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Helicity-coupling amplitudes in tensor formalism
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The decay of a particle with spin to two other particles with spin is best described in the helicity
formalism. It is the purpose of this paper to show that the helicity-coupling amplitudes, which
appear in the angular distributions, can be expressed in terms of the covariant amplitudes in the
tensor formalism. This allows for a systematic derivation for the energy dependence of the helicity-
coupling amplitudes within the framework of the tensor formalism. The concept of pure intrinsic
spin has been developed in the tensor formalism, for decays involving two spins in the final state,
in order to bring the formalism to a form comparable to the standard ES-coupling scheme. Among
several examples worked out in this paper are those involving spin-0, spin-1, or spin-2 states in the
initial and the 6nal systems and, in particular, a spin-1 state coupling to two spin-1 final states. The
latter example is then specialized to the J/Q radiative decays into a pseudovector (J = 1++) or
into a vector (J = 1 +) which is exotic, i.e., not a quarkonium. Orbital angular momenta up to
/ = 4 have been included in the examples; in particular, the decay zz(1670) ~ f (z1270) + vr, which
involves three E's (l =0, 2, and 4), is shown to exhibit a complicated energy-dependent form for the
helicity-coupling amplitude.

PACS number(s): 13.25.+m, 11.80.Et, 13.40.Hq

I. INTRODUCTION

The purpose of this paper is to demonstrate a new ap-
proach to the description of the decay of particles with
spin in which the covariant tensor formalism is incorpo-
rated inherently into the helicity formalism.

The helicity formalism was originally developed by Ja-
cob and Wick [1] in their seminal paper in 1959. For
a covariant description of particles with spin, one may
consult the paper of Rarita and Schwinger [2] and for
the projection operators of arbitrary spin those of Frons-
dal [3] and Behrends and Fronsdal [4]. The description
of the tensor wave functions for particles with spin used
in this paper follows the method originally proposed by
Auvil and Brehm [5]. The reader may consult the pa-
per by Chung [6] for a general exposition of the spin
for malisms.

The description of particle decays into two other parti-
cles is most compactly given within the helicity formalism
in which the rotation functions D, are used for the an-
gular dependence. One deals with, in general, short-lived
states in both the initial and Anal states, i.e. , with the
masses which are described by Breit-Wigner shapes. One
therefore needs to keep careful track of the masses, en-
ergies and the momenta of all the states involved. The
covariant tensor formalism gives naturally this "energy"
dependence satisfying the requirement of Lorentz invari-
ance.

It is shown that the helicity-coupling amplitudes may
be expressed compactly in terms of the covariant decay
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amplitudes, provided the four-vectors and the z compo-
nents of spin for both the initial and the Anal states are
all defined along the direction of the decay products in
the parent rest frame. In this way the tensor formalism,
which gives all the energy dependence in the problem,
can be incorporated into the helicity formalism for the
decay process. Di6'erent "strengths" of the two difer-
ent approaches, those of helicity and tensor formalisms,
can therefore be combined into a single, coherent formu-
lation. The philosophy one has adopted here is that a
general decay amplitude can be expressed as a product
of a complex constant, to be determined by experiments,
and the covariant amplitude resulting from the Rarita-
Schwinger formalism —this is a model, to be sure, but
a model that incorporates Lorentz invariance as its sole
tenet.

The helicity-coupling amplitudes have a well-known
expansion in terms of the ES-coupling amplitudes. In a
traditional approach, each ES-coupling amplitude is given
an r~ dependence where r is the relative momentum of
the two decay products in the parent rest &arne. The
formulation proposed in this paper leads to a modifica-
tion in which an SS-coupling amplitude is a polynomial
in E/m of order up to the spin for either or both decay
products, where m is the mass of a final particle and. E its
energy in the parent rest kame. It should be noted that
the factor E/m tends to infinity as E ~ oo or m —+ 0.
However, the helicity-coupling amplitude with its helicity
equal to the spin does not contain the factor E/m, and
this is the only one that survives for the case in which a
decay product is massless. If a covariant decay amplitude
requires the presence of a totally antisymmetric rank-4
tensor, one finds in addition that it contains an overall
factor of the mass of the parent particle.

It should be noted that the approach of this paper is
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fundamentally di6'erent &om that of the nonrelativistic
Zemach formalism [7]. In the Zemach formalism, all the
tensors are evaluated in their respective rest frames, and
therefore the energy dependence of E/m never appears in
the decay amplitudes. The purpose of this paper is to em-
phasize that the E/m factor is a necessary consequence
of the relativistic wave functions of the decay products
evaluated in the parent rest frame and therefore cannot
be neglected.

The ES-coupling amplitude has no meaning if one of
the decay products is a photon, as in the J/g radiative
decay. In this case one may start out with the simplest
possible covariant amplitude incorporating the gauge in-
variance and then derive the energy dependence of the
helicity-coupling amplitudes. This approach is to be pre-
ferred over the straightforward tensor approach, as the
angular dependence is much more eKciently given in the
helicity formalism. In an example in which a pseudovec-
tor (or more generally the states of unnatural spin-parity
series) is produced in the radiative JQ decay, it is shown
that there exist three covariant amplitudes which, while
not independent, nevertheless contribute independently
to the two helicity-coupling amplitudes in the problem.

The next two sections deal with the basic helicity and
tensor formalisms and the representation of the helicity-
coupling amplitudes in the tensor formalism. In addition,
it is here that for the first time the concept is developed
of the total intrinsic spin (S = 0, 1, 2) as a rank-2 ten-
sor coupling to two spin-1 polarization four-vectors. The
generalization is clear: if a decay involves a spin-2 and a
spin-1 particle in the final state, the total intrinsic spin
(S = 1, 2, 3) should be represented by a rank-3 tensor.

The remaining sections are devoted to a few basic
but representative examples of two-body decay processes:
1 ~ 1+0, 1 ~ 1+1, 2 ~ 1+0, 1 + 2+0, 2 ~ 2+0, and
0 —+ 2 + 0. Most of the examples of the particle decays
are taken from the recent compilation [8] by the Particle
Data Group; however, other examples have been culled
from the pp annihilations at rest. Clearly, these exam-
ples are meant for experimental physicists working on
hadron spectroscopy. There are two nont, rivial examples;
the first concerns the amplitudes for J/g ~ fi(1420) +p,
which have been given in terms of three complex parame-
ters even though there exist only two independent ampli-
tudes, and the second deals with n2(1670) + f (12270) +r7

in which the factor E/m appears as a polynomial in the
expression for the helicity-coupling amplit, udes.

The conclusions are given in Sec. X, and the Ap-
pendices deal with the problem of finding relationships
among diferent covariant amplitudes which appear nat-
urally in certain decay processes.

II. HELICITY-COUPLING AMPLITUDES

Consider a state with spin(parity) =J(q ) decaying
into two states with s(g, ) and 0(i7 ). The decay arn-
plitudes are given, in the rest kame of J, by

Mi (8, rp;M) oc (8, p, AvlJMAv)(JMAvl M lJM)
~ DM*s(& ~ 0)E~'. (1)

where M is the invariant operator for the decay, and A

and v are the helicities of the two anal-state particles s
and o with b = A —v. The general decay amplitude is

(8, (p; M) = ) M„„(8,y; M)
Av

~ ) DMS(i & ~& 0)EAv' (2)

The M is the z component of the spin J in a coordinate
system fixed in the production system. The helicities A

and v are rotational invariants by definition. For the de-
cay amplitude M one has adopted a system of notation
in which rotational invariants are given as indices while
the noninvariants are listed as arguments. The direction
of the break-up momentum of the decaying particle 8 is
given by the angles 6 and y in the J rest kame. Let w, y,
and z be the coordinate system fixed in the J rest frame.
It is important to recognize, for applications to sequen-
tial decays, the exact nature of the body-fixed (helicity)
coordinate system implied by the arguments of the D
function given above. Let xh, yh, and zh be the helicity
coordinate system fixed by the 8 decay. Then by de6ni-
tion zh describes the direction of the 8 in the J rest kame
and the y axis is given by yh oc z x zh and xh ——yh x zh.

The helicity-coupling amplitude E given by

oc (JMAvl M
l
JM)

while, if the decay products 8 and o are identical, the
additional relationship

holds for both integer and half-integer spins.
If the decay particles are both massive, the decay am-

plitude may be given in the ES-coupling scheme:

is a rotational invariant. Parity conservation in the decay
leads to the relationship

(4)

Mes(6, p; mim2M) oc ) (8, p, mim2l~mSm ) (~mSm
I

M
I
JM)

mms

oc Ges (smi crm2lSm, ) ) (Em Sm
l
JM) I (~ p)

where G&s is the ES-coupling amplitude given by

(EmSm,
l
M

l
JM) = (lmSm,

l
JM) G
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It should be noted that mi and m2 are measured in the canonical rest systems (reached by pure timelike l,orentz
transformations from the J rest frame) of the two decay products. The (mimi l2m, IEsms) stands for the usual Clebsch-
Gordan coeKcients. The decay amplitude in the ZS-coupling scheme contains two extra variables m~ and m2 that
are not rotational invariants [compare with (1)]. The general decay amplitude is

(~ V M) =). ) ~e's(V, y;m, m, M)
es m, m,

oc ) ) Grs (Bmi crm2ISm, ) ) (Em Sm,
l
JM) Y (79, p).

es m, m,

where r = Irl and r is the relative momentum between
the two decay products in the J rest frame. This factor
is often replaced with the Blatt-Weisskopf barrier factor
[9] in partial-wave analyses. The barrier factors BI(p)
are collected below for ease of reference:

Bo(p) = 1,

Bi(&) = 2z
z+1'

It is common practice to give the amplitudes Ges a
momentum dependence

Ges ~&J

suits from the usual scheme of coupling of the angular
momenta but with the z axis chosen along the break-up
momentum of the decay product 8. Note that the orbital
angular momentum E has the zero z component in this
case and the particle o has the z component —v.

The decay amplitude (1) is simply given by the helicity-
coupling amplitude itself if one sets 6 = p = 0, as shown
in (ll). It is obvious now that the helicity-coupling am-
plitudes can be derived from the tensor formalism by
restricting oneself to the four-vectors defined along the z
axis. Let p, q, and k be the four-momenta for the states
J, 8, and o with masses R", m, and p

= (Jo, p), p' = ~' g = (go, a),

Bzb) = 13z2

(z —3)'+ 9z' (10) 2 2= fA k =(ko, k), k =p,
(14)

277z3
z (z —15)2 + 9(2z —5)2 '

and let r = lql
—lkl be the break-up four-momentum.

Using the usual Lorentz metric g p, one has

S.= g,P = (po, -p )12746z4
(z2 —45z + 105)2 + 25z(2z —21)2 'B4(p) =

and similarly for the other four-vectors. One uses, as
usual, the notations p, q, k, and r to stand for both the
four-momenta and the magnitudes of the three-momenta.

One may new write an explicitly covariant expression
(I orentz scalar) for the helicity-coupling amplitudes

where z = (p/p ) and p„ is a "scale" parameter in the
problem which is presumably close to 0.1973 GeV/c, cor-
responding to the length of 1 fm. Note that one has
adopted a normalization such that Bg(p) = 1 for z = 1.

It is instructive to write down (1) and (6) again for
6=(p=o ——) g A (Av)

—:) g A (p",r, (u(A), s(-v), P*(8)j~~.(0 o ~) ~ +~.
~es(0~0 m&~2~8) cx Ges (sm& om2l~m~)

x(I0 Sm.
I
Jm. )

(16)

as a sum of functions A of five variables, provided all the
four-momenta are defined along the z axis (i.e. , no 2: and
y components). As the momenta involved are all parallel
with the z axis, this formula merely gives the momentum
dependence of the helicity-coupling amplitudes but no
angular dependence, as this is already contained in the D
function in the expression (1). The variables n stand for
the set (I, S), and the constants g are the analogue of
the G&s in (12). But the expression (16) is more general,
since the expansion in o. can be applied equally well even
when L is not well defined as in, for example, radiative
J/@ decays.

The covariant function A depends on p and r as
well as the momentum-space wave functions (or tensors)
$*(b), u(A) and e(—v) for the particles J, s, and o, where
b, A, and —v are the z components of spin as defined be-

By setting mi ——A, m2 ———v and m, = b in the lat-
ter expression above, one finds that the helicity-coupling
amplitudes E are related to the ES-coupling amplitudes
Ges via

where the coupling amplitudes have been given the nor-
malization

).IG' I' = ) .I+'.I'.
es

The formula (12) for the helicity-coupling amplitudes re-

+~'. = ).I I
(~0~~I»)(»~ vl») Gi's (»)—. (21+11

- i2J+1j
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fore. Note that the complex conjugate of the J wave
function appears in the above formula: it represents the
initial state while those of 8 and o. correspond to the Anal
states. As shown by examples in later sections, one may
set n = 1 or n = 0 without loss of generality, depend-
ing on the intrinsic parities involved. In other words, the
four-vector p is used in the covariant amplitudes at most
once, if necessary, in order to satisfy the requirement of
parity conservation. The covariant function A can de-
pend on any multiples (up to E) of r, reflecting orbital
angular momenta allowed in the decay.

The expressions (9) and (12) show that the helicity-
coupling amplitudes E depend only on r in the usual
prescription. The formula {16) implies that the energy
dependence on F is more complex, with the energies qo
and ko appearing in the expression in addition to r, as
the wave functions for 8 and o are evaluated in the J rest
frame, not in their respective rest &ames. One may also
note that, in addition, the masses W, m, and p appear in
the expression for E as a consequence of the covariant
description of the decay amplitudes.

III. POLARIZATION FOUR-VECTORS

The polarization four-vector appropriate for the parti-
cle J is given first in the following; those for the decay
products 8 and o. are of course similar.

The polarization four-vectors are in reality the spin-1
wave functions embedded in the momentum space. Thus,
under a general rotation B, the four-vectors transform
according to

which transform, under the rotation B:

p-p(m) -+ ) happ(m')D', (R).
ml

(22)

These spin-2 tensors satisfy

p P p(m) = 0,

4 p=dp
~ pW.p= 0,

(23)

which state that the spin-tensors are orthogonal to the
momentum, symmetric, and traceless. These tensors sat-
isfy, in addition,

p p(m)happ(m') = g

1.~-p(-)~;.(-) = -(g.,;„+;.„-„)
m

(24)

(25)

~(') = ) ISm. )(Sm. I,
(26)

One may note that the latter is the spin-2 projection
operator.

In order to 6.nd connection of the tensor formalism with
that of the XS-coupling scheme, one needs to develop the
concept of total intrinsic spin S formed out of the s and
cr polarization four-vectors and that of the pure orbital
angular momentum E built out of r. The key to a solution
is contained in (6). One sees that this formula involves
projection operators

4 ( ) ~).4 ( ')D' (&)
mI

(17) &") =). I& )(&

where m and m' are the z component of spin in an ar-
bitrary coordinate system. In order for this to hold, the
rest-&arne wave functions should be given by

P(+) = y~ {1, +i, 0),
y(0) = (o, o, 1),

and the time component is de6ned to be zero in the rest
&arne. These polarization four-vectors satisfy

Consider now a wave function y(m) which is to form the
basis for constructing the ket state ISm, ). One demands
that this wave function have a zero time component in the
J rest frame (very similar to P) and the space components
be given as in (18). The goal is to form rank-2 tensors,
when coupled to ~ and e, project out pure spin S.

The desired rank-2 wave functions for spin 0, spin 1,
and spin 2 are

where

p.(t-(m) = 0,

P:(m) P- (m') = -b

).&-( )&p( ) = &-p

(19)

~' '(o) = ) (lm, lm, I00)~ (,)~p(, ),
m1 m2

y p(m) = ) (lmqlmqIlm)y (mq)yp(m2),
m1m2

y p(m) = ) (lmylm2I2m)y (mq)yp(m2),

(27)

P~Pp
q-p = &-p(II ) = g-p+-W2

The last equation of (19) is the usual projection operator
for spin-1 states.

The property (17) implies that the spin-2 wave func-
tions should be written

(m) = ) (lm& lm2
I
2m) gP (mq) gP (m2) (21)

m1 m2

m1 mQ

~() ) ()( ) ()( ) (28)

leads to, after some algebra,

as analogues of the ket states ISm, ). It is seen that spin-
1 tensors are antisymmetric while the spin-2 tensors are
symmetric and traceless. The projection operator [see
(25) for spin 2] given by
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p(0)
cxppb

&(i)
~pe~

P(2)
npph

1

~
9np9p& ~

1
2 (gavgps

1
z(g»p~

gc hgpp))

1+ g-~ gP~) —
3g-P g~~.

These result in the following pure-spin tensors:

(29)

orbital angular momentum is defined only in this kame.
A "pure" S wave is characterized simply by the absence
of r in the amplitude in the J rest frame. The spin-1
projection operator corresponding to r(m) has already
been given in the last equation of (19); this implies that
the Lorentz metric, if required, should be replaced by the
modified form of (20). The break-up four-moinentum for
E = 1 is then given by

where

@ p
——(~ E)g p,

(0)

~(&)
p

= (d~E'p —8'~(dp )

2
p

—Ld~Ep + E~&p ——((d s)g~p)

(30)

(33)

with zero time component in the J rest kame. Note that,
in any kame, one has

(31) r-r = r. r = r r .

(» ~)
~cx + ~2 J cx)

(32)
The spin-2 projection operator resulting Rom r(m) has

also been worked out —see (25). A pure D wave or-bital
angular momentum is thus represented by a rank-2 ten-
sor:

and similarly for e for any z components of spin for cu

and e. Note that there exist three independent space
components in an antisymmetric tensor, while there are
five independent space components in a symmetric and
traceless tensor reflecting spin states of spin-1 and spin-
2 wave functions.

The analogue of the ket state ~Em) may be constructed
out of yet another polarization four-vector r(m), defined
to have zero time component in the J rest frame, since the

-(2) 1i p
——r rp — (r. r)g p—. (35)

t 'p~ —r rpr~ — (r. r—)(g pr~+gp~r +g~ rp) (36).

A rank-4 tensor for a pure G-wave is

Similar technique leads to a rank-3 tensor for a pure E-
wave:

1
r~rpr rg ——(r r)(g~pr~r$ + gp~r~rQ + g~~rpr$ + g~Jrprp + gpgrpr~ + gggr~rp)~pg cx

+—(r r) (g pg, a + gp~g s + gp gpss).35
(37)

p -+s =(po —p) J.= g-pI = (po, p ).—p

Let a, 6, c, and d be any four-vector. Using the shorthand
notations

(a b)=[a b]=g pa bP,

It is obvious that use of these tensors would lead to difFer-
ences in the helicity-coupling amplitudes when compared
to those resulting from the simplest covariant amplitudes.
They are pointed out with a number of examples in the
following sections.

Both the spin-1 and spin-2 wave functions are generic,
in the sense that they describe both positive and negative
intrinsic-parity states. One merely needs to know how

these wave functions transform under parity operation.
For the purpose, the following notations and conventions
are useful: Under parity operation, the momenta trans-
form according to

one finds

(a. b) =(a b), (abed) = (abed ). —

Define e via

which transforms under parity operation as a pseudovec-
tor, i.e.,

e M —e =(—eo e).

qP(m) m —P (m). (40)

As the spin-1 wave functions should be pseudovectors,
they transform under parity in exactly the same way as
the four-vector e, i.e.,

(abed) = [abed] = e p~ga b c~d
(38)

In another words, the time component changes sign,
while the space components remain the same. Note the
following transformation properties of the Lorentz scalars
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under parity operation: Note that

( &) +-( . &) =-(~.&)

('4) ~+(- 4) =+('4)
where a and e are any vector and pseudovectors. From
(40), one sees that the spin-2 wave functions transform,
under parity, according to

s~ ~(+) = e p~gq~k~s (+), (42)

Suppose now that the second decay product o is a pho-
ton, i.e., p, = 0. One may take for the photon polarization
vector s(+) the four-vectors (18) but without the zero z
component of spin [i.e. , s(0) not allowed], again setting
the time component to zero (Coulomb gauge). Gauge in-
variance requires that any Lorentz scalar one writes down
should vanish with the replacement e ~ k. The following
two four-vectors, derived from the e, satisfy this require-
ment:

[p. Q(&)] = [q. ~(A)] = [k s(A)] = 0 (48)

s (+)ms (+) — k[q s(+)]
q. k

(49)

in order to preserve parity conservation. In the particular
case in which all the four-vectors are defined along the
z axis, one finds that the correction term of (49) is zero
since [q s(+)] = 0. One may therefore conclude in this
case that the helicity-coupling amplitudes with photons
are identical to those with massive spin-1 particles in the
final state. Note that these conclusions apply as well to
the case in which the s is a photon:

for any A.
In the following sections, a number of examples involv-

ing photons will be considered. Let u be the photon. It
is instructive to note here a general result concerning the
Coulomb gauge adopted in this paper. Gauge invariance
requires that one needs in the covariant amplitudes the
photon polarization four-vectors given in (42) and (43).
One may start out with the covariant amplitudes involv-
ing massive spin-1 states; it is seen that one must then
perform the replacement [see (43) and (45)]

+ .' '(+) (44)

(45)

Here the superscripts (—) and (+) denote a vector and a
pseudovector, respectively. They transform, under par-
ity, according to

cu (+) m (u (+) — q .[k.~(+)]
k. q

(50)

Since [k.w(+)] = 0, the correction term vanishes. Gauge
invariance is therefore automatic in this particular appli-
cation; note that this conclusion holds also for the vector
form of s(+) [see (42)] or ur(+).

p=(W;0, 0, 0),
q = ( qoi 01 0~ q )~
k =( k„. o o, —q),
~- =(q, —k, ;o, o, 2q),

(46)

where W = qe+ ks, qs ——gm2 + q2, ks ——A@2 + q2, and
r =2q.

The relevant polarization four-vectors are given by

& (+)
4-(0)
~ (+)

s-(0)

( 0;

( 0.

( 0;
q

( 0;

1

0, 0,
1 +i

0, 0,

1 +i

0, 0,
l

q

o ),1)
0 ),

qo

0 ),

IJ j

(47)

Let p, q, and k stand for the four-momenta for the
particles J, s, and o. , and let P, u and s stand for their
spin-1 polarization four-vectors. In order to calculate the
helicity-coupling amplitudes E in the prescription given
in the expression (16), it is necessary to write down all
the relevant momenta and the spin-1 polarization four-
vectors along the z axis, in the rest kame of the decaying
particle:

IV. SPIN 1 w SPIN 1 + SPIN 0

One starts out with simple but practical examples. De-
pending on the intrinsic parities involved, the treatment
can be divided into two categories.

A. cu(1600) —+ p+ m

Let J, s, and o stand for the w(1600), the p, and the vr.

The net intrinsic parity is given by g g, g = —1. Because
of parity conservation in the decay, the helicity-coupling
amplitudes are as follows: E& ——0 and E+ ———E . The
general decay amplitude is given by

(8, rp, M) oc F+(D~+(y, 8, 0) —DM (y, 6, 0)).
(51)

There is only one allowed orbital angular momentum, i.e.,
E = 1. The covariant amplitude takes on the form

A(A) = [p (u(A) r P*(A)] (52)

E = —E = gWr

where the vectors are defined along the z axis. One finds
that A(0) = 0 and A(+) = +Wr, so that
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where J = 1 and g is an arbitrary complex constant.
The presence of r rejects the P-wave decay; the factor
W results &om the covariant description of the decay
amplitude. Note the treatment given here applies equally
well to the decay cu ~ 7t + p.

~. SPIN 1 m SPIN I ~ SPIN Z

Four important and non-trivial examples are treated
here; two of them are those of radiative J/g decays.

A. Z/Q ~ f~ (1420) + w

B. bg(1235) +-cu + n

J+0 = (54)

where J = 1. Assume now that the bq(1235) decays
predominantly uvr. Then the u~ elastic scattering in the
J+ = 1+-wave is completely dominated by the bq(1235).
It can be shown under this circumstances that the E& 's
are relatively real (see Sec. 5.2, Chung [6]),and hence the
G& 's are relatively real as well. According to the Particle
Data Group [8], one has, experimentally,

Let J, s, and 0' stand for the bq(1235), the ur, and
the m. The net intrinsic parity is given by g g, g = +1
and E& ——+F &. There are two allowed orbital angular
momenta, i.e. , S = 0 or 1 = 2. The helicity-coupling
amplitudes have the following expansion:

2F++ = Goi
(~) 1 (~)

3

v 2FO~: Go~
(g) 1 (g)

3

~2F~O —— G01
(~) (~)

3

1 G( ) 1 G(~)+ ~ 21 ~ 22 ~

+ G~i +
6 2

(61)

Note that these satisfy (13).
Since @JAN, q = +1, the covariant amplitudes should

not change sign under parity. It is best to write down the
Lorentz scalars by observing the ES-coupling amplitudes.
The S = 1 and S = 2 total intrinsic spins and an E = 2
orbital angular momentum may be re8ected in the rank-2
tensors

Let J, s, and a stand for the J/g, the fq(1420), and
the cu. This decay, 1 —+ 1++1, involves three helicity-
coupling amplitudes E++, E&+, E+0. There are two or-
bital angular momenta in this problem, i.e. , E = 0 and
E = 2. From (12), the F~'s are related to three G&~&'s

through

J
= 0.26 + 0.04.GJ

The general decay amplitude is

(55) P p
= QJ~E'p + 8'~Mp)

(+)

&~p = &n&p ~

(62)

(6, p, M) oc Fo DMo(p, 8, 0)

+F+(DM+(& ~ o) + D~ (v» » o) &l. -
(56)

There are two covariant decay amplitudes correspond-
ing to S and D waves in the problem,

Ao(A) = [(u(A) P'(A)],

Ag(A) = [r . u)(A)][r . P*(A)] ——r [(u(A) . P'(A)). (57)3

The helicity-coupling amplitudes are given by

The covariant amplitude corresponding to the Go& with
E=Ois

A. = -(~ ~(-) ~')1

2

where the parentheses indicate contraction of the four
indices with the totally antisymmetric tensor, while that
equivalent roughly to the G~z may be written(I)

1
A~ = -(u V( ' & 4*).

2 (64)

As always the dots signify contraction of neighboring in-
dices. The Lorentz scalars corresponding, roughly, to the
Ggg assume the form(~)

F„=ge Ao (A) + gg Ag (A) (58) (& &(+) . t y*) (65)

J 1 2Fp = go ——gyp )3

m q 3 )
where J = l. Only in the limit go/m -+ 1, the expressions
of (59) reduce to those of (54) with the replacement

G,' = v3g„ 2
gp T (60)

where go and g~ are arbitrary constants. Evaluating the
covariant amplitudes, one obtains

Note that there exists another form for Gzz '.
(~).

A =(~~(-'t~). (66)
Using the techniques developed in the previous section,
one can show easily that these four amplitudes do not
change sign under parity.

Not all four amplitudes above are independent; it is
shown in Appendix A that one has

WA4 ——Wr Aj + WAp ~ (qs —ko)As (67)
evaluated in the J rest frame.

The amplitudes A~, A~, A3, and A4, specialized to the
case in which all the vectors are de6ned along the z axis,
are given by
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Ai(Av) = [p(u(A)e( —v)P*(8)],
A.(») = lpr~(~)~( —v)1[r &*(~)l

As(») = [pr~(&)4*(~)][r.~(—v)]+ [p«( —v)&*(~)l[r ~(&)]
A4(Av) = [pr(u(A)@*(h)][r e(—v)] —[pre( v)—P'(8)][r . ~(A)],

(68)

where 8 = A —v. Note that these A, 's conform to the prescription given for the Lorentz scalar in (16). Only one
factor of p appears, while either none or two factors of r appear, in all the amplitudes.

Let gq, g2, gq, and g4 be any four arbitrary complex constants. Then, one may write

F„„=giAi(Av) + g2A2(Av) + g3A3(Av) + g4A4(Av). (69)

Eliminating A4 through (67), one finds

F„„=(gi + g4r )Ai(Av) + (g2 + g4)A2(Av) + gs + g4
I I

As(Av).(x) (« —ko1
(70)

F++ ——W(gi+ g2r ),(1)

Fo+ =
I

—
I [gi«+( —gs+ g4)Wr ]

(wl 2'+ pm'

F+o ——
I

—
I [gi ko + (gs + g4) Wr ].(i) 2

&~)

(71)

This shows that the F( )'s depend on both the X = 0
and the E = 2 terms as in (61), but they depend also
on the energies qo and ko. These factors have so far
been neglected in partial-wave analyses. Although the
A s have been formulated to correspond roughly to the
G&&'s, their contribution to the F( )'s are diferent; the

Gzz contributes to all three F( )'s, while the A2 term
appears only in F++. Note that the constant g4 allows(~)

for difkrent amount of r contribution to Fo+ and F+0.
~ ~ (i) (~)

Suppose now that one wants to introduce pure S and
D waves into the covariant amplitudes. This is achieved
by replacing t in A2, As, and A4 by t( of (35). One
may write

Ai ——(p~eP*),
1

A2 ——(prese)(r P*) ——(r r)(pcueP*), '

3
Aq ——(prus*) (r e) + (preP* ) (r . w),

A4 ——(pres/*) (r e) —(preP* ) (r w) + —(r . r) (pwEP*).
3

It is shown in Appendix A that A2 ——A4 in this case.
One may therefore take Aq, A2, and A3 as independent
amplitudes and obtain

There are in principle three independent parameters in
the problem corresponding to Aq, A2, and A3, but this
formula shows that the parameters themselves must also
depend on masses, energies and momenta. This "energy"
dependence is brought out clearly only with the addition
of an extra constant g4. This need for an extra constant
it will be shown shortly —is eliminated when one takes
amplitudes corresponding only to pure orbital angular
momenta.

From (70) one finds, redefining sightly the g, 's,

() t' 2
F++ ——W

I gi+ g2r—
J

Fo+ = W —
I
g, — g, r + g-,r(i) QO ~ 1 2

m I, 3

F+o = W
(

—
I

I
gi — g2r —g-sr(i) &I'o& (

)

(73)

If the factors W, «/m and ko/p are taken out and if the
substitutions

G„—i/6g„(i)
G2, = — g2r, G22 = 2gsr (74—)

(~) 2 2 (~)

i/3

are made, the F(i)'s of (61) obtained in the ES-coupling
scheme reduce to the F( ) 's given above. An examination
of (73) for the terms with g2 and gq show that the co-
variant amplitudes A2 and A3 correspond to those with
the total intrinsic spin 8 = 1 and 8 = 2, respectively.
Note that Aq, A2, and A4 already contain the pure spin-
1 tensor v/i( ) of (30) and the correction term of vP( ) does
not contribute to A3. The reasons for the energy factors
are clear: they come &om the z component of the wave
functions u(0) and e(0), which have been evaluated in
the J rest frame and not in their respective rest systems
[see (47)].

B. J/Q -+ fi(1420) + p

Let J, s, and 0 stand for the J/g, the fi(1420), and the
This decay involves two helicity-coupling amplitudes

F++ and Fo+, as photons do not have zero helicities. The
projection of the J/g spin along the break-up momentum
is zero for F++. This is to be contrasted to the case in
which the J/@ is produced in an e+e collider; the spin
projections in this case can only be either +1 or —1 along
the direction of the e+ or e beams [10].

The concept of orbital angular momentum does not
exist when photons are involved in the final state, and the
expansion of the F( ) 's in terms of the G&&'s cannot be
carried out. Instead, as a starting point, one may impose
gauge invariance on the A s defined in (63), (64), (65),
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A, = (p~eP*) — (peek/*),(q s)
q k

A2 ——(proc) (r P*),
A3 ——(preP') (r ~).

(75)

Note that these amplitudes are parity conserving and
that they all go to zero under s ~ k. (As pointed out
earlier, the correction term of A1 vanishes with the choice
of the momenta along the z axis and Coulomb gauge. )
Note also that both A3 and A4 of the previous section
reduces to A3 above. It is seen that the amplitudes A2
and A3 contain the s( ) introduced in (42).

It is shown in Appendix B that there exists a rela-
tionship among the three A, 's. In the j rest frame, one
has

and (66). They give, after the replacement s ~ s(+) of
(43),

C. pp(3S ) -+ K*(892)K'(892)

This decay process, 1 m 1 + 1, involves four
helicity-coupling amplitudes and odd-E orbital angular
momenta (E = 1 or 3). They are given by, from (12),

(1) (1) (1)
10 12 +

15 5

(1) 1 (1) 3 (1) 1 (1)
0+ 11 12 32 ~

2 10 (so)

be more general, however, one should include all three
terms and determine if they are required by the data.
Note that one has adopted here a model in which each
coeKcient of the amplitudes A1 and A3 has been given an
expansion in r or qe/W —resulting in three independent
complex constants.

TVr A1+ WA2+ 2q0A3 = 0. (76)

It is instructive to write down explicitly the non-zero he-
licity components of A s with the vectors defined along
the z axis. In this case the second term in A1 disappears
since (q . E) = 0, and one finds (1) (1) (1)

00 10 12 +
3 15

(1)
G32

(1) 1 (1) (1) (1)
+0 Gll 12 G32 &+ 2 10

Ai(++) = iW,

A2(+~) = i Wr2, —
. (W)

A, (0+) = i
~

—
~ q„

m)

. &W
A (o+) = —

I( 2m )

(77) Again, it is seen that these equations satisfy (13).
Let J, 8, and o. stand for pp, K', and K*. As this

process has q g, q = —1, the covariant amplitudes one
writes down should change sign under parity. The co-

variant counterpart of the G]0 ls(1) .

Note that these satisfy (76).
Using the same technique of the previous section, one

may introduce three constants g1, g2 and g3 and write
the expression (69) again but eliminating A2 via (76):

+~.' = (gi —g2r') Ai(») + g3 —2g2 — A3(»).

A, = (u) . s)(r P*).

Similarly, one may choose for G» and G»(1) (1)

A2 = (r. ~)(s &*) —(r s)(~. 4*)

and

(sl)

(s2)

(7s)

There are only two independent amplitudes, A1 and A~,
in the problem. , and one needs in general only two coeK-
cients in the expression for E( ). But the above formula
shows that they themselves are dependent on r and q0.
One can insist that the g s be constants but then there
are three constants in the problem. From (77), one finds

A3 = (" ~)(& &*)+(r s)(~.4*).

A4 —(r ~)(r . e)(r . P*). (s4)

For G32 one may take as the simplest possible choice the
following:

I"++ ——W(gi + g2r ),(1)

Fo+ ——
~

—
~ (giqo+g3WP ),(,)

r'W')
'+ (m)

(79)
Note that all the A, 's have no dependence in p and the r
factor appears either once or three times corresponding
tof =1or$=3.

Let g1, g2, q3, and g4 be any four arbitrary complex
constants. Then, one may write as before

with slight changes in g1, g2, and g3. These equations
show that both F( )'s have terms proportional to r as
in (71).

In a previous analysis of the J/@ radiative decays [11],
only the g2 and g3 terms have been retained, perhaps
on the idea that the terms proportional to r should be
more important than those terms independent of r . To

I'&„——giA1(Av) + g2A2(Av) + g3A3(Av) + g4A4(Av)

(s5)

where A, (Av)'s are again defined with the vectors along
the z axis. One obtains the following results, with a small
modification of the g s,
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F++ ———4g1r,(1)

+p+ =
I

—
I (»+»)r(i) fW)

'+ (m)
F+p =

I

—
I (—g2+ gs)r,(i) fW')

Ep(p) =
I I [ gi(4qpkp+r ) —g2W(qp —kp)

(,) f 1 ) 2

(mp, )

(86)

Gip ~aegir
(1)

G11 = 2g2P,(1)

G12 ———2(1) g3r, G32 =(1)

D. J/Q -+ p(1405) + g

g4T
3

+gsW + g4W r ]r.

According to (80), each E( ) gets a contribution from

the E = 3 amplitude Gs2 . In (86), however, only the(1)

Eoo amplitude has a term in r .
Covariant amplitudes corresponding to pure P and E

waves and pure total intrinsic spins 0, 1, and 2 are

A, = (r . @(') . y*),

(q(2) j(s) . y*)
2

(87)

where the colon signifies contraction of two neighboring
indices. The A,. 's may be expressed as

This decay mode, so far unobserved, may be considered
a special case of the preceding example, in the sense that
the second decay product is massless, i.e. , p, = 0. Gauge
invariance is imposed by substituting s with s(+) in (81),
(82), (83), and (84). Note that this substitution preserves
parity. The results are

A. =(-')('O')- (- k)('O),(q. s)
(q k)

(r (u)(k . P*).
q k

A2 ——(r cu) (s P')—

(92)

Note that A4 is zero and A3 reduces to A2.
Once again one considers the special case in which the

vectors are along the z axis. In this case, as before, one
Gnds that the factor (q s) = 0, so that the second terms
in both A1 and A2 drop out. In terms of two arbitrary
complex constants g1 and g2, one obtains

Ai ——(~ . s) (r P*),
A2 = (r .~) (s &*) —(r ') (~ &*) (88)

As —(r (u) (s' . P*) + (r s) (~ (t'*) ——(~ s) (r P*),
3

A4 ——(r . ~)(r . s)(r . P*)

--( ')[( ')( 4)+( ')( 4*)
5

+(r ~)(s. &*)].

In the J rest kame all the scalars in these amplitudes are
reduced to those involving three-momenta only. Note, in
particular, that one has

A2 = (~ x s) (r x P*) (89)

in the J rest frame a familiar result. However, the po-
larization four-vectors for 8 and cr are not evaluated in
their respective rest frames. The helicity-coupling ampli-
tudes are

F++ ——g1r,(1)

(i) (W
I g, r.

gm)

This is very similar to the first two equations of (86).

VI. SPIN 2 m SPIN 1 + SPIN 0

One may use, for this problem, the same notations
and symbols introduced in Sec. IV. Thus, the J, 8, and
0 stand for the spin-2, spin-1, and spin-0 particles, re-
spectively. As before, the treatment of this decay can be
grouped into two separate categories depending on the
intrinsic parities involved.

A. Net intrinsic parity g g, vy = +1

(,) f 2
E++ ——

I

—gi + —gs +
3

g2+ g3m

++p =
I

—
I I

—g2+(,) (kpl (
&~) 4

(i) f qpkp ) (gi+

gamp,

)

1—g4r'
I
r,

5

1
g4r'

I
r, —

5

gs ——g4r
I
r)

5 )
4—gs + —g4r3 5

An example of this case is provided by the decay
a2(1320) —+ p + m. There exists only one helicity am-
plitude E+ corresponding the D wave allowed in the
decay. Let t = rr be the rank-2 tensor for the D wave.

Then, the covariant amplitude may be written, for the
vectors de6ned along the z axis,

A(m) = [p (u(m) t . P*(m)]
= ) (1m, 1m, I2m)[r. (t*(m, )]

m1m2
Aside from the energy dependent factors, these helicity-
coupling amplitudes are seen to be identical to (80) with
the following substitutions:

x[@cu(m) r P*(m2)].

The only nonzero component of A is

(94)
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1
A(+) = [r ~*(0)][I ~(+) r 4*(+)]

The nonzero components are, from (46) and (47),
(95)

to be evaluated in the J rest frame. From (46) and (47)
one obtains for the helicity-coupling amplitude,

F+ ——gR'r(2) (96)
Ag(0) = (100)

where g is an arbitrary complex constant. The form of
the amplitude (94) shows that introduction of a pure D
wave does not alter the result (96).

Suppose now that the particle s is a photon. Indeed,
such a decay has been observed in a2(1.320) ~ m + p.
Gauge invariance requires that one must replace w as
given in (50), but the amplitude (95) does not change.
The helicity-coupling amplitude (96) is thus appropriate
for photons as well.

A2(0) = [r (u(0)][r g *(0)]

F = ggAg(m) + g2A2(m) (1o1)

which gives

Introducing two complex constants g~ and g2, one may
set

B. Net intrinsic parity g g, g = —1

G(2) +1

G(2)
1

G(2)

G(2)

(97)

The covariant amplitudes corresponding to G~ and G3
are

(98)A, = (cu. P* r),
A2 = (r . ~)(r . P* r).

Again, taking the vectors along the z axis, one gets

Aq(m) = ) (1mqlm2~2m) [~(m) . P'(mq)][r P*(m2)],

The decay vr2(1670) -+ p + vr is an example. There
are two orbital angular momenta l = 1 and E = 3. The
helicity-coupling amplitudes are

(2)
ger,

2
(1o2)

~

—
~

(gxqo + g2Wr )r.
pm'

Consider now the case in which the state s is a photon.
There exists only one helicity-coupling amplitude F+
One finds that carrying out the replacement (50) does not
change the amplitude, so that the form of the helicity-
coupling amplitude remains the same.

One may insist that only the "pure" orbital angular
momenta be used in the covariant amplitudes. In this
case, one needs to replace r by r and one obtains

m1m2

A2(m) = [r ~(m)] ) (1m, lm2~2m) [r . P*(m&)]
m1 m2

x [r P'(m2)].

Ag ——(~ P* r),

A =(~.t') y*)

In the J rest frame, they assume the form

(1o3)

Aq(m) = ) (1m' lm2~2m) [v(m) . P*(mq)][r $*(m2)],
m1 m2

Az(m) = ) (1milm212~) (Ir ' s(m)l(r y*(m&)l(~ ' 0*( a)I " (u(m) @*(mx)l(~ 0*( 2)I) .

m1m2

(1o4)

Prom this one obtains G(2) (2)gr, G3
3

g2T (1o6)
(2)

F(2)

(105)
The energy factor which breaks this symmetry is a nec-
essary consequence of the fact that the wave function u
is being evaluated in the J rest system.

Note that, if the qo/m factor is neglected, one can make
the equations above identical to those in (97) with the
following substitutions:

VII. SPIN 1 —+ SPIN 2 + SPIN 0

As before, one may use the notations of Sec. IV: J, s,
and 0 stand for spin I, spin 2, and spin 0, respectively.
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A. Net intrinsic parity g~g, g = +1

An example of this type of decay would be pp( Si) ~
n2(1320) + vr. There is just one helicity-coupling ampli-

tude E+ ) corresponding to E = 2. The covariant ampli-
tude is

A(m) = ) (lmilm2 ~2m) [r . u(mi)][prtu(m2)P*(m)]
mlm2

~2+( )

E( )

G(1)
1

|(1) +1

+(1)
3 )

The covariant amplitudes are

Ai(m) = ) (lmilm2~2m) [r . w(mi)][a(m2) . (t)*(m)],
m1m2

The helicity-coupling amplitude is then

y, (i) fW
)

(lo7)

(108)

(lo9)

A2(m) = ) (lmilm2~2m) [r . ~(mi)][r . ~(m2)]
m1m2

x [r P*(m)],

which lead to

Ai(+) = [r ~(0)][~(+) P*(+)],
1

2

Ai(0) =

(112)

(113)
for an arbitrary complex constant g. If a pure D wave is
introduced into the amplitude, one gets

E+ ) ——glV —r .

A, (o) =

From these one finds

B. Net intrinsic parity vy g, g = —1

This case is exemplified by the process I)p( Pi) -+
f2(1270) +m. There are two helicity-coupling amplitudes
corresponding to two orbital angular momenta E = 1 and
8=3

(i) 1 (Wi
g, ]

—[r,
gm)

2 f' W')]
~ (giqo+ g2Wr )r,3 gm')

E( )

(114)

for arbitrary complex constants g1 and g2.
If pure P and E waves are used in the amplitudes, one

obtains

Ai(m) = ) (1milm2~2m) [r . car(mi)][co(m2) @'(m)],
mlm2

pr(m) = ) (1mrlmr]2m) (]r z(mr)]]r . m(mr)]]r . P*(m)] ——r']r ~(mi)l]m(mr) . 4'(m)]),
mlm2

evaluated in the J rest frame. The helicity-coupling am-
plitudes are

I'+ —— —
~

gi — g2r
~
r, —(i) 1 qo & 2

m g 5

2 q()
' f 3

I »+ -g2r'
I

'
3 m q 5 )

VIII. SPIN 2 —+ SPIN 2 + SPIN O

There are in total five orbital angular momenta, &om
8 = 0 to E = 4. In this section, only pure orbital angular
momenta are treated for brevity.

The problem again divides into two distinct cases.

Note that, as a result of the spin-2 character of the s, one
finds multiple factors of qo/m in E( ). Aside from these
factors, the substitution

A. Net intrinsic parity g g, g

g1r, G3(1)
g27

into (111) leads to the results given above.

(117)
An example of this case is provided by the decay

P p( P2) + f2(1270) + 7r. There are two helicity-coupling
amplitudes E2 and E1 corresponding to 8 = 1 and(2) (2)

E = 3.
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5 5
(118) These lead to the following forms for the helicity-coupling

amplitudes:

Aq ——(pr u . P*),
1

A2 ——(pr r .a r P*) ——(r . r)(pr tu . (t*),
5

(119)

The G( ) 's are the SS-coupling amplitudes.
The covariant amplitudes corresponding to pure or-

bital angular momenta are

(2) 2 4= gi g2~ + g3~ )3 35
(2) qp ( 1 2 8 4lF, = —

I
gg+ —g2r — g—sr

m ( 6 35 )'
2 qp f 2 2 17 4'i

Fo = — —
I
gi+ —g2r + —g»

1 ( 1 2 2+—
I gg — g2r' —+ —gsr3q 3 35

(125)

with the spin-2 tensors given by

u p (m) = ) (1m' 1m2
I
2m) u (mq) ur p (m2),

m1m2

P p(m) = ) (1m' 1m2I2m)P (mq)gp(m2).
m1m2

(120)

where gi, g2, and g3 are three arbitrary complex con-
stants.

One encounters here for the first time a helicity-
coupling amplitude which is not a monomial in qp/m but
a polynomial. If and only if one sets qp/m = 1, these
formula are seen to be identical to (123) after the substi-
tutions

Using the same techniques as before, one finds

F2(2)

F, = W —
I

—g&+ g2r —
I
r() q (1 2

m (2 5

(121)

G(2) -ir, G~
(2)

g2P (122)

for two arbitrary complex constants gi and g2. Again,
neglecting the mass and energy factors, the substitutions

Gp = egg, G2
(2) (2) 1 2

2P ) (126)

(2) 4G4 ——2 —g3r .
35

One may now generalize these results. For the case in
which one of the decay product is a spin-0 particle, the
helicity-coupling amplitude E& is in general a polynomial
of order s —IXI in qp/m, where s is the spin of a decay
product and A is its helicity.

into (118) lead to the results given above.
IX. SPIN o ~ SPIN 2+ SPIN o

B. Net intrinsic parity zy g,g = +1

An example for this case is vr2(1670) + f2(1270) + m.
There are three helicity-coupling amplitudes correspond-
ing to 8 = 0, 8 = 2, and 8 = 4, which are given by

The decay r) (2980) ~ a2(1230) + vr provides an exam-
ple for this process. There is one helicity-coupling ampli-
tude for E = 2 and g g, g = +1 always. The covariant
amplitude is

G(2)
0~2F( )

(2) 1 (2)Fo = ~Go

(2) 2 (2) 1 (2)Go + ~G. + ~35G4

(2) 4 G(2)

G(2) + 3
2 G(2)

2 4 '

(123)

A=(r ~ r) (127)

(128)

for a pure D wave. Note that the correction term for a
pure D-wave orbital angular momentum does not con-
tribute, as the spin-2 tensor u is itself traceless. The
helicity-coupling amplitude is

A2 —(r . (u . P* . r) — (r r) (~:P*), —
3

As ——(r (u . r)(r P* r) ——(r r)(r . ~ P* r)7

(»4)

+—( ')'(:4*)
35

in terms of the SS-coupling amplitudes.
The covariant amplitudes corresponding to pure or-

bital angular momenta are, with the spin-2 tensors of
(»o),

Ag ——((u: P"),

where g is a complex constant.

X. CONCLUSIONS

This paper is not concerned with theory and is thus
devoid of dynamics. It is concerned solely with the co-
variance requirement as applied to the decay processes
of hadrons —more specifically, one wishes to write down
the decay amplitudes with a minimal set of mass, energy
and momentum dependence satisfying the requirement of
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special relativity and rotational invariance.
It is shown that the most economical way to incorpo-

rate the covariance requirement is to separate out the
angular dependence from the covariant tensor formal-
ism and deal only with the four-vectors defined along
the z axis. It has been found in the process that the
helicity-coupling amplitudes contain not only the usual
angular-momentum barrier factors but also the energy
factors from the daughter particles, as well as the mass
of the parent particles themselves in some cases. Con-
sider a hadron of spin J decaying into a daughter part;icle
with spin 8 and its helicity A and a spin-0 particle. The
helicity-coupling amplitude E& is in general a polynomial
of order s —lAl in qp/m, where qp and m are the energy
and the mass of the daughter particle. The following two
examples illustrate further this energy dependence.

Consider as a first example the decay bi (1235) ~ w+7r,
treated in Sec. IV B. At the b~ mass, one has W = 1.235
GeV and qp/m 1.10, not too far from 1. Therefore,
the effect of neglecting the factor has at most 20% effect
on the branching ratio of lFp l

over lF+ l

. The factor(~) 2 (1) 2

qp/m is in addition a function of W over the bi Breit-
Wigner shape, ranging &om 1.08 to 1.12 as the mass W
goes &om 1.185 to 1.285 GeV. Consider next an example
given in Sec. VI 8, i.e. , the decay 7rq(1670) ~ p + 7r,

with its branching ratio quoted as 31%. The factor qp/m
which appears in the expression for Fp [see (105)] is
1.31, far diferent &om 1; therefore, it can have a major
impact on the branching ratio for the helicity amplitudes.
As the width for the mq(1670) is 0.250 GeV, the factor
qp/m also varies significantly, ranging from 1.21 to 1.42
as the vr2 mass W goes &om 1.47 to 1.87 GeV.

Most, if not all, partial-wave analysis programs did
not incorporate this energy dependence and therefore vi-
olates the covariance requirement. It is seen, however,
that the correct;ions must be small for a hadronic state
not far &om the threshold of a given decay channel. The
main purpose of this paper is to show that the correction
factors can be significant as, for example, in the decay
wry(1670) M p+ m.

In addition, the techniques have been worked out in
this paper as to how one m@y apply the present formal-
ism to the hadronic decays involving photons in the final
state. It is shown that highly non-trivial complications
arise if one wishes to keep careful track of the mass and
energy dependence in the decay amplitudes. The exam-
ple given in Sec. V B illustrate this point; although the
decay J/Q -+ f (1i420) + p involves two helicity-coupling
amplitudes, they must be given in terms three complex
constants. This fact has never been appreciated so far in
the analyses involving J/Q radiative decays.

Finally, it may be worth emphasizing that for the first
time a technique has been developed by which the con-
cept of total intrinsic spin can be incorporated into the
covariant tensor formalism see the projection operators
for S in Sec. III. It is shown that these projection op-
erators have rank 2(si + sq), where si and sq are the
spins out of which the total intrinsic spin S is to be
formed. This technique provides a crucial link between
the helicity-coupling and ES-coupling amplitudes within
the covariant tensor formalism.
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APPENDIX A: AMPLITUDES FOR
J/Q —+ f&(1420) + ~

It is the purpose of this Appendix to derive a relation-
ship among Aq, A2, A3, and A4 of Sec. V A:

Ai ——(pure/*),

Aq ——(pr~a) (r P*),
As ——(pr~P*) (r . s) + (prsP*) (r ~),
A4 ——(prus/*) (r . s) —(prsP*) (r cu).

As these are Lorentz invariants, it is suKcient to show a
relationship in the J rest frame. In this frame, the three-
vectors k and q = —k are allowed to have an arbitrary
direction, and the z components of spin are left to go
over all the allowed values.

Using the relations W = qo + ko, r = —2k and

(p &) =(q. ~) =(k ~) =o

the scalar products are, in the J rest frame,

(wi(r. s) =
I

—l(k ~)
&kp)

(r-~) =
I l(k ~)
t'wl
«p)

(r . P*) = 2(k . @*).

(A2)

It is convenient to introduce a shorthand notation

(a b c) = [a b c] = (a. b x c) = (a x b . c). (A3)

The following combination of Aq and A2 can be expressed
in diferent ways:

4k Ai + Ag ——4W[k (w e P*) —(k. P*)(k cu s)]
= 4W[(~ x e)k(@* x k)]
= 4W[(k ~)(k e @*)

—(k e)(k cu @*)], (A4)

while A3 and A4 can be written

—kp( As + A4) = 4W (k s)(k m @*)

qp( —As + A4) = 4W (k ~)(k g @*).
(A5)
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From these one finds

WA4 ——4Wk Ag + WAz + (qp —kp)As. (A6)

Multiplying both sides of this equation by W, one may
express it in an explicitly covariant form:

W A4: [W (m p) ][W (m + p) ]Al
+W Az + (m —p )As. (A7)

One now turns to the case in which pure D waves are
used in the covariant amplitudes. They are, in the J rest
frame,

Using the relations kp ——k, W = qp + k, and

(p &) = (q ~) = (k &) = 0

the scalar products are, in the J rest frame,

(q k) = Wk,
(W)

(q s) =
I

—
I

(k e)
q k )

(r ~) =
I 1

(k ~)
t'Wb

&qo)
(r P*) = 2(k @*).

(B2)

Aj ——W(~ e @*),

A, = W (r @')(r ~ a) — r'(~—a @*) (AS)

As ——W[(r a)(r w P*) + (r . ~)(r a P*)],

A4 ——W (r e)(r w P*)—(r w)(r s: @*)+ r(cu a —P")
3

Using the same technique of (A4), it can be shown that
A2 ——A4.

APPENDIX B: AMPLITUDES FOR
Z/y ~ y, (1420) + q

The amplitudes A, may now be written

Wz5
Ap —

l l
[k'(~ e @*)—(k s)(~ k P*)]E~)

|'W'i
l [(a x k) k (~ x @*)]qk)
l [(k @*)(k~ e) + (k. co)(k e @*)], (B3)f Wzb

(A:)
Az ———4W(k . @*)(k ~ e),

(W'5
A = —2l l(k ~)(ke @*),

0 qo )
which lead to

Ap ——(q k)Ag
= (q k) (p(us/') —(q . e') (p~kg*),

Az —— (pr~s) (r P*),
As ——(prig*) (r . w).

(Bl)

It is the purpose of this Appendix to derive a relation-
ship among Aq, A2, and A3 of Sec. VB. Introducing Ap,
one may form

4kAp + WA2 + 2qpA3 ——0 (B4)

(W' —m')'A, + W'A, + (W'+ m')A, = 0

valid in any frame.

(B5)

and the equation given in (76). Noting the relationship
W + m = 2Wqp, one may write down an explicitly
covariant expression
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