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New data on the XI(. threshold region and the nature of the fo(S')
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We combine new data on fo(S ) production in J/g and D, decays with earlier information on central
production and elastic mm, KK processes to make a fresh examination of the fo(S*) resonance. The key
feature of our amplitude analysis is its strict enforcement of unitarity. This allows the good energy reso-
lution of the new J/g +fern—(KK) data to play its full role in delineating the fo(S ) resonance structure
that experiment demands. This enables us to distinguish alternative resonance mechanisms that have
been proposed: we conclude that fo{S ) is most probably not a KK molecule, nor an amalgam of two
resonances, but a conventional Breit-Wigner-like structure. In this preferred description, the fo(S ) has
rather a narrow width (I 0-52 MeV) and comparable couplings to m~ and KX. Possible spectroscopic
interpretations are considered.

PACS number(s): 14.40.Cs, 13.20.Fc, 13.20.Gd, 13.25.+m

I. INTRODUCTION

Low mass meson interactions play a fundamental role
in the study of hadron physics at the Fermi scale. Not
only are mesonic channels, m.m, EEC, etc. , the most abun-
dant outcome of production processes and decays, but it
is their exchanges that control the bulk of nuclear bind-
ing. While one-pion exchange is, of course, responsible
for the longest range force, the next in strength is two-
pion exchange with I=J=0. Despite its importance, the
nature of the isoscalar scalar interaction is still unclear.
The states that occur in this channel have been variously
ascribed [1] as conventional qq mesons [2], multiquark
states [3],KI7 molecules [4], glueballs [5], and/or hybrids
[6]. The aim of this paper is to extend previous analyses
by incorporating the latest experimental information and
to focus on these issues of the nature of possible resonant
states by concentrating on the crucial EE threshold re-
gion.

Below 1100MeV it has long been known that essential-
ly the only contributions with I=J=0 quantum numbers
come from ~m and EE final states and that other chan-
nels with more pions add less than a few percent to the
integrated cross sections [7], and so can be safely neglect-
ed, as we do weak and electromagnetic contributions.
The most extensive analysis to date of all high statistics
data with mv and EE final states is by the Au-Morgan-
Pennington (AMP) collaboration [8]. An unexpected
outcome of this analysis was the conclusion that the
fo(S ) most likely comprised two resonances —a fairly
narrow object coupling to mm and KE and a very narrow
EE bound state coupling weakly to the mw channel; all
this on a background furnished by a very broad
fo(E(1000)). The interpretation of these results in terms
of quark model states is quite nontrivial in a channel with
the quantum numbers of the vacuum; consequently,

which are members of the expected I =S=1 qq 0++
multiplet is far from unambiguously established [9].

Crucial new information, particularly on J/p decays,
has become available and that is our principal reason for
returning to this problem. A parallel development has
been the emergence of a new orthodoxy for spectroscopic
assignments of the scalars [10]. A key ingredient of this
scheme is a KK molecular composition for the fo(S*

)

[and a 0(5)] [4]. In suitable circumstances, this hy-
pothesis can be tested [11,12], as we describe.

The method adopted is to focus on the resonance pole
topology that the data require for the fo(S ). It is in
terms of this that we distinguish alternative compositions
for this state. The issue is exemplified by the question of
whether the deuteron is an elementary state of baryon
number two or more legitimately thought of as a bound
state of two nucleons [13]. Within a fully fledged dynam-
ical discussion, e.g. , via dispersion relations, this question
is equivalent to asking whether or not the deuteron is a
Castillejo-Dalitz-Dyson (CDD) pole [14]. In other
words, is the deuteron characterized wholly as a scatter-
ing state of two nucleons or does its Fock space include a
significant elementary component of six quarks? This
Weinberg has answered [13]. Analogously, the picture of
the S* and 6 as EE molecules presupposes that these res-
onances are characterized wholly as bound states of a
kaon and antikaon and that there is no sizable admixture
of qq or qqqq or glue in their wave functions. This is the
question we address.

To achieve this, one needs to study the energy depen-
dence of scattering amplitudes as determined by experi-
ment. Such amplitudes are "analytic" and one can con-
tinue them to complex values of the energy E. As is well
known, unstable particles correspond to poles in the corn-
plex E plane below the real axis [15]. The existence of
thresholds in scattering processes imposes a sheet struc-
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ture on the continued scattering amplitudes. This sheet
structure arises because the functional form of the
scattering amplitude, in fact, depends upon the c.rn.
mornenturn of the opening channel.

The paradigm case is the simple Breit-Wigner reso-
nance with

I;I /2
7; (E)"=

m& —iI „,/2 —E

For narrow resonances remote from relevant thresholds
the various partial widths I; can be well approximated
by constants; in general, unitarity requires energy-
dependent partial widths —for S-wave channels typically
of the form I,. =k;y;, with k; the corresponding channel
c.rn. momentum and the reduced width y,. roughly con-
stant. Since k; and —k; correspond to the same energy,
yet give different values for the continued scattering am-
plitude, Eq. (1.1), we need to distinguish these. It is this
specification of the signs of the mornenta that defines the
sheet structure of the energy plane. In the present discus-
sion we are mainly concerned with two channels, ~m and
KX, and we label their corresponding c.m. channel mo-
menta by k

&
and k2. The relevant sheets are then defined

by the signs of (Imk&, Imk2), so that, by convention,
sheet I has signs (+,+ ), sheet II has ( —,+ ), sheet III
(—,—), and sheet IV (+, —). For resonances remote
from thresholds, there is a unique adjacent unphysical
sheet and the position of the nearby resonance pole is
unambiguous. In contrast for the fo($*) and related
cases, where the resonance adjoins the threshold of a
strongly coupled inelastic channel, several unphysical
sheets lie close to the resonance position and one has to
specify on which sheet a given resonance pole lies.

Such poles and the sheets on which they lie form a key
interface between theory and experiment. They are close
to data since they emerge relatively directly by extrapola-
tion from experimental measurements. They are objec-
tive in the sense of occurring universally at the same posi-
tion in all processes to which a given resonance couples.
Pending a realistic scheme for deriving bound-state prop-
erties from the fundamental Lagrangian, they provide an
ideal characterization of resonance types. The Jost func-
tion [16] C&(k2), to be introduced in Sec. II, yields a very
convenient parametrization, since it allows alternative
resonance topologies to be enforced.

In Refs. [11,12] we proposed a way of discriminating
alternative mechanisms for generating resonances, such
as the fo(S'), that occur just below the threshold of a
strongly coupled S-wave channel. Our test is based on
the number of nearby poles of the associated scattering
amplitude in the complex energy plane. The rule is as
follows: Molecular resonances that arise from forces be-
tween the external scattering particles (here ~m and KK)
correspond to a single nearby pole. Here, nearness is
defined by the range of the forces as follows from a suit-
able efFective range expansion [12]. As emphasized in
Refs. [11,12], this rule is not a mathematical theorem and
could doubtless be evaded by suitably complicated poten-
tials but is likely to be satisfied for reahstic physical re-
gimes. The outcome for the present discussion is that if

the fo(S') corresponds to more than one nearby pole, it
is most unlikely to be a molecule.

This general approach to distinguishing alternative res-
onance mechanisms has a long history as detailed in Refs.
[11,12]. In particular, there have been related discussions
of the A (1405) baryon system [17,18]. Among previous
discussions of the fo(S*) [19],only a few have stressed al-
ternative pole topologies [20]; mostly this has been pre-
judged by the parametrization used. A key element in
our criterion for distinguishing molecular resonances is
reference to the range of the relevant forces. This aspect
is not considered in some previous discussions which
claim to discriminate types of resonance [21].

To describe the S* phenomenon, a nearby sheet II pole
is well-nigh compulsory to reproduce the rapid move-
rnent of the I=J=0 mm phase shift below KE threshold,
as discussed in Sec. II. Such a pole has been a feature of
all analytic descriptions of the S* phenomenon since its
key experimental manifestations were first clearly de-
lineated [7]. There could in addition be a sheet III pole.
Such a companion pole will always occur if the S' admits
a Breit-Wigner description, Eq. (1.1), but it need not lie
close to the physical region and the KK threshold at
E =2m+. Where it does lie close, its parameters form an
essential part of the characterization of the resonance.
This situation with nearby poles on sheets II and III runs
directly counter to the KK molecule hypothesis.

More complicated configurations with three or more
poles are possible; indeed, such a solution with three
poles characterized the description of the S
phenomenon favored by the AMP analysis [8]. This is a
different kind of alternative from the one-pole —two-pole
dichotomy referred to above, where one is speaking of a
single resonance in either case. Adding an additional
sheet II pole implies a distinct increase in complexity.
No matter what indirect evidence is claimed by the excel-
lence of a fit (and the AMP analysis spoke very strongly
in this regard), direct evidence for the proposed extra
narrow KE bound state is needed before it can count as
an established effect. As we shall explain, the data avail-
able have altered so as to allow a new scrutiny of all of
the above questions.

This new information is of two kinds: first, as adver-
tized by AMP [8], data on the decays J/g~Pm+vr.
PK+E [22,23] could prove a powerful constraint on the
underlying hadron amplitudes. At that time, only data
from Mark II [24] were available with rather limited
statistics. Now we have measurements from both DM2
[22] and Mark III [23] in 10-MeV bins and these will
indeed provide crucial new restrictions on the ~~~me
and m.m~XK amplitudes. Added to this we have data on
D, ~n(mm)decay from. E. 6. 91 at Fermilab [25]. In gen-
eral, the addition of new precise information would be ex-
pected to constrict the range of possible amplitudes found
previously by the AMP analysis still further. However,
there is also new information that opens up possibility
space. The mw —+K% measurements by Etkin et al. [26]
of the S-wave cross section were normalized by these au-
thors in accord with the results of Cohen et al. [27].
Indeed, earlier experiments reporting normalized
mvr~KK measurements [28,29] broadly uphold the nor-
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malization of Cohen et al. [27]. However, a new
analysis [30] by the BNL-CCNY group of their data, sup-
plemented by new results [31], has shown that this need
not be the case and so the absolute normalization of the
n.m —+EIC cross section, so important in the AMP
analysis, may be uncertain by up to a factor of 2.

Moreover, the reason the AMP analysis so un-
compromisingly required three states in the 1-GeV region
was its ability to fit the data from the AFS Collaboration
[32] that tracked through the KK threshold region more
precisely than any other. This requires a simultaneous fit
to the very sharp fall near 1 GeV found in central dipion
production in high-energy pp collisions (Fig. 1), while also
fitting the relative normalization of E+IC production
they found. A narrow bound state in the neighborhood
of EE threshold, which is the key novel feature of the
AMP solution, inevitably has a marked influence on all
EE processes very close to threshold. The first 50 MeV
ICIC data bin of AFS started at 1 GeV, as it was claimed
the detector had negligible acceptance down toward the
E+IC threshold. Consequently, the most marked part
of the enhancement produced by a narrow state near
threshold would not have been seen, though, of course,
the tail above 1 GeV is. Subsequent analysis has revealed
that the quoted cross section may in fact be that right
from K+K threshold to 1050 MeV [33]. Since a bound
state such as that in the AMP solution would give 70%
of its contribution to such a bin below 1 GeV, it is clearly
important to be certain of the acceptance efficiency in
this region. AFS are not alone in receiving this call for
certitude in such acceptance. Many, if not all, experi-
ments correct for efficiency by assuming a phase-space
distribution. This clearly neglects the possibility of sharp
dynamical features close to the EE threshold which there
undoubtedly are: a glance at the I=J=O ~+~~+ cross
section (Fig. 1) shows that; it is just that in the AMP
solution these are doubly sharp.

With these relaxations of some of the key inputs to the
AMP analysis and with the addition of precision J/f
decay data of the last 5 years it is timely, as recently em-
phasized by Burnett and Sharpe [1], to pursue a new
analysis of these I=J=O channels so intimately linked
by unitarity. It is this use of the all-embracing constraint
of unitarity that sets both the present analysis and that of
the AMP analysis apart from so many others. In particu-
lar, that by Lindenbaum and Longacre [30] neglects this
constraint, assuming that this can be imposed as a IC ma-
trix afterthought. Although fine in weakly coupling per-
turbation theory, this is difficult to justify for such maxi-
mally strong interactions. In the fitting by the CERN
WA76 Collaboration [34] (to be discussed later), data on
each channel are fitted in terms of resonances and back-
grounds. While the resonances are taken to transmit
from one channel to another, here the backgrounds are
all independent. Of course, unitarity knows of no
artificial distinction between resonances and back-
grounds, but relates only the total amplitudes. Such fits,
lacking the tight straight jacket imposed by unitarity, not
surprisingly find it is relatively easy to describe data on
different channels since these are treated as having quite
independent background components. Unitarity is here
an all-important consideration. A key feature of our
analysis (and that of AMP) is the universality of its treat-
ment of all mm. and EIC final states with the same quan-
tum numbers however they are produced.

In Sec. II we introduce a unitary representation for the
S matrix in terms of the lost function [16]. It is the zeros
of this function which describe resonance poles that
transmit from one process to another. In Sec. III we as-
semble the data on I=J=0 mm and EE channels that we
fit in Sec. IV. Section V discusses our results and com-
pares them with other analyses. Section VI reviews what
these imply for the status of the scalar mesons. In Sec.
VII we conclude.

8
II. METHOD

o I = J =0 TI:X—err. Ref. P,3]

et. [32]
A. General formalism
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FIG. 1. Alternative indications of the I=J=0 m.m spectrum:
(a) elastic cross section inferred from peripheral dipion produc-
tion [43] (o); (b) low-t central production [32] (0).

To very good approximation, the only channels open
to I=J=O mesons close to 1 GeV are the two-body
channels m.m. and ICIC. Other sources of inelasticity are
negligible [7] until rig threshold at 1.1 GeV. To study
these dynamics we shall invoke data not only on the basic
hadronic scattering processes mn. (KK)~rtrr(KK) but on
other production reactions leading to these final states.
For reasons explained later we restrict our attention to
the mass range 0.87 to 1.1 GeV. As a shorthand, we
henceforth refer to I=J=0 as being fo quantum num-
bers. The guiding principle that collates all this informa-
tion is unitarity with some assistance from analyticity.

With ~m and ICE the only strong interaction initial and
final states we need consider below 1100 MeV, we denote
these channels by 1 and 2, so that the associated 7-
matrix elements are
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'T( re ~~sr ):—T„,
'T(~~~ KK ) = 'Ti2,

'T(KK ~KK )—:T~~ .

(2. l)

Although we shall be concerned with the 8-MeV energy
difference between %+K and E K thresholds, the
strong interaction amplitudes for these two channels are
assumed equal in accord with isospin invariance [35] and
so it is only their phase space that differs between them.
For these basic scattering processes, unitarity requires

lm'T» =pi ~'T» ~'+P2~ 'Ti2I'

Im&i2 =Pi Vi ) Vi2+P2&i2 Tiq, etc . ,
(2.2)

with E, the c.m. energy, and 0 the usual step function,
1/2

4m
8(E —4m )E2 vr (2.3)

and

=1P2= 1—
1/2

4m +
8(E —4m + )E2

1+—1—
2

1/2
4m

8(E —4m o),E2 (2.4)

7,~(E)=a(E)Ti,(E), (2.5)

where a(E) is a real function of energy in this region.
For later use, let us introduce here in addition to the "T

matrix elements the corresponding 4 matrix given by

4,, =5,"+2i+p,p T,, (2.6)

where the superscripts + and 0 denote the charged and
neutral kaon masses. Below KK threshold, when p2 =—0,
these require that the phases of the amplitudes 'T» and
T» must be equal, which in turn implies that, for
4m2 &E2 &4m2

9'P' =aIi'(E) 'Ti i+aj''(E) 'T2i,

Wg'=a~P'(E )7„+a~g'(E) V„,
(2.8)

as a consequence of Eqs. (2.2) (Ref. [8]). Such a solution
has previously been written down by Aitchison [36]. The
aI~'(E) are real functions of energy for E ~4m'. Uni-
tarity requires the production amplitude to have the same
right-hand cut structure as the corresponding hadronic
amplitude, but they will, of course, have different left-
hand cuts. Consequently, the functions aI~'(E), which we
can regard as describing the coupling of the initial state p
to channel i, are real along the right-hand cut. Because
the functions aI~'(E) have only left-hand cuts, they can
have little local variation along the right-hand cut. They
can remove zeros of "T; that do not appear in the Pf~'

and similarly eliminate zeros of det "T,
z

and introduce oth-
er zeros, but only for good dynamical reasons, for in-
stance, to satisfy the Adler condition [37];otherwise they
must be smoothly varying functions. Over the limited en-
ergy region we study here, the residual part of aI~'(E)
will be represented by low-order polynomials in E .

To explain this simply, let us consider first the single-
channel case that applies for 4m „&E &4m&, when uni-
tarity requires

Pi '=~'i '(E)Tii(E)=~/'(E)Tip(E) (2.9)

[cf. Eq. (2.5)], where the a;(E) are real for E &'4m, and
having only left-hand cuts must be smooth in this region.
Now the amplitudes T»(E) and T,2(E) have zeros close
to threshold at E=E» and E=E,2, respectively. Both
are the on-shell manifestations of Adler zeros. If the
smooth functions a;(E) were simply polynomials, Eq.
(2.9) would imply that every production amplitude, re-
gardless of the process, would have a zero at E=E]] not
to mention requiring E» =E,2, which is, of course, not
true. Thus, the a;(E) cannot be represented just by poly-
nomials in E, but must contain poles to remove zeros of
'T» and T,2. Thus we would parametrize the a, 's in this
example by

Imr '=iP, P'i "'T„+p Pg'*7, ,

lmd&'= P, WP'* V „+p,dg'* V„. (2.7)

Strictly, this form of unitarity only applies to nonhadron-
ically initiated reactions, such as yy~m. m(KK). Howev-
er, it naturally extends to multihadron decays such as
J/P~gmvr(KK), where only two of the final-state parti-
cles undergo strong interactions, and the third, here the
P, is merely a spectator. These notions can be further ex-
tended to central production processes, such as
pp~ppm. n.(KK), which may be interpreted as a double
Pomeron reaction PP~mvr(KK) (cf. Ref. [8])..

The unitarity equations, Eqs. (2.7), are satisfied by

For each set of production processes, p, such as
AB —+em, AB ~XX, we denote their amplitudes by
9'f', Pz~', where p= AB. For such processes, unitarity
imposes the linear constraint

a;(E)=a;(E)+
s sp

(2.10)

where the residual part a;(E) can now be represented by
a polynomial in s =E and where sp Elj and
'TJ. (E;z )=0. In practic. e, the Adler zero [37] is the only
known example of such a zero.

In the two-channel case that applies in our study we do
not just have to be concerned about zeros of T» and 'T, z,
which need not transmit to the production amplitudes,
but we also have to worry about the vanishing of detT.
Imagine this occurs at E =Ep where sp =Ep. Now if the
a; have no pole at s =sp, then not only would
'Tii/'Ti2= 'Ti2/'Tqq ——~ at s =so but Eq. (2.8) would mean
that a=Pe'/9'z~' without having to measure the cou-
plings to these production processes —again this cannot
be true. Thus, we must allow the a; to have poles, but
only at the position of the vanishing of the determinant of
T. This can only happen below KK threshold, where the
two-channel amplitudes have related phases. In practice
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we find the relevant hadronic amplitudes do have such a
zero. We therefore parametrize the a s in a way analo-
gous to Eq. (2.10), viz. ,

a(ii') (E)=a('~'(E ) +
g(p)

S Sp

a2(~)(E ) =a2'~'(E)—
g(p)

s sp

'T(2(Eo )

(2.11)

The residual parts a P' will be represented by low-order
polynomials in s:

max

(P)(E) y P(P) m

rn =0
(2.12)

ki =—,'QE —4m k2 = ,'+E 4mx, ——(2.13)

Formally, all this can be expressed in terms of an eigen-
value problem [38].

A further consequence of unitarity, vital for our discus-
sion, is that it requires that resonance poles be universal,
i.e., a given resonance pole occurs at the same complex
energy E~ in all processes to which it couples. This is
automatically built into our solution, Eqs. (2.8). The uni-
tarity equation, Eq. (2.2), expresses the singularity struc-
ture of 7; (E) that a. rises from successive opening thresh-
olds. As described in the Introduction, the resulting
sheet structure of V; (E) has to be. taken into account
when a resonance occurs close to a threshold. For two-
body scattering, the phase-space factors p;(E) of Eqs.
(2.2) —(2.4) contain terms QE —E, „), ,i)dwith a plus
and/or minus ambiguity which feeds through into the
scattering amplitudes. The statement that "T, (E) has a
resonance pole at some complex energy Ez is therefore
incomplete without specifying on which sheet it lies, as
emphasized in the Introduction. In practice, the distinc-
tion only matters for a resonance close to a threshold to
which it strongly couples. In other circumstances, only
the pole on the adjacent unphysical sheet is important
[15].

The question of the number of poles and sheet location
is crucial for distinguishing resonance mechanisms in our
approach [11,12]. We therefore need a parametrization
for 7; (E) (or equivalently ()';J) that keeps track of these
features. This is provided by the Jost function represen-
tation [16]. In this approach, one considers the scatter-
ing amplitudes as functions of k, and k2, the appropriate
channel c.m. momenta, i.e.,

Eqs. (2.14) become

4((( =ge— ) =4*(—ki )/N(k~),

&„(—=ge )=&(—k, )/C(k, ),
detS( =e ) =@*(kz )/C&(k2),

(2.15)

where for later use we introduce the conventional
i)exp(2i5) notation for the 4-matrix elements. Charac-
terizing resonances by their value of k2, rather than E,
automatically specifies the sheet. The k2 plane, thereby,
unfolds the sheet structure of the energy plane, each
quadrant of the k2 plane corresponding to a distinct
sheet, I—IV, of the energy plane as numbered in Sec. I (cf.
also Fig. 2).

n
tQ
O

X

merely as functions of k2. Although k2 is defined for the
average mx, Eqs. (2.13), we make allowance for the
X*,L mass difference using the standard prescription
[35]. In computing KK cross sections and spectra we use
the appropriate physical mass in the phase-space factor,
cf. Eq. (2.4). With the identifications

J(k„ki )~N(k~ ),
J( k, ,—k~)~4&'( —ki ),
J(k„—k2 ) ~4&( —k2 ),
J( —k„—k2)~@'(k~ ),

where m, mz are the respective masses averaged over
the charge states. Unitarity then specifies very simple
forms for the corresponding 4-matrix elements:

inelastic
threshold

energy

4„=J( —k„k2)/J(k(, k2),

$22 =J(k „—k2 )/J(k „ki),
detS=J( —k„—k2)/J(ki, k2) .

(2.14)

In the KE threshold region that is the focus of the
present work, there is no sign ambiguity for k, . Conse-
quently, the expressions J of Eq. (2.14) may be treated

FIG. 2. Sheets of the energy (E) plane and how they unfold
into different quadrants of the k2 plane. This latter figure illus-

trates how a resonance pole ( X ) induces a zero of S» (0) at the
mirror position in the imaginary axis so that the depicted angle
relates to the phase shift 6„.



1190 D. MORGAN AND M. R. PENNINGTON 48

Equations (2.15) immediately suggest strategies for
constructing +'s that manifest specific resonance charac-
teristics. To secure a resonance pole at E=Ez on a
specific sheet we only need to impose a zero of @ at the
corresponding k2 value, kz = ,'Q—Ez—4mx. A natural
way to do this is to express the Jost function as a product
of terms. These terms embody both resonances and back-
ground by writing

q res@bkgd (2.16)

where

@res
n& k21— (2.17)

appropriately having the zeros associated with poles of
the 4 matrix and representing @ by an entire func-
tion, for example,

N "s =exp g y„k2
n=0

(2.18)

B. Signatures and characterizations of
inelastic S-wave resonances

Before proceeding to the details of our analysis and the
description of the results, we briefIy review some general
aspects of resonance characterization. In this we have

This ensures the S matrix has no other poles than those
explicitly implanted through the zeros of @"'. The
coefficients, y„of Eq. (2.18), are in general complex num-
bers. Inspection of Eqs. (2.15)—(2.18) reveals that the real
parts of y„ for even n cancel between the numerator and
denominator in the 4-matrix elements, Eqs. (2.15). Thus,
these may be set to zero. Such a representation as Eqs.
(2.16)—(2.18) has a limited range of applicability. It only
includes the singularities near to EK threshold. It does
not encompass gg threshold, or the more distant fo(e)
pole [39], except as a background feature. Thus for the
present purpose we restrict its use (and the data we con-
sider) to the range 0.87~E~1.1 GeV. The product
form of 4, Eq. (2.16), means we can attribute specific
contributions to the inelasticity g and to the phase shifts
5 „and 6zz arising from each pole and from the back-
ground. That the ensuing g and 5 (5xx) be in accord
with physical requirements places restrictions on the pa-
rameters entering N. Obvious stipulations are that there
are no poles on the physical sheet and that ~ri~

~ 1. This
latter condition has to be probed each time parameter
values are changed. This is an undoubted practical disad-
vantage of the Jost function representation but, for the
present purpose, more than compensated by having the
number and type of poles under control.

A further requirement is that the background's energy
variation should be physically reasonable, such as could
arise from available exchanges and from broad reso-
nances that couple to our system. We shall take back-
ground phase variation of (say) 30 over and within the
range from KK threshold to 1.1 GeV as the maximum
possible for both 5 and 5zz.

E =M iI —/2. (2.19)

These quantities are known to be highly stable against
changes in the parametrization of the physical cross sec-
tions [40]. They are therefore the optimal quantities for
comparing signals of a given resonance R from different
processes and experiments; wherever possible they should
have pride of place in compilations such as the Particle
Data Group tables. If more than one pole controls the
resonance, all need to be supplied and the sheet specified.
In what follows we will indicate this by an appropriate
superfix: Ez =Mz i I z—/2 (—N = II, III). There is in
principle additional information in the complex residues,
c1 2 of the scattering amplitude at each pole E„,but be-
cause of the way unitarity constrains the amplitudes, it is
only of secondary interest; we therefore do not emphasize
the residues in what follows but concentrate on the reso-
nance poles.

The relation between such poles and characteristic res-
onant features of the data is very direct in the Jost repre-
sentation of the S-matrix elements, Eq. (2.15). Suppose,
for example, that N(k2) is controlled by poles on sheets II
and III and a background phase (thus a sort of cut-down
version of our actual two-pole fit to be described below).
The diagonal S'-matrix elements are then given by

N =II, III

1+k2/k 2~II
N=II, III

exp(2i5~ ),
(2.20)

Each pole supplies a multiplicative factor to 4» and Sz2
and these have an obvious geometrical interpretation in

two main objectives: to recall key features of other work
and the philosophies that inform them and to provide an
intuitive feel for how our analysis actually distinguishes
alternative resonance types. Most of the following dis-
cussion applies to all situations where an S-wave reso-
nance adjoins a strongly coupled inelastic threshold, not
only fo(S*) but its companion 0++ meson, ao(5), and

baryons such as A (1405), N (1535), and X (1750).
Some of the aspects to be commented upon show more
clearly for these other cases, notably ao(5). In particular,
f0(S*) shows in its elastic channel mm ~vrrr as a dip rath-
er than a bump owing to the substantial background
phase, 6z =90, that is present. In order to see
fo(S*)~crier as a peak one needs to view a suitable pro-
duction or decay reaction, e.g. , 1/P +Per~ —(see Fig. 8).

The first aspect that we discuss is the quantitative char-
acterization of resonances —the mass, width, branching
ratios, and so forth —that one may and should assign to
the observed experimental signals. According to
viewpoint, widely different values are extracted from the
same experimental information; thus for the ao(5), width
values ranging from 50 to several hundred MeV are in-
ferred on the basis of the same data. Let us recall how
these divergences arise.

The most efficient primary characterization of a reso-
nance R is in terms of its complex resonance poles
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+( ) = [mo —s —ipig t
—ip2g2]e (2.21)

Aside from the background phase, this bears the canoni-
cal three parameter for a simple inelastic resonance-
the mass mo and the two coupling constants g&,g2. In
place of g 1, the corresponding true partial width 1 0 to the
lighter channel

I O=g, p, (mo)/mo (2.22)

is often cited. How does such a three-parameter descrip-
tion relate to the four parameters from the resonance
poles Et't and EJt" of Eq. (2.19)? (By sending Et't' to
infinity we include the one-pole case in the following dis-
cussion. )

We can provide a schematic answer to this question by
matching the expressions for the simplified Jost function
of Eq. (2.20) and the (BW) version of Eq. (2.21). For this
idealized case we find that kzz and k2'„' depend on just
three parameters:

terms of the k2-plane mapping of the energy plane (lower
part of Fig. 2). In particular, for Stt, the pole at k2tt is

necessarily accompanied by a zero at —k2&. Thus the
phase shift 5 (E) is directly related to the angle subtend-
ed by the line joining k2(E) to k2tt (Fig. 2). This is why a
sheet II pole is needed to describe the rapid phase move-
ment associated with the fo(S') below XK threshold and
why the associated pole parameters are the best deter-
mined characteristics of fo(S*). The existence and loca-
tion of any additional sheet III pole is a much more deli-
cate issue only to be decided by detailed confrontation
with data such as we describe below (cf. Sec. IV).

The notation Mz, I tt of Eq. (2.19) is intended to evoke
the concepts of mass and width but other measures of
these quantities play an obvious role. For resonances of
the type considered here these can differ appreciably. In
the first place, there are the observed peak position M,b,
and corresponding full width at half maximum into the
elastic channel, I,b,. These have the obvious merit of re-
lating directly to experiment but vary from process to
process. Alternative, more theoretically tinged parame-
ters mo, I 0, and g2/g, arise when a Breit-Wigner (BW)
description with energy-dependent widths is employed.
Although this has been a popular parametrization since
the pioneering discussion of ao(5) by Flatte [41], it would
not serve for our present main purpose, since it is rather
restrictive and, in particular, its use prejudges the num-
ber of poles (the two-channel BW form necessarily has
poles on sheets II and III). However, it does highlight
conventional resonance parameters and also furnishes a
very convenient two-pole example to contrast with a
one-pole description. Let us consider these two aspects
in turn.

The (BW) description entails a Jost denominator

and (inserting p, =1)
—

( I II +PIII ) /2 (2.25)

Provided g2 is not too large (g 2 ((4m'. [m, ( mt't'

—mzn)]' ), we also obtain

m, =(m "+m"')

Finally, from Eq. (2.24),

2
g 2 mac

g( CX

y P
y+P

(2.26)

(2.27)

TABLE I. S-wave resonance coupling to an opening inelastic
channel; inhuence of relative squared coupling to the elastic and
inelastic channels (g I /g2) on Breit-Wigner parameters (mp I 0)

and sheet III pole position ER"——MR" —i I R'/2 in a simple mod-
el [Eq. (2.21)] with fixed sheet II pole specified by Ms =988
MeV and I R =48 MeV.

We propose Eqs. (2.25) —(2.27) as working definitions
even when using more complicated and realistic Jost for-
mulas such as the data require. Although the above de-
tailed identifications do not then all apply [since the real
parts of k z~ and k zz are no longer related precisely as in
Eq. (2.23), we use a=Re(k2'tt k2ntt )/—2 when evaluating
Eq. (2.27)], qualitative features should remain valid.
Thus, k2~~ should lie deeper than kznz [y)p from Eq.
(2.24)] and consequently I z' be larger than I ~. This ex-
plains why E~ is harder to establish and fix than Ez.
another reason for giving primacy to the separate pole
parameters of Ett' and Et't' In dis. cussing the ao(980),
Flatte [41] and other authors [42] have stressed that I 0
will certainly be larger and may be much larger than the
corresponding observed width which is narrowed by cusp
effects from the opening KK channel. This is rejected in
Eq. (2.25) through I tt' being larger than 1 tt.

We can study such effects in the context of the (BW)
model of Eq. (2.21). A simple exercise along these lines
explicitly directed to fo(S') phenomenology is described
below. E"+ is held fixed at a typical value and C =g, /gz
varied. Some resulting E + and mo, I 0 values are listed

in Table I. In addition to the trends already mentioned,
mo is seen to come out increasingly smaller than mz as
C —+0, a kind of mass renormalization implicit in the
(BW) formalism.

Similar renormalizations occur in Tornqvist s prescrip-
tion [2] for modeling how final-state interaction effects
distort meson spectroscopy but work in the opposite
sense so that his bare masses come out larger than the ob-
served ones. For the scalar family, his specific objective
was to demonstrate that a conventional (0++) nonet
could be reconciled with unconventional appearances by

k,"~ = a+iP, k—,"~t =a i y . — (2.23)
C

=R&f gZ

mo
(MeV)

r,
(MeV)

III
mR

(MeV)
I III

R

(Mev)

g'1=4a(y+&» g2=4mK(y (2.24)

If we further assume all k2 momenta are small we discov-
er

0.3
0.5
1.0
5.0

959
976
983
987

102
70
57
50

852
953
977
986

230
98
66
52



1192 D. MORGAN AND M. R. PENNINGTON 48

making appropriate allowance for final-state interactions.
He did this by modifying (BW) propagators in a model
dependent but not unreasonable way. Nowadays, there
are simply too many scalars for such a picture to be the
whole story but some variant may still have a role in in-
terpreting the observed spectrum.

We now turn to the second topic of this subsection:
understanding via illustrative examples how measure-
ments of the phase, 5, and inelasticity, g, allow
different pole topologies to be discriminated. We there-
fore compare an amplitude with one pole in the k2 plane
(and no other structure) with a family of amplitudes con-
taining two poles. For the latter we use the (BW) form
equation Eq. (2.21) referred to above. The ratio (g, /gz)
of the squares of the couplings to channels 1 and 2 is the
variable we call C. To make these models close to the
real case we consider in Sec. III, the one-pole and two-
pole amplitudes are constructed to have the same sheet II
pole at E' =0.988—0.024i GeV and the phase 5 =176
at KK threshold. While both amplitudes have this sheet
II pole, only that given by the Breit-Wigner formula has

a sheet III pole. When C is large, this pole is mirror sym-
metric in the kz plane with the sheet II pole, i.e.,
k2" = —kz'. However, as C decreases the sheet III pole
moves further away from the origin at KE threshold,
coming within the ambit of the rule stated in Sec. I. Fur-
thermore, in the limit C —+0, this pole has moved off to
infinity and the amplitude becomes the one-pole form.
Thus, by considering a family of two-pole amplitudes
with variable ratio C we can see the effect of the second
pole.

Our model amplitudes for various ratios of couplings,
C, give the phase shift 5 and inelasticity g shown in
Fig. 3. These plots highlight how the behavior of these
observables is quite different, if C is small or large.
Indeed, the variation is sufficiently marked that it is not
unrealistic to believe that experimental data can distin-
guish these possibilities. In Sec. III we detail the data we
use for this purpose.

III. DATA SEI.ECTION

270

210

Two- pole
forms.

150'

90~

Two-
pole
forms.

I

0.92
I

0.96
0.2

1.00
M (GeV)

(0.0)

I

1.04

One- pole
form.

I

1.08

FIG. 3. Different ways a resonance can couple just below an
inelastic threshold illustrated by simple models. The curves
showing 5 and g vs M( =&s ) correspond to alternative one-
and two-pole forms possessing a sheet II pole at 988—24i MeV
and yielding a phase shift 6 =176' at threshold. These re-
quirements fix the chosen one-pole form, which is based on a
constant K matrix, and reduces the variability of the two-pole
form adopted (Breit-Wigner with a channel 1 background
phase) to a single parameter, C=g& /g& by which the two pole
curves are labeled. C =0 recovers the one-pole form.

The deep and narrow minimum in the I=J=O m~
elastic cross section (Fig. 1) coupled with the sharp onset
of inelasticity at KI7 threshold [7] inescapably signals a
narrow dynamical structure strongly coupling to the KX
channel. This is the f0(S*),the nature and parameters of
which we aim to determine in this analysis. In principle,
highly precise data on the three reactions: msgr~~~,
mm~KK, and KK~KK would suKce for this task. The
information on such processes is extracted from experi-
mental results on high energy dimeson production at
small momentum transfers, where these reactions are
controlled by one-pion exchange or one-kaon exchange.
Although high statistics experiments, notably by the
CERN-Munich Collaboration [43] and by LASS [44],
have been performed, the information on I=J=O chan-
nels is the least well determined in any partial wave
analysis. Scrutiny of narrow effects requires good energy
resolution. However, such dimeson production experi-
ments do not provide this, 20-MeV bins being typical.

What is more, a glance at the compilation of ~+~K%
cross sections (with fo quantum numbers) in Fig. 4 illus-
trates how poorly these are known. Moreover, even an
experiment with enormous statistics, such as LASS [44],
yields merely a handful of events on %+K ~K,K, near
threshold. Thus, the V'-matrix elements are undercon-
strained by these classic meson-meson scattering data.
Consequently, one casts the net wider to encompass pro-
duction processes and decays. It is at this point that the
extended unitarity of Sec. II, Eq. (2.7), is involved, since
this relates all channels with ~m and KE final states.
Many such production processes and decays not only
favor the quantum numbers of interest, but also allow
fine-energy resolution so essential for delineating narrow
effects. Notable among these reactions is central dimeson
production in pp~pp(M, M2). At very small momen-
turn transfers and at high energies, this process is dom-
inated by double Pomeron exchange ensuring the
dimeson final state has I=0. Data on this process in this
ultralow

~
t

~

domain are provided only by the AFS Colla-
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1.05

N(KK ) GeV

FIG. 4. Compilation of mm —+KK I=O S-wave cross-section
measurements expressed in terms of 1/4(1 —g ) vs KK mass:
(~) Cohen et al. [27], ( T ) Etkin et al. [26] (as normalized in

[26]), ( A ) Polychronakos et al. [29], (4) Wetzel et al. [28], (0)
Longacre et al. [30].

boration [32]. Here too the m.m. cross section has a precip-
itous fall in the 1-GeV region (Fig. 1).

Unitarity not only forces a close conformity between
such production amplitudes and those of meson-meson
scattering, but it does so for decay amplitudes too when
all final-state particles other than m.m and EE act as spec-
tators. Thus a most valuable addition to our analysis is
the decay J//~germ(KK) [22—24]. Experiments allow
a 10-MeV mass resolution with reasonable statistics and
the DM2 results [22] are confirmed by Mark III [23]. In
terms of the quark line rule, these processes may be
viewed as ss ~m n (KK) or equivalently off-shell
"KK"~em(KK). Thus, these data are a natural supple-
rnent to the less than perfect m m. ~KK information.
Moreover, the dynamical structure near 1 GeV appears
as a sizable peak (not a dip) in the n.m channel (in confor-
mity with the quark line rule expectation). Conceptually,
the decay D, ~m.(n.m. ) is very similar and has been mea-
sured by Anjos et al. [25]. Thus we include their results
too, though information on the related D, ~n (KK )

mode is not reported.
On the face of it, the radiative decay J//~

yes

vr would
provide the ideal constraint along these lines. Unfor-
tunately, this final state can be confused with m(mn), in. . .
which only one photon from the m. decay is detected.
This contamination is dominated by the mode
J/f~m. p, which, having a sizable branching ratio, dis-
torts the mm. mass spectrum in the region we consider

(viz. EC[0.87, 1.1] GeV). Consequently, we have to ex-
clude these data. Other decay modes, such as
J//~comm. , on which copious data have been taken,
have no inactive spectator in the final state. Since they
have overlapping cross bands on the Dalitz plot, comput-
ing their final-state interactions is a complicated problem
in three-body dynamics, which does not simply constrain
the V;J.

We now give a catalogue of the specific data with fo
quantum numbers we use in our analysis. These are
grouped in four sectors labeled henceforth by (a) —(d).

(a) Classic meson-meson scattering. This effectively
supplies 105 data points, as follows.

The phase-shift 5 „and inelasticity g from
(i) the energy-independent analysis of the CERN-Munich
data [43] and (ii) from the experiment of Cason et al.
[45].

mm~KK: The cross section in the form of (1—vP)/4
from the experimental results of (i) Cohen et al [27],. (ii)
Etkin et al. [26] (as normalized in Ref. [30]), (iii)
Longacre et al. [30], (iv) Polychronakos et al. [29], (v)
Wetzel et al. [28]. These are compared in Fig. 4 and
commented on below. The partial-wave analyses of these
experiments also determine the S-D wave phase
difference Psi, which we use too.

E+E EzE&. The LASS experiment provides re-
sults on K p ~KsKsA, as analyzed by Aston et al. [44],
which we assume can be related, up to an energy inde-
pendent constant, to the corresponding E +E
~X&E~ I=0 5-wave cross section.

All told, there are 63 items of raw data in this sector,
but we give mm phase and inelasticity information
enhanced weight because our input for these is only a
selection of what is available.

Where there are data from more than one experiment,
these are in agreement, except in the case of mw —+EE.
Consequently, we need to comment on how we treat
these latter data. As seen from the compilation of Fig. 4,
the mm~EE cross-section results are in general accord
apart from that of Longacre et al. [30] (note, however,
that the earlier BNL/CCNY results of Etkin et al. [26]
were actually normalized to those of Cohen et al. [27] in
Ref. [26] and used by AMP, cf. Fig. 8 of Ref. [26]). Rath-
er than distort our fits by using inconsistent data sets we
have been advised [46] to apply a free normalization, to
be called E in Sec. IV, to the results of Longacre et al.
[30] and to those of Etkin et al. [26] as reinterpreted in
[30]. We will comment on what happens if this is not
done in Sec. IVB below. In addition the partial-wave
analyses of these same EE experiments determine the
S-D interference. In the region of interest, the I=O D
wave is controlled by the fz(1270) resonance with known
phase variation. We pararnetrize this using the form
given in Ref. [8], Eq. (3.24).

(b) Central dimeson production provides nine data
points as follows.

pp~ppmm(KK): Cross-section results from the AFS
collaboration on central dimeson production as analyzed
by Cecil [32]. As discussed in Sec. I, the status of the first
K+K datum has changed. In the AMP analysis [8], it
was taken to be the cross section in the energy bin from
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1.0 to 1.05 GeV. It is now believed to be that from
K+K threshold up to 1.05 GeV [33].

(c) J/g decays with 81 data points as follows.
J//~germ(KI7): Dimeson mass distributions from

DM2 [22], Mark III [23], and Mark II [24]. These results
have not been partial-wave analyzed, but are assumed to
have J=O.

(d) D, decay with 9 data points as follows.
D, ~m(~~): arm mass distribution from the Fermilab

experiment E691 by Anjos et al. [25]. Again these re-
sults have not been partial wave analyzed, but are as-
sumed to have I=J=0.

IV. FITS: ALTERNATIVE TYPES QF
SQLUTIQNS CQMPAREB

A. Choice of parametrization

Operationally, the task we have set ourselves is to dev-
ise alternative one-, two-, and three-pole fits to the above
collection of I=J=0 nm and KK scattering and produc-
tion data covering the dimeson mass range 0.87 to 1.1
GeV. The data to be fitted will be considered in the four
broad sectors (a) —(d) just listed in Sec. III. These supply
a total of 204 data points.

Our detailed parametrization follows exactly the
method outlined in Sec. II [Eqs. (2.15)—(2.18), (2.6), (2.8),
(2.11), (2.12)]. We require one group of parameters to
specify the basic crier(JI:K)~~sr(KK) scattering ampli-
tudes, T;, which within our method means constructing
the Jost functions, Eq. (2.15)—(2.18). A second group of
parameters is then needed to relate the various produc-
tion processes (p) that we invoke [data sectors (b), (c),
and (d) of Sec. III] to the 7;J. According to Eq. (2.8) that
entails providing for each production process (p) the
coefficients for the effective coupling functions a~~I(E) [the
P's and A, of Eqs. (2.11) and (2.12)], where necessary aug-
mented by overall normalization coefficients for individu-
al experiments. We allocate the corresponding fit param-
eters as follows.

Sector (b): Central dimension production (PP
~M, M2) five parameters.

Sector (c): J//~PM, M2 seven parameters. Sector (c)
involves three experiments, each of which requires its
own overall normalization to be fitted since only the
event distribution is given in each case. Consequently,
the treatment of the number of parameters is equivalent
to that for (b).

Sector (d): For D, —+(M, M2)~ with much less data
and only the ~m final state we allow three parameters.

The above 15 parameters appear in all our fits. In ad-
dition we have the special renormalization parameter K
used with the BNL-CCNY (1987) vrm ~KK data [30] and
a normalization constant Cz referred to above, needed to
relate data on E p~KsKsA [44] to the associated
KK ~K% cross section. This gives 17 parameters in all.

It remains to specify the Jost function, N of Eqs.
(2.15)—(2.18), and consequently the T-matrix elements
Y;~. This is the point at which one-, two-, and three-pole
alternatives we consider are implanted by allowing the
corresponding number of complex zeros in W"', Eq.

(2.17). We then need to select a form for the associated
background contribution, Eq. (2.18). In this, our concern
is to compensate for the additional fit parameters that ex-
tra zeros bring. In total, 4 receives n, +=2n~+n~ pa-
rameters from its n~ poles and nz background
coefficients, Eqs. (2.17) and (2.18). For our one-, two-,
and three-pole fits to be reported below the allocations
are 1 pole (fit 1) n~ =11 (nt, =1, nit =9), total number of
fit parameters 28, 2 pole (fit 2) n@ = 8 (nt, =2, nti =4), to-
tal number of fit parameters 25, and 3 pole (fit 3) n@, =10
(nt, =3, nti =4), total number of fit parameters 27. These
are deployed in fitting our 204 data points. Notice that
fit 1, to be reported below, has several more parameters
than those of fit 2, in particular. Our first attempts at
fitting used equal numbers, but fit 1 proved so inadequate
that we added extra background coefficients.

240
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FIG. S. I=J=o mm phase shifts, 5, and inelasticity, g, ac-
cording to our fits: fit 1 ( —~ —~ —-), fit 2 ( ), fit 3 ( ———

)

compared to data from [43] () and [45] (E).

B. Results

Extracting genuine minima of g for such a hetero-
geneous data collection and relatively complicated pa-
rametrization is far from straightforward and some care
was needed to achieve our alternative one-, two-, and
three-pole fits. Our results are as follows (see Table II
and Figs. 5 —8). Inspecting first the results for the total y2

per degree of freedom, we see that a two-pole type of fit
(fit 2) is strongly preferred giving a very adequate
y /XD„of 1.12. The corresponding 3-pole (fit 3) and 1-
pole (fit 1) fits are appreciably poorer with y /XD„
values, respectively, of 1.56 and 1.72. (In terms of the ac-
tual values of y, fit 1 is 5 standard deviations and fit 3 is
4 standard deviations poorer than fit 2.) The outstanding
feature of fit 2 is its success with the production processes
(b), (c), and (d) as borne out by the y /NDF for the corre-
sponding sectors (Table II) and the associated fits (Figs.
6—8). It could fairly be stated that these experiments,
especially those yielding information on J/itj~g~~
[22,23] (Fig. 8), provide the clearest signal for the fo(S*)
of any data that are available. It is these same data that
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TABLE II. y breakdown for the alternative fits described in the text. Each is the optimal specimen of its type characterized by
the number of resonance poles on sheet II (n") and sheet III (n'"). Columns 3—6 list y contributions from individual data sectors:
(a) "elastic" information, (b) central production, (c) J/P, and (d) D, decays; corresponding g~/Xz, „val ues are written below in square
brackets.

Fit
No. of

parameters (a)
Sector contributions to y

(b) (c) (d) 2
stot X /NDF

Fit 1

(one pole)
II

1
III 0

28 154

[1.64]

17

[4.25]

130

[1.81] [0.33]

303 1.72

Fit 2
(two poles)
II 1 III

25 130

[1.34]

2.2

[0.55]

66

[0.92]

3.1

[0.52]

201 1.12

Fit 3
(three poles)

2

27

[0.99]

16

[4.0]

152

[2.11]

14

[2.33]

276 1.56

No. of data points (105) (9) (81) (9) (204)

play the key role in disfavoring fit 1 as compared to fit 2
with y /NDF almost doubled for this sector (c). (To see
how this arises requires close inspection of Fig. 8.) Fit 3
is likewise heavily disfavored by the J/g decay data and
also somewhat by central dimeson production data and
D, decay information. Note that the central production
results were the very data that, in the AMP analysis [8],
indicated a three-pole solution. It is likely that this
difference mainly arises from the revised information on

the EK acceptance near threshold discussed in Sec. I.
The domain where fit 2 is less successful than fit 3 is

the combined scattering data, sector (a); fit 2 scores
y /NDF =1.36 to fit 3's 1.0 and fit 1's 1.64. As already
discussed, this subset of data is the most problematic,
lacking the detailed precision and compatibility to
discriminate solution types and fix resonance parameters
definitively. A glance at Figs. 5, 6, and 7(d) showing
K p X&E&A spells out the problem. Even the mm
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1 I 1
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FIG. 6. Fits to I=J=0 ~m ~KX information from [27] (~), [28] ($), [29] ( A ), [26] (as normalized in [30]) (V) and [30] (o). The
upper plots show the values reported for &,2 =(—')(1—g2). (For fitting to the data from [26] and [30] a common overall rescaling fac-

tor was allowed and the measured o'» fitted to (E /4)(1 —g ) with K chosen by the fit; results for K were 1.93 (fit 1), 1.91 (fit 2), 1.98
(fit 3).) The lower plots refer to SD interference expressed as cosgsD =—cos(Ps —PD) with PD taken from a conventional Breit-Wigner
form (cf. [8] Eq. (3.24)) using standard f2 (1270) parameters.
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phase-shift information on 5 and g is missing and im-
precise just where it is needed most. Above all, various
experiments bearing on the crucial ~m~KK input have
large discrepancies in overall normalization as mentioned
in Secs. I and III. Fit's 1, 2, and 3 were all generated al-
lowing a free overall normalization, K, for the BNL-
CCNY information [30] on (1—r) )/4. If this freedom is
removed, the y increases appreciably; for the two-pole fit
g /NDF goes from 1.12 to 1.9 with the increase coming
entirely from the m.~—+%K sector where g increases
nearly threefold.

An alternative approach to the discrepant +~~XX in-
formation is to decide that the two groups of data segre-
gated on Fig. 6 (respectively, Refs. [27—29] and [26,30])
cannot both be right as to their overall normalization. In
our main fits we have assigned the normalization uncer-

tainty to the BNL-CCNY analysis [30]. If, instead, we
take the published BNL-CCNY normalizations and allow
a free (overall) normalization to the data of Refs.
[27—29], g is still increased but not markedly; for a two-
pole fit y /ND„goes from 1.12 to 1.30. Perhaps surpris-
ingly, the pole positions are little affected.

The result of our fitting is that fit 2 is strongly favored
over fit's 3 and 1 in terms of y . However, it is the supe-
rior internal consistency of the fit 2 amplitudes that
makes it so compelling, as we now discuss.

C. Selection of preferred solution type

The AMP description of the fo(S') (with two reso-
nances, three poles) [8] is not favored by the present en-
larged and modified data set. As a distinctly nonminimal
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description of the S* region, it must now be reckoned an
unlikely runner. This finding could be upset if the hint of
a sharp peak at threshold in X p —»KzKzA [Fig. 7(d)]
were to be confirmed in this or any other reaction with
KIC final states (e.g., Fig. 8).

We now seek to distinguish alternative descriptions of
the fo(S*) using the test involving the existence and loca-
tion of additional sheet III poles outlined in Sec. I. As
will be recalled we aim to distinguish the two possibilities
that the fo(S') is (a) a KK molecule and (b) a primary
QCD compound. As will further be recalled, the essence
of our test is as follows: a molecular description should
have only one nearby pole (which necessarily lies on sheet
II). A system that possesses nearby poles on sheets II and
III cannot be a molecule; therefore, it must be a primary
QCD compound, such as a qq, qqqq, or pure glue state.
We have already reported first results from such a test
[11] concluding that the molecule description of the
fo(S') is disfavored. Subsequent fitting, reported here,
has merely served to reinforce our earlier conclusion.
Our two-pole fit has actually improved from that report-
ed in Ref. [11], fit 2 now has g /ND„=1. 12 (Ref. [11]

had 1.32); fit 1 remains unchanged at g'/NDF=1. 72.
The margin of preference for fit 2 has markedly im-
proved.

We note that fit 2 does not merely possess two poles,
but two nearby poles in the sense of our rule. Both pole
positions for fit 2 have

~ k2 ~

~ 0. 13 GeV (Fig. 11); for com-
parison, the range R used in the Weinstein-Isgur DEC po-
tential calculations [4] is 0.8 fm yielding (itic)R '=0.25
GeV.

The final step in selecting a two-pole description comes
from detailed examination of the various components of
the phases and inelasticity depicted in Fig. 9. This exhib-
its for fit's 1, 2, and 3, the components of 5, 5zz, and g
arising from poles and background. [Recall that a given
pole (or background) contributes additively to the 5's and
multiplicatively to g, cf. Eq. (2.15).] For the present pur-
pose we concentrate on the plots for fit's 1 and 2, noting
that for fit 2 the background is smooth and small, as
befits a background. The background for fit 1 is, in con-
trast, highly structured and large (see especially 5+x.)

with a behavior strongly akin to that arising from the
sheet III pole in fit 2. Background phase variations of fit
1 over the energy range considered far exceed the 30' lim-
it that we estimated as reasonable on the basis of known
broad resonances and thresholds (cf. Sec. II). We thus
conclude that fit 1 looks unphysical. Attempts to make
the background amplitude in fit 1 less structured dramat-
ically decreases the quality of the fit. Thus its compara-
tive success in fitting such a wide range of data is only
achieved by the background amplitudes mimicking what
the sheet III pole of fit 2 naturally provides. This not
only rules out the molecular ascription for the fo(S*) of
fit 1 but highlights the internal consistency of fit 2. Thus

is not alone in pointing to a two pole, Breit-Wigner-
like, resonance, but the whole structure of the amplitudes
speaks to this. It is this that compels the preference for a
nonmolecular assignment for the fo($*).

-6Q-
V. COMMENTARY ON THE RESULTS
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FIG. 9. Pole and background components of the fitted

~~~a~ phase shift, 5,KE ~EX phase shift, 5«, and inelas-
ticity, g, as functions of M—:&s for fit's 1, 2, and 3 discussed in
the text. The various additive components of 6 and 5«are
labeled II (III) from the poles on the corresponding sheets
(dash-dot lines), b from the background (dashed) with the result-
ing total represented by the full line. Likewise for the multipli-
cative factors of q. For fit 3 the two sheet II pole contributions
are distinguished as II& and II,.

A. Pole structures in fit's 1, 2, and 3

All the poles featured in our fit's 1, 2, and 3 are listed
in Table III in the form Ez =M+ i I z /2 Also—shown.
is the pole position extracted by the present authors from
scattering amplitudes supplied by Weinstein and Isgur
[47] using their KK picture of the fo(S*) [4]. As would
be expected, there is just one pole near threshold, which
lies on sheet II.

All the above pole locations, together with the Particle
Data Group (PDG) 1992 average discussed below [48],
are shown on the energy plane in Fig. 10, along with the
corresponding information from the three-pole solution
of AMP [8]. Sheet II poles are depicted by solid symbols,
sheet III poles by open symbols with alternative fits dis-
tinguished according to the legend given in the figure
caption. Figure 11 shows the same poles (omitting those
from the AMP analysis) in terms of the channel 2 c.m.
momentum, k2, extended to corn. plex values. This con-
veniently distinguishes the sheets of the complex E plane
and affords a clear visual presentation of the sheet
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Source

Fit 1

E~ =M" —ir~, /2

(MeV)

E ' =970—F42

(k2) g

(MeV)

—78+ i130

Fit 2

E" =988—i24s~
(+1o) (+6)

E"' =978—i28

—71+i83

65 —i105

Fit 3

E" =994—i 29s*
E'" =993—&24s*
E" =988—i2

—88+ i82
79—i75

—12+ i42

WI model [4,47]
see text

E" =972—i16 —37+i 105

PDG'92 average

[48]

E" =974—i24

(+3) (+5)

—53+i107

TABLE III. fa(S ) resonance pole determinations expressed
in terms of c.m. energy, E, and XI7 momentum, k2. [Note that
the above PDG value is not a strict average of E"~ values (see

text). ]

decays [22,23] ), our present three-pole solution di«rs
only slightly from AMP. In settling for this compromise,
a very poor fit to the new data is achieved. As compared
to AMP, the most significant change is an increased
wi 0'dth for the still very narrow bound state at 0.988 GeV.

I(ii) In general, findings for the principal fa(S ) sheet I
ole are very similar for two- and three-pole solutions.poe

(iii) One of the most extreme solutions shown in F'g.i . 10
is our own one-pole fit (fit 1) with its large width and low
mass. Like the three-pole solution (fit 3), this describes
th J/g data rather poorly, emphasizing the nontriviae

~ ~ fextent to which these data reinforce fit 2. A version o
Weinstein and Isgur's potential model reported by Wein-
stein [49] is presumably representative in also giving a
very poor description of the J/g results.

The sheet III poles arising in the present solutions, fit's
2 and 3, lie at approximately mirror locations to their
s eeh t II counterparts Fig. 11. This is, of course, a special7

f thefeature of the present fits. Most published fits o t e
fo(S') use Breit-Wigner parametrizations, commonly of
the Flatte form [41], which necessarily have a sheet III
pole somewhere, but not usually close to KK threshold.

II/sheet III dichotomy. To assist in relating the k2-plane
presentation to E-plane quantities, contours of constant
ReE and ImE are superposed on Fig. 11.

Inspection of these results prompts the following corn-
ments.

(i) Despite the considerable additions to the input data
employed (notably in the department of J/g~gmrr(KK)

0.00
amp
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0.02-
L

x Wl

t- —+.
PDG 92,

FIT2

~ FIT2

V
Qmp
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+ FIT3

QmP

I

0.97
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0.99
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FIG. 10. Alternative fo(S*) resonance pole determinations
compared. In each case, the pole E + ——M ~—~ —ir-~ /2 is

displayed on the complex energy plane with sheets II and III su-

perirnposed. Solid symbols denote sheet II poles, open symbols
sheet III poles. The legend is, for the present fits, ( A ) (fit 1),
( ~ ) (fit 2), and (4 4 0) (fit 3); these are compared to the pre-
vious three-pole fit ( + & '7) from the AMP analysis, the
PDG'92 average [48] (~), and the one-pole description from the
Weinstein-Isgur (WI) model (X) [4,47].

FIG. 11. fa(S*) resonance pole positions shown on the kz
plane (k2 denotes the EK c.m. momentum). Points are labeled
as on Fig. 10. The various sectors of the k2 plane are labeled by
the corresponding sheets of the energy plane E =—M
—'I /2=2[k +m ]' which are distinguished by the associ-
ated signs of Imk& and Imk2. (++ ) (sheet I), ( —+ ) (sheet II),
( ——) (sheet III), and (+—) (sheet IV). The families of feint
curves superimposed on sheets II and III correspond, respec-
tively, to constant M and I /2 and are labeled in GeV accord-
ingly.
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As already emphasized, it is the fact that our sheet II and
III poles are both nearby that renders our rule applicable
and allows the inference that the fo($*) is not a mole-
cule. This configuration of poles in the simple form of fit
2 seems to be demanded by the new sectors of data
(J/f~gnm(KIC) [22,23] and D, ~3m [25)) now avail-
able.

B. Where experiment needs reinforcing

Before regarding the matter as settled, it is worth em-
phasizing that there are still gaps and discrepancies in
our knowledge particularly as concerns ECK final states.
First, information on the process m~~KE is still inade-
quate and contradictory (cf. Fig. 4). Furthermore, one
should note that the present fits undershoot all EE sig-
nals near threshold (Figs. 6—8). What is needed to im-
prove this situation is enhanced statistics on KE chan-
nels. The fact that the fo(S') occurs close to 1 GeV
means that a markedly different behavior is predicted for
the E+E and EzEz signals and experiments that probe
these close to threshold would be invaluable.

WA76 provides just such experimental information on
central dimeson production in ~ p and pp collisions at
the CERN Super Proton Synchrotron (SPS) [34]. Using
the 0' spectrometer, they have far better angular accep-
tance and better particle identification than, for instance,
the CERN Intersecting Storage Rings (ISR) AFS experi-
ment [32]. Thus their data on m+n, IC E. ,

.and IC&K&
production are potentially a most valuable addition to
such studies. The fits of the WA76 group to their own
data already feature in the PDG average for the S pa-
rameters discussed below. However, as described in the
Introduction, their fits supply a free background to each
partial wave unconstrained by unitarity. As a conse-
quence, they ascribe a rather tiny fraction of their KE
signal to the fo(S') (see Fig. 8(b) of Ref. [34]), when this
signal must surely be dominated by fo quantum numbers
(see our Figs. 5 —8).

To include their data in our unitary analysis would re-
quire the m.m. final state to have I=J=O. It was already
known (and is now confirmed by WA76) that such quan-
tum numbers are most readily produced at the smallest
momentuID transfers. Inclusion of the WA76 data thus
requires (a) the extrapolation of their results from
—0.09&t) —1 GeV to the very small t~ bite of AFS
[32], i.e., ~t ~

~0.015 GeV; a daunting task as each M
bin appears to have a distinct t dependence or (b) the
J=O quantum numbers should be first projected out of
the angular distribution in each t bin. We would natural-
ly expect the smallest ~t ~

to have the largest and hence
most significant S-wave signal. The data on both mm and
EEC could then be included in our treatment, with the
coupling functions a„a2 expected to have a simple ex-
ponential t dependence, but where the slope of this may
vary with M —though in some smooth way. Thus theI=J=0 data on d o. /dt dM could be fitted by
a, (M, t), a2(M, t), in which at ~t ~

~0.015 GeV these
had the M dependence required by the AFS data.

Since projecting out the J=0 final state (or at least the
elimination of the odd angular momentum components)

appears to be more tractable, option (b) above should be
more favorable. This in turn would allow a complete
analysis of the WA76 data [34] in most of its

~
t

~
range.

E"~ =988(+10)—i24(+6) MeV,

E =978—i28 MeV .S

(5.1)

We now examine how our results compare with previous
findings listed in the current (1992) Particle Data Group
tables [48]. This compilation blurs the distinction be-
ween the sheet II pole pa~am~te~~ (m", I ",) and

effective Breit-Wigner quantities (mo, I o) of Eqs. (2.25)
and (2.26). Both types of parametrization feature among
the individual contributions to the mass and width aver-
ages that it recommends: m + =974. 1+2.5 MeV,
I z+ =47+9 MeV (PDG'92 average —subject to the
above qualifications). However, one of PDG's sources
(Armstrong et al. [34]) give both numbers from their
analysis —for the mass m 0

=979+4 MeV and
m + =1001+2 MeV. This 22-MeV difference is possiblyS
typical thus undermining the PDG average at this level
of precision. We urge PDG to remedy this confusion in
future compilations.

In Fig. 12 we ignore the above distinction and plot all
the listed quantities as if they referred to the components
of E"+ [We do. however plot from the analysis of
Armstrong et al. [34] their respective findings for
(mo, I o/2) and (m", , I"+/2) to illustrate the above-
mentioned distinction. ] Quite apart from this methodo-
logical detail, we would question the philosophy that has
governed PDG's selection of inputs to their average. The
classic results from amplitude analyses of high statistics
peripheral dipion production experiments [50,51] are ex-
cluded; instead, the published average is dominated by
signals extracted from various inclusive experiments. In
several of these, the claimed fo(S*) signal is a minor su-
perposition on a large background, yet quite high pre-
cision is claimed for the ensuing resonance parameters.
Whether the background is small or large, standard
methods for removing it must surely introduce bias to
small widths.

Having said all this, the resulting comparison depicted
in Fig. 12 [52] (to which we have added the omitted
peripheral dipion contributions [50,51]) is quite
encouraging —as regards the sheet II pole deterInination.

However, as we have stressed, it is the existence and lo-

Only for the E"+ parameters whose values from other analy-

ses are extensively tabulated did we carry out the lengthy exer-
cise of determining error ellipses.

C. f0(S ) resonance parameters conipared to previous findings

Since present data indicate that the fo(S*) resonance is
of the two-pole type, we need to specify both pole posi-
tions to characterize it. Our favored solution, fit 2, yields

e following values for the E:—M —i r y2:
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cation of the corresponding sheet III pole that really
discriminates alternative resonance types. On that, there
is no systematic compilation from other analyses with
which we can compare. Where such information has
been supplied, the sheet III pole occurred much deeper
than for the present analysis. The present preference for
approximately mirror pole locations is driven by the new
data that we have included.

Given the presently favored values Eq. (5.1) we can
evaluate the corresponding effective Breit-Wigner param-
eters from the prescription given in Eqs. (2.25) —(2.27). In
this way we find

together with certain comments and comparisons with
the analogous tensor states (2++) are exhibited in Fig.
13. The range of inhuence of each resonance is designat-
ed by the energy segment (m —I /2, m + I /2) to indicate
potential overlap. New features for 1992 are the in-
creased confidence in fo (1590) [53] and the transfer of
the level at 1710 MeV (formerly the 8) from the tensor to
the scalar family [54], transmuting it into fo (1710). Our
remarks on scalar classification will not consider these
two states, although they will need to feature in any final
description.

The scalar family has long presented a problem for

mo(S') =983 MeV,

Io(S*)=52 MeV,

(g2/g, ),=0.85 .
(5.2)

TABLE IV. Scalar mesons below 2 GeV according to
PDG'92 [48]. ~ denotes states considered confirmed.

These are the values that we will use when attempting to
place the fo(S') spectroscopically, the topic to which we
now turn.

VI. CONSEQUENCES FOR SCALAR SPECTROSCOP&

How does the fo(S') emerging from the above analysis
fit into our present knowledge of the scalar family? In
the following section we first make a rapid survey of the
scalars, then examine possible spectroscopic assignments
for the fo(S*), and how alternatives might be dis-
tinguished.

State m (MeV) 1" (MeV)

I=O
ofo (975)
fo (1240)
of, (1400)
fo (1525)
efo (1590)
of() (1710)
(Was 0)

974
1240
1400

—1525
1587+11
1709+5

47+9
140

150-400
-90

175+19
146+5

I—1

2

OKp (1430) 1429+6 287+23
Kp (1950) 1945+20 201+34+79

Modes/BR's

mm' 78%, KK 22%
KK

m~ 93%, KK 7%, gg seen
KK

gg, 4~, ?gg'
KK, mm. , pp seen

Km 93%
Km (52+14)%

A. Light scalar mesous (1992)—a rapid survey

Table IV lists the contemporary menu of light scalars
(0 +) according to PDG'92 [48]. The same information

I=1
~a, (980)
ap (1320)

983+2
—1320

57+ 11
—130

g~, KK seen
gm, ?KK
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FIG. 13. Scalar and tensor mesons below 2 GeV according to
PDG'92 [48]. "Confirmed" states are shown as solid symbols,
unconfirmed states are depicted by open symbols. Each reso-
nance is depicted by the segment (m —I /2, m+I /2) to indi-
cate its range of inhuence and show where reported signals
overlap. Also shown are the fo (1000) (s) resonance for the in-
clusion of which we have argued and the alternative characteri-
zation of Ko (1430) reported by [58].

spectroscopic classification owing to its unusual features.
The new synthesis that emerged a few years ago [10]
disposed of these problems in an attractively simple
fashion by a radical reassignment of the available levels.
The first step was to banish fo(S*) and ac(5) from the
world of (qq) excitations by picturing them as (KIC) mole-
cules [4]. (The authors of this model stress that it
emerged naturally and unexpectedly from their nonrela-
tivistic quark model calculation of ICE scattering. ) This
molecular picture neatly explains the very similar masses,
close proximity to XE threshold and isolation from other
levels (see Fig. 13) of these two states. (This latter point,
the isolation of the fo(S'), we shall challenge below. }
However, there are other schemes [55] which make the
ac and fo special with almost degenerate masses requir-
ing no appeal to the long-range forces so necessary for
molecules.

The second step was to find substitute candidates for
the vacated slots in the ground state (qq) scalar nonet.
To this end, two fairly recently discovered scalar candi-
dates ao (1320) [56] and fo (1525) [57] were pressed into
service. Neither signal rates PDG's confirmed (0) status,
since each has been seen in just one experiment and has
doubt-raising characteristics (same mass and width as
co-present and dominant tensor). If confirmed, they will
be the lynch pins of the new scheme and experiments to
resolve their status deserve a high priority. Given these
two additions to the family of (qq) scalars and with the
resonance parameter values ascribed to the remaining
ground-state candidates fc (1400) and Kc (1430), one has
all the ingredients to assemble a totally standard scalar
nonet closely akin to its tensor counterpart. Seemingly
the (qq) scalars are normal after all and exhibit standard
quark model mass and mixing patterns.

To maintain such a view, one has to decide how to as-
sign all the other fo levels of Fig. 13 and to what extent
the various signals reported really correspond to distinct
dynamical entities. As Fig. 13 is intended to emphasize,

180~

00
0.4 0.7

M(GeV)

1.0 1.3

FIG. 14. Schematic representation of how, once the rapid
phase movement from fo(S ) is removed, 8 corresponds to a
single very broad fo (1000) resonance.

there is considerable overlap between the f0 claimants
above 1.2 GeV (confirmed and unconfirmed). Clearly one
has to await a comprehensive unitary analysis of all the
primary data to decide how many distinct fo's there real-
ly are.

Meantime, we would register one distinct disagreement
with PDG's assignments —the placing of the lightest
broad fo at the very high mass of 1400 MeV. This is in
no way to challenge the various experimental reports of
fo peaks in the 1400-MeV region; these must enter the
comprehensive analysis of the higher fc region that is
now needed. The question for us is what does the fo
cross section below and just above 1 GeV correspond to
spectroscopically. The answer, we would continue to as-
sert, is a very broad fo (1000) of width around 700 MeV
for the following reasons.

(i) General duality notions require that the "effective
position" of a meson should equal the weighted mean of
the corresponding cross-section peak. Thus the twin
peaks seen in the I=J=O m.m cross section of Fig. 1 are
due to just one broad dynamical entity with the fo(S*)
producing the dip at 1 GeV.

(ii) Analytic fits to the observed m.m. phase shifts from
threshold to 1.4 GeV and an extensive set of other
relevant reactions (the AMP analysis, [8]) yield a reso-
nance pole at 900—i350 MeV.

(iii) Finally, to get a more intuitive feel for what is go-
ing on, consider the well-known functional form of the
I=J=0 phase shift 5 as a function of E. With the rap-
id excursion associated with the fo(S ) removed, this re-
veals a slow, steady ascent of the residual phase shift (Fig.
14) in full accord with the above interpretation and close-
ly resembling the behavior of the corresponding K~
channel[58].

Our guiding philosophy is that all resonant effects
however gradual have to receive a place in spectroscopic
accountancy in accord with general notions of duality.
The reassertion of fo (1000) (the E of yesteryear) obvious-
ly affects our perception of where the scalar nonet clus-
ters in mass; the associated very large width likewise
shifts our generic expectations for coupling constants. In
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this connection, it is worth noting that the broad I=—,
'

state revealed in Air scattering (as mentioned above) has
often been accorded a lower mass and larger width than
the values listed for I o (1430) in Table IV [58]. Indeed,
an alternative analysis of the same experiment [58] yields
a mass of 1350 MeV and width of 460 MeV.

B. Possible spectroscopic assignments for fo($ )

We now examine where the fo($*) from our favored fit
2 solution might feature in the overall scalar picture just
described. As is customary in such discussions we view
possibilities in terms of stark alternatives and omit con-
sideration of complicated mixed scenarios. We have seen
that the present data disfavor a molecule interpretation
for the fo($ ). This leads to the obvious question: if it is
not a KK molecule, what kind of a state is it —(qq) nonet,
glueball, hybrid, or what? Given the resonance parame-
ters that we have found, the (qq) nonet interpretation is
not an attractive proposition; neither the rather narrow
width nor the comparable couplings to mm and EX favor
such a picture. Reinstating the very broad fo (1000)
(width 700 MeV) as recommended above and identifying
it as the lightest nonet member, only reinforces the argu-
ment from the width. So we are led to consider other op-
tions which divorce fo($ ) from the main (qq) spectrum.
One possibility would be for fo($*) to be the lightest
glueball. An alternative designation could arise in
Gribov's model of the QCD vacuum [55]: this assigns a
special role to condensates of the light (nonstrange)
quarks (uu+dd); fo($*) and ao(5) could be scalar excita-
tions of this vacuu::.n. These sharply differentiated alter-
natives bring out the crucial role that improved under-
standing of the ao(5) system could play. If the fo($*) is
a glueball, then it is by definition dissimilar from the
ao(5). Maybe this latter is not really narrow as several
authors have argued [41,42]. This reopens the possibility
of the ao(5)'s being a regular (qq) nonet member, the
I= 1 counterpart of the fo (1000). In contrast, the Gri-
bov picture would entail az(5)'s having a close resem-
blance to the fo(S*), in fact, a state of affairs very like
the KK molecule model except for the range of the forces
involved. These two alternatives imply very different
pole structures for the ao(5) which should be clearly dis-
tinguishable in an analysis such as the present one but in-
volving the corresponding I= 1 decay channels. The
prospects for such an analysis are now much improved as
a result of data on pp ~(M,MZM3 ) (M, =~, il various-
ly) acquired by the Crystal Barrel group at the CERN
Low Energy Antiproton Ring (LEAR) [59]. [A capabili-
ty of detecting (KK m. ) and (KKg) final states would
greatly increase the value of these data for ao(5) studies. ]

Although az(5) is a prime target, any elucidation of
the scalar family could bear on our understanding of the
f~($*). Determining how many independent I=O sca-
lars there really are above 1 GeV, or deciding whether ao
(1320) is a real effect, could have a major influence on our
perception. Study of two-photon excitation of these sca-

lars [60] and their appearance in P radiative decays [61]
could likewise play a vital role. Fortunately, all these
areas are on the move experimentally and we can hope
for significant progress on quite a short-time scale.

VII. SUMMARY AND CONCLUSIONS

In the foregoing analysis we have investigated the reso-
nance characteristics of the fo(S*) as revealed by various
high statistics experiments. Our method lays stress on
the strict enforcement of unitarity. This allows key new
sectors of data, notably on J/P~gm. m.(EIC) to play their
full role in refining our knowledge of the I=J=O ampli-
tudes in the region of the KK threshold. The principal
question that we have addressed is what kind of reso-
nance dynamics does the fo(S*) phenomenon manifest: is
it a KK molecule, a standard Breit-Wigner-like reso-
nance, or, as previously suggested [8], an amalgam of two
resonances? In our unitarity-enforcing framework, these
possibilities translate into alternative resonance pole to-
pologies that can be confronted with the data. The out-
come of our fits is a clear preference for the standard
Breit-Wigner-like description (not only is the y /ND„ex-
cellent but the corresponding amplitudes are internally
consistent in the nontrivial sense discussed in Sec. IV C);
the alternative molecule and double resonance descrip-
tions are rather strongly disfavored. The picture of the
fo($*) that emerges from our favored solution is of a
somewhat narrow resonance (I o-52 MeV) with similar
couplings to ~m and KE. In the previous section we de-
scribe how this might be interpreted spectroscopically
and linked this to the need for a comparable analysis of
the ao(5) system.

As so often in meson spectroscopy, there are experi-
mental loose ends to pursue. For fz(S*) and ao(5) stud-
ies, all information on KK final states, in particular that
near threshold, needs strengthening. It is to be hoped
that the COSY 3.3 GeV/c proton synchrotron presently
being constructed at KFA-Julich will allow the necessary
high-resolution studies of KK production to be performed
[62]. The CLEO experiment [63] should shortly provide
additional information on the production of scalars in
two-photon reactions, while the DA4NE project [64]
will certainly enhance our knowledge of P radiative de-
cays to scalars.

Note added in proof. Among reports of I =0 scalar sig-
nals, one should mention a new amplitude analysis of
peripheral dipion production by Svec et al. [65] which
claims to reinstate the possibility of a narrow scalar reso-
nance close to the p mass. Such behavior is normally ex-
cluded by examining how the fo($*) effect manifests it-
self in arm scattering [7, 50, 66]. The new analysis needs
to meet this challenge by exploring how its phase shifts
extend into the fz($*) region.

ACKNOWLEDGMENTS

It is a pleasure to thank Bill Lockman, Antimo Palano,
and John Weinstein for useful discussions.



NEW DATA ON THE KK THRESHOLD REGION AND THE. . . 1203

[1]For general reviews see L. Montanet, Rep. Prog. Phys. 46,
337 (1983); F. E. Close, ibid. 5i, 833 (1988); M. R. Pen-
nington, in Glueballs, Hybrids and Exotic Mesons,
Proceedings of the Workshop, Upton, New York, 1988,
edited by S. U. Chung, AIP Conf. Proc. No. 185 (AIP,
New York, 1989), p. 145; N. Isgur, in Hadron '89,
Proceedings of the 3rd International Conference on Had-
ron Spectroscopy, Ajaccio, France, 1989, edited by F. Bi-
non et aI. (Editions Frontieres, Gif-sur-Yvette, 1989), p.
709; T. H. Burnett and S. R. Sharpe, Annu. Rev. Nucl.
Part. Sci. 40, 327 (1990).

[2] D. Morgan, Phys. Lett. 51B, 71 (1974); N. Tornqvist,
Phys. Rev. Lett. 49, 624 (1982).

[3] R. L. Jaffe, Phys. Rev. D 15, 267 (1977).
[4] J. Weinstein and N. Isgur, Phys. Rev. Lett. 48, 659 (1982);

Phys. Rev. D 27, 588 (1983);41, 2236 (1990).
[5] R. L. Jaffe, Phys. Lett. 41, 271 (1975); D. Robson, Nucl.

Phys. B130,328 (1977).
[6] For general reviews of glueballs, hybrids, etc., see T.

Barnes, in Proceedings of the Fourth Workshop on Polar
ized Targets Materials and Techniques, Bad Honnef, Ger-
many, 1984, edited by W. Meyer (Bonn University, Bonn,
1984); J. F. Donoghue, in Hadron Spectroscopy —1985,
Proceedings of the International Conference, College
Park, Maryland, edited by S. Oneda, AIP Conf. Proc. No.
132 (AIP, New York, 1985), p. 460; see, also, Close [1].

[7] M. Alst'on-Garnjost et al. , Phys. Lett. 36B, 152 (1971).
[8] K. L. Au, D. Morgan, and M. R. Pennington, Phys. Rev.

D 35, 1633 (1987).
[9]J. P. Stroot, in The Hadron Mass Spectrum, Proceedings of

the Conference, St. Goar, Germany, 1990, edited by E.
Klempt and K. Peters [Nucl. Phys. B (Proc. Suppl. ) 21,
415 (1991)].

[10]D. Aston et al. , Nucl. Phys. B301, 525 (1988); F. E. Close,
in Hadron '89 [1],p. 125; Montanet [1],p. 669.

[11]D. Morgan and M. R. Pennington, Phys. Lett. B 258, 444
(1991).

[12] D. Morgan, Nucl. Phys. A543, 632 (1992).
[13]S. Weinberg, Phys. Rev. 137, B672 (1965).
[14] L. Castillejo, R. H. Dalitz, and F. J. Dyson, Phys. Rev.

10i, 453 (1956).
[15]R. E. Peierls, in Proceedings of the 1954 Glasgow Confer

ence on Nuclear and Meson Physics, edited by E. H. Bel-
lamy and R. G. Moorhouse (Pergamon, New York, 1955),
p. 296; G. F. Chew, in Old and New Problems in Elemen-
tary Particles, edited by G. Puppi (Academic, New York,
1968), p. 80; R. H. Dalitz and R. G. Moorhouse, Proc. R.
Soc. London A318, 279 (1970).

[16]R. Jost, Helv. Phys. Acta 20, 256 (1947); M. Kato, Ann.
Phys. (N.Y.) 31, 130 (1965). For applications along the
present lines see Morgan [2]; Y. Fujii and M. Fukugita,
Nucl. Phys. B85, 179 (1975); A. D. Martin, E. N.
Ozmutlu, and E. J. Squires, ibid. B121, 514 (1977). For
other related material see A. M. Badalyan, L. P. Kok, M.
I. Polikarpov, and Yu. A. Simonov, Phys. Rep. 82, 31
(1982).

[17] R. H. Dalitz and J. G. McGinley, in Low and Intermediate
Energy Kaon-Nucleon Physics, edited by E. Ferrari and G.
Violini (Reidel, Dordrecht, Holland, 1981), p. 381; R. H.
Dalitz, J. G. McGinley, C. Belyea, and S. Anthony, in
Proceedings of the Conference on Hypernuclear and Kaon
Physics, Heidelberg, Germany, 1982, edited by B. Povh
(MPI, Heidelberg, 1982), p. 201.

[18]G. C. Oades and G. Rasche, Phys. Scr. 26, 15 (1982).

[19]S. D. Protopopescu et al. , Phys. Rev. D 7, 1279 (1973); G.
Grayer et al. , Nucl. Phys. B75, 189 (1974); A. C. Irving,
A. D. Martin, and P. J. Done, Z. Phys. C i0, 45 (1981);
Tornqvist [2].

[20] Morgan [2]; Fujii and Fukugita [16]; for an alternative
viewpoint based on a nonrelativistic model assuming a se-
parable potential, see, F. Cannata, J. P. Dedonder, and L.
Lesniak, Z. Phys. A 334, 457 (1989);343, 451 (1992).

[21] For example, Martin et al. [16].
[22] A. Falvard et al. , Phys. Rev. D 38, 2706 (1988).
[23] U. Malik, in Strong Interactions and Gauge Theories,

Proceedings of the XXIst Rencontre de Moriond, Les
Arcs, France, 1986, edited by J. Tran Thanh Vanh (Edi-
tions Frontieres, Gif-sur-Yvette, 1986), Vol. 2, p. 431; W.
Lockman, in Hadron '89 [1],p. 109; and (private commun-
ication).

[24] G. Gidal et al. , Phys. Lett. 107B, 153 (1981).
[25] J. C. Anjos et al. , Phys. Rev. Lett. 62, 125 (1989).
[26] A. Etkin et al. , Phys. Rev. D 25, 1786 (1982).
[27] D. Cohen et al. , Phys. Rev. D 22, 2595 (1980).
[28] W. Wetzel et al. , Nucl. Phys. B115,208 (1976).
[29] V. A. Polychronakos et al. , Phys. Rev. D 19, 1317 (1979).
[30] R. S. Longacre et al. , in Hadron '87, Proceedings of the

Second International Conference on Hadron Spectrosco-
py, Tsukuba, Japan, 1987, edited by Y. Oyanagi et al.
(KEK Report No. 87-7, Tsukuba, 1987), p. 46; S. J. Lin-
denbaum and R. S. Longacre, Phys. Lett. B 274, 492
(1992).

[31]R. S. Longacre et al. , Phys. Lett. B 177, 223 (1986).
[32] T. Akesson et al. , Nucl. Phys. B264, 154 (1986); P. C.

Cecil, thesis, Cavendish Laboratory, Cambridge, England,
Rutherford Laboratory Report No. RAL-T-004, 1984 (un-
published).

[33]J. Carter (private communication); Cecil [32].
[34] T. A. Armstrong et al. , Z. Phys. C 51, 351 (1991).
[35] Compare Irving et al. [19].
[36] I. J. R. Aitchison, Nucl. Phys. A189, 417 (1972).
[37] S. L. Adler, Phys. Rev. 137, B1022 (1965); 139, B1638

(1965).
[38] J. Gasser and H. Leutwyler (private communication).
[39] To be discussed in Sec. VI A below; see also Ref. [8].
[40] For a recent application and some earlier references, see

G. Dillon, Europhys. Lett. 20, 389 (1992).
[41] S. Flatte, Phys. Lett. 63B, 224 (1976).
[42] N. N. Achasov, S. A. Devyanin, and G. N. Shestakov,

Phys. Lett. 96B, 168 (1980).
[43] Grayer et al. [19];H. Becker et al. , Nucl. Phys. B151, 46

(1979).
[44] Aston et al. [10].
[45] N. M. Cason et al. , Phys. Rev. D 28, 1586 (1983).
[46] R. S. Longacre (private communication).
[47] J. Weinstein (private communication, 1989).
[48] Particle Data Group, K. Hikasa et al. , Phys. Rev. D 45,

S1 (1992).
[49] J. Weinstein, in Proceedings of the r Charm Factory-

Workshop, Stanford, California, 1989, edited by Lydia V.
Beers (SLAC Report No. 343, Stanford, 1989).

[50) Protopopescu et al. [19].
[51]B.Hyams et al. , Nucl. Phys. B64, 134 (1973).
[52] References for the points shown in Fig. 12 are as follows:

Protopopescu '73 [50]; Hyams '73 [51];Binnie '73—D. M.
Binnie et al. , Phys. Rev. Lett. 31, 1534 (1973); Leeper
'77—R. J. Leeper et al. , Phys. Rev. D 16, 2054 (1977);
Aguilar '78—M. Aguilar-Benitez et al. , Nucl. Phys.



1204 D. MORGAN AND M. R. PENNINGTON 48

B140, 73 (1978); Gidal '81—G. Gidal et al. [24]; Abachi
'86—S. Abachi et al. , Phys. Rev. Lett. 57, 1990 (1986);
Augustin '89—J. E. Augustin et al. , Nucl. Phys. B320, 1

(1989); Armstrong '91—T. A. Armstrong et al. [34];
Aguilar '91—M. Aguilar-Benitez et al. , Z. Phys. C 50,
405 (1991). The reference for PDG '90 is Particle Data
Group, J.J. Hernandez et al. , Phys. Lett. B 239, 1 (1990).

[53] Evidence for this state is now reported from the Crystal
Barrel experiment on pp annihilation to m gg at LEAR,
see [59].

[54] L.-P. Chen, in Hadron '91, Proceedings of the Internation-
al Conference on Hadron Spectroscopy, College Park,
Maryland, 1991, edited by S. Oneda and D. C. Peaslee
(World Scientific, Singapore, 1992), p. 111~

[55] V. N. Gribov, Lund Report No. LU-TP-91-7, 1991 (un-
published); and (private communication).

[56] GAMS Collaboration, M. Boutemeur et al. , in Hadron '89

[1],p. 119.
[57] Aston et al. [10].
[58] D. Aston et al. , Nucl. Phys. B296, 493 (1988).
[59] Crystal Barrel Collaboration, C. Amsler et al. , Phys. Lett.

B 291, 347 (1992).

[60] M. R. Pennington, in Proceedings of Workshop on Physics
and Detectors for DANNE, Frascati, Italy, edited by G.
Pancheri (INFN, Frascati, 1992), p. 361; D. Morgan, in
Photon-Photon '92, Proceedings of the IXth International
Workshop on Photon-Photon Collisions, San Diego, Cali-
fornia, 1992, edited by D. O. Caldwell and H. P. Paar
(World Scientific, Singapore, 1992); T. Barnes, ibid. , pp.
263 and 275; Z. P. Li, F. E. Close, and T. Barnes, Phys.
Rev. D 43, 2161 (1991);F. E. Close and Z. P. Li, Z. Phys.
C 54, 147 (1992).

[61]F. E. Close, N. Isgur, and S. Kumano, Nucl. Phys. B389,
513 (1993).

[62] Proceedings of Workshop on Mesons and Mesonic States up
to Slightly Above 1 GeV/c, edited by W. Oelert and T.
Sefzick (KFA, Jiilich, 1991).

[63] D. Coffman, in Photon Photon -'92 [60].
[64] Proceedings of Workshop on Physics and Detectors for

DA4NE [60].
[65] M. Svec, A. de Lesquen, and L. van Rossum, Phys. Rev. D

46, 949 (1992).
[66] For background comments see note on fo (1400) in Ref.

[48], p. VII.37.


