. Rajpoot, Mod. Phys.
Lett. A 5, 307 (1987); Phys. Rev. D 36, 1479 (1987); A.
Davidson and K. C. Wali, Phys. Rev. Lett. 59, 393 (1987).
H. Georgi, E. E. Jenkins, and E. H. Simmons, ibid. 62,
2789 (1989); 63, 1540(E) (1989); S. Rajpoot, Phys. Lett.
95B, 253 (1980); Phys. Rev. D 41, 995 (1990); D.
Choudhury, Mod. Phys. Lett. A 6, 1185 (1991).

[11] U. Amaldi et al., Phys. Lett. B 261, 447 (1991).



