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Note on Weinberg operators in the standard model
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I demonstrate the vanishing of the dimension-six Weinberg operator in the standard Kobayashi-
Maskawa model of CP violation in the absence of QCD corrections. I then argue that dimension-eight

operators do appear, and estimate their contribution to the neutron electric dipole Inoment.
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I. INTRODUCTION

Since Weinberg [1] pointed out that gluonic operators
of dimension d )6 can contribute significantly to the neu-
tron electronic dipole moment (NEDM), there has been a
renewal of interest in the subject. The Weinberg operator
and related operators have been calculated in most mod-
els of CP violation [2]. However, save for the work of
Bigi and Uraltsev [3], these operators have not been stud-
ied in the standard Kobayashi-Maskawa (KM) model.
This is understandable considering the small expected
size of these effects. However, as the limit on the NEDM
marches downward [4,5], it is important to have an accu-
rate prediction for the KM model.

In this paper I will take a step in that direction by
showing that in the absence of QCD corrections, Wein-
berg operators in the standard model must be at least of
dimension eight. Although on dimensional grounds such
operators are suppressed by two additional powers of a
"large" mass compared to the original dimension-six
Weinberg operator, due to the enhancement of
dimension-eight operators in the QCD evolution [6—8]
such operators may still give an important contribution
to the NEDM.

II. THE STANDARD MODEL

In the KM model, all CP-violation amplitudes may be
written as

u2d2 dld2M=+„
where

Q2d2—

ilies (which is all that I will consider), one may write [9]
Q2d2

These properties of 4, which are often called the
Glashow-Iliopoulos-Maiani (GIM) mechanism, force any

di d2
CP-violating partial amplitude M„„ to depend on four

1 2

quark masses and to be antisymmetric under the ex-
change of up or down quark masses. This antisymmetry
leads to cancellations between the contributions of
different quarks, and is responsible for suppressing most
CP-violating effects in the KM model [11]. As an exam-

ple of this, Shabalin [12] was able to show that the quark
electric dipole moment vanishes to two loops in the KM
model. In the same spirit, I will show that the
dimension-six Weinberg operator, which may also be
considered the chromoelectric dipole moment of the
gluon [2], vanishes to three-loop order in the KM model. '

In order to do this, I will study the structure of the
partial amplitudes. Most important will be the behavior
under exchange of quark masses, but Dirac matrix struc-
ture will also be important because it determines the pos-
sible terms which can appear in the amplitude. To sim-
plify the language, I will adopt a few shorthand expres-
sions. A term with an odd or even number of y matrices
will be called simply odd or even. An expression will be
called left handed if it can be written as 0L. "Down"
and "up" will generally refer to families of quarks; when
they refer to particular flavors, the meaning will be clear
from context. As an example, in (g —m„)L, PL is odd

1

and left handed and m„ is an up-type quark.
1

In the conventional approach to calculating the
coeKcients of Weinberg operators, one inserts a number
of gluons and expands in the gluon momenta, keeping

Because the KM angles have been factored out, the par-
tial amplitudes M depend on the quarks only through
their masses. N has two important properties which fol-
low from unitarity of the Cabibbo-KM (CKM) matrix
[9,10]: it is antisymmetric in (u„u2) and (d„d2), and
the sum over any index, e.g. , u &, vanishes. For three fam-

~It may be helpful in the following to keep in mind that the
properties of N allow one to write
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u1(u2
dl &d2

2I. and R denote the left- and right-handed projectors
(1Ty, )/2.
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FIG. 2. Diagrams which generate F.

d2

FIG. 1. One possible topology involving two electroweak bo-
sons. Solid lines represent quark propagators in the background
field, wavy lines electroweak bosons ( 8', N).

only the first few terms in that expansion. This becomes
complicated for more than one gluon. A convenient way
to organize this expansion is to work in the background
field picture and to adopt the operator formalism of No-
vikov, Shifman, Vainshtein, and Zakharov [13] (NSVZ).
This approach has a long history dating from Schwinger
[14]. For my purpose it suffices to note that the covariant
derivative D„=B„—ig 3„(x) ( 3„ is the background
gauge field in the fundamental representation) is raised to
the level of an operator, P„=iD„. Then

[P„,P, ]=igG„„with G„ the field strength, and the
quark propagator is written as

(olTq'(x)q (y)lo)

mutativity of P, all the familiar Feynman rules still apply.
By replacing P„with p„+gA„and expanding in 3„,one
recovers the usual perturbative expansion.

In the background field picture, Weinberg operators
are obtained by expanding an amplitude M in powers of
6 and its covariant derivatives, which is done by expand-
ing the propagators. It is important to realize that once a
desired power of G has been obtained, P„can be treated
as commuting, because any noncomrnutativity will be of
a higher order in G and can be ignored. This fact will be
needed to establish the behavior of M under the exchange
of quark masses.

Weinberg operators of the standard model are at least
a three-loop effect because there must be four 8' vertices,
and thus two 8'loops in addition to the one quark loop.
The relevant diagram is shown in Fig. 1. A second possi-
ble diagram, with the 8'and up quark lines interchanged,
is proportional to

l V„d l l V„d l
and thus cannot con-

1 1 2 2

tribute to CP-violating effects.
The amplitude which corresponds to Fig. 1 is

4

= x, a (7+m) y, b
P +(g/2)o G —m

(2)
dld2 1M„'„' =tr x

P —m
Q2

d1 m-
@1

(3)

Here o.G:—u„G", and a and b are color indices which I
will suppress from now on. This representation of the
propagator has the advantage that apart from noncom-

I

F„'„(i')=i
22&2 (2m. ) (1+P) +(g/2)o. G —md

F can be expanded as

F(P') =g F;6,

=&0+F2(P )[P,oG]L+F3(g )D"G„,y L

+O(G ) .

Here F; are covariant form factors and 8; are operators.
F and 0 are independent of the external masses

2
(quarks); F, depends on the internal mass as md, and 8;
has no mass dependence at all. The index i labels the or-

where the operator F corresponds to the diagram of Fig.
2 and is given (in the unitary gauge) by

(4)

I

der of the terms in the background field strength.
It is necessary to first establish the properties of F. In

the unitary gauge, because the quark-8' vertices are y„L,
it is naively clear that F is odd, purely left handed, and
independent of the external masses. However, because
this is a nonrenormalizable gauge, the reader might
wonder whether this is an artifact of the gauge choice. In
a generic gauge, the unphysical charged Higgs boson will
also contribute, coupling to quarks with a vertex
(omitting the coupling and numerical factors)
V = ( m „R md L ) /Mii . There is al—so the possibility that

There is of course another diagram with the roles of the up and down quarks reversed. The treatment of that diagram is exactly
the same.

A note of caution: The matrix elements of F(g) will of course also depend on G. This will induce corrections higher order in
G —there will be, e.g. , O(G ) terms coming from F2. However, the aim is to make the symmetry properties clear; if it can be shown
that terms without at least an explicit G dependence at some order vanish, the higher-order corrections will not matter.
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renormalization counterterms will depend on the external
masses.

To resolve the first issue, rewrite the Higgs vertex as

V= [ —( j' —m„)R+L(g —md)]/Mii

It is then clear that the external mass terms will cancel
against the external propagators when inserted into M.
The residues of these cancellations will not contribute to
the final result because the resulting partial amplitude de-
pends on at most three quark masses and will vanish in
the sum. Thus only the R(g —md) part of the vertex is
relevant. Performing a similar rearrangement for V, it
follows that the only relevant contribution from the
Higgs loop has the form R (g —m„)(N)(g —md)L, with
N depending only on md. There will be no external mass
dependence and the R,L projectors ensure that the result
will be odd and left handed.

There still remains the question of the renormalization

counterterms. Note that these will affect only the poten-
tially divergent part of F. Terms in F containing non-
renormalizable operators such as the anticommutator
[P,o.G ], for which there can be no counterterms, are not
affected. Shabalin [12,15] and others [16] have shown
that the renormalized X takes the form

X„„=(7—m„)X„„(P'—m„), (7)

with

X=Fo"(i' )(PR+m„R+m„L)+F' '(P )PL

Here Fo" and Fo ' are symmetric in the external masses.
It follows from these arguments that apart from X, all the
terms in the expansion of F are left-handed, odd, and in-
dependent of the external masses.

Insertion of the expansion (6) for F into Eq. (3) gives
the result

M„'„' =tr& x IP„'„P.„'„ Ix &+ tr&x IP„'„P *Ix &+tr& xlP 'F.„'„ Ix &+tr(x
Qp

FAd)

P —m„
(9)

1 A, dl

7 —m„ , PF '1. x) .
g —m„

with I' =F Xo [so F—is O(G )]. Consider the second and
third terms in Eq. (3). Because of the Dirac structure of
P, only the P'R part of X will survive the trace. But the
coefficient of i'R is symmetric in the external masses and
F is independent of them, so the second and third terms
will not contribute to the total amplitude. Finally, it is
only a matter of some algebra to show that tr(XX) is
symmetric in the external masses.

Consequently, only the last term in (9) can contribute
to the CP-violating amplitude. The Dirac structure of F
allows me to write it as

After substitution of F=+2,F;6; and . use of the fact
that the F; commute with the propagators and with each
other, this becomes

tr(x F, 'Ft '
2 PD, 2 P&rttL x)

d1 d2 1 1

2(i,j "2 1

The only dependence on m„and m„ in this expression is
1 "2

in the propagators. In the expansion of the propagators
in powers of G, only terms where the two propagators are
expanded to different orders will contribute. Consequent-
ly, the leading term will be

—Xtr(x F; 'F,
l,j

1 g 1 1 1 1 g 1
2 2 2 2 2 ' 2 2 ~2 2 2 ' 2 2 2 2 ~2P —m 2 P —m P —m P —m P —m 2 P —mfg 2 Q2 Q) Q2 Ql u,

(12)

which is at least of order G . To this point, I have only
made use of the symmetry under the exchange m„~m„.

1 2

But there is also the exchange md ~md to consider.
1 2

Once a given order in G has been obtained, the 8; will
commute. Thus, antisymmetrization will eliminate terms
with identical F; s. It follows that the lowest-dimension
term which survives will be o G6263, which is of dimen-
sion seven. However, there is no gauge- and Lorentz-
invariant dimension-seven operator containing only
gluons, so the first term to contribute will in fact be of di-
mension eight. This completes the proof that Weinberg
operators can first arise at dimension eight.

III. CONCLUSION

I have shown that in the absence of QCD corrections,
the coeScient C6 of the dimension-six Weinberg operator
vanishes in the KM model. This extends earlier work by
Bigi and Uraltsev [3], who argued that the coefficient

50f course, these authors calculated X in the conventional way
for A„=O, but by gauge invariance the substitution p ~P will
only produce a correction of O(G), which will be absorbed in
the other terms.
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should be suppressed. They went on to the estimate the
size of four-loop QCD contributions to the coeKcient,
finding C6-—JGzm, . Performing a similar estimate for
the three-loop coe%cients C8 of the dimension-eight
operators, I find Cs=JG~m, /m„. Taking m„ to be
current mass would be an error because QCD corrections
will become important long before such a small scale is
reached. For numerical estimates it is better to try to
take this into account by choosing m„ to be a constituent
mass =300 MeV.

Finally, it is interesting to compare the contributions
of C6 and Cs to the NEDM. Using QCD sum rules, Bigi
and Uraltsev estimated that C6 produced a contribution
to the NEDM d6 —-10 e cm. In order to take advan-

tage of their estimate, I use "naive dimensional analysis"
[17] (NDA) to relate the hadronic matrix elements of 06
and 08. Although NDA probably does not give a reli-
able estimate of the actual matrix elements [3,2, 18],
it appears to be reliable for estimating the ratios of the
matrix elements [2]. With this caveat, I find

ds = (gs/$6)m& /m„d6, where mr =2m F = 1.2 CxeV, and

gs and g6 are QCD evolution factors whose ratio is = 10
[7,2]. Thus, ds =24 d6 —-10 e cm.
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