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We study in detail models with vectorlike quarks, with special emphasis on their implications for CP
asymmetries in B decays. In this class of models there are deviations from unitarity in the Cabibbo-
Kobayashi-Maskawa matrix and flavor-changing neutral currents which, although naturally suppressed,
may have important consequences. We show that even a relatively small contribution of Z-mediated
flavor-changing neutral currents to B -B mixing can lead to significant departures from the predictions
of the standard model for CP asymmetries in B decays.
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I. INTRODUCTION

The measurement of CP asymmetries in 8 decays [1]
provides an opportunity to test various aspects of the
standard model (SM), including the unitarity of the
Cabibbo-Kobayashi-Maskawa (CKM) matrix and the
standard KM mechanism of CP violation. The simplest
extension of the standard model where deviations from
unitarity of the CKM matrix naturally arise consists of
introducing extra quarks which are isosinglets but which
mix with the standard quarks. Isosinglet quarks have
been suggested in a variety of models, including E6
grand-unified theories and some of the superstring-
inspired models. The addition of isosinglet quarks to the
SM provides [2] a possible connection between CP break-
ing at a high-energy scale and the observed CP violation
at low energies and furthermore it gives a simple solution
to the strong CP problem [3,4].

Some of the features of models with isosinglet quarks
and their implications for CP violation have been ana-
lyzed by Branco and Lavoura [5] and by Nir and Silver-
man [6]. The present work complements these two previ-
ous analyses.

The paper is organized as follows. In the next section
we briefly describe the model, identifying the new CP-
violating phases which arise when both Q= —

—,
' and —',

isosinglet quarks are present and also show how devia-
tions from unitarity and Aavor-changing neutral currents
(FCNC's) are closely related and both naturally
suppressed in the model. In Sec. III we advocate the use
of rephasing-invariant parametrizations which are espe-
cially convenient for models with isosinglet quarks. We

give two examples, one with one down-type vectorlike
quark, and another with one down-type and one up-type
vectorlike quark. This section of the paper is logically in-
dependent of the other sections and therefore it may be
skipped by the reader not interested in the question of
how to parametrize the CKM matrix. In Sec. IV we
study 8 -8 mixing and CP asymmetries in 8 decays.0 0

For simplicity, we consider the case of one down-type
vectorlike quark (1DVLQ), but we will show that the
analysis continues to be valid for an arbitrary number of
down-type vectorlike quarks. Nir and Silverman have
analyzed [6] in detail CP asymmetries in the 1DVLQ
model under the assumption that 8 -8 mixing is dom-
inated by Z exchange tree diagrams. We will do the
analysis so that it can be applied to the general case, in-
cluding the one where the Z exchange and the SM box di-
agram contributions to 8 -8 mixing are of comparable0 —0

strength. We point out that if one takes into account the
recent upper limit [7] on 8 ~p p X decays, then 8d-
Bd mixing can still be dominated by the Z-mediated
FCNC's, while in the case of B,-B, mixing Z exchange
can at most compete with the SM box diagram. We show
that even a relatively small contribution by the Z ex-
change diagrams to 8 -8 mixing can drastically modify
the predictions of the SM for CP asymmetries in B de-
cays. Finally in Sec. V we present our conclusions.

II. THE MODEL

We will assume the standard SU(2) X U(1) gauge
theory, with the addition of Xd charge —

—,
' and X„

charge —', isosinglet quarks. The quark field content of the
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model will be denoted as

(u d )h;, i=1, . . . , n,
md Gd Jd

0 1&d

0Dl,
0

UI.q
0

0
Uzp

P =1, . . . , Sd,
g 1) ~ ~ ~ p LV )

a=1, . . . , n +Nd,
P=l, . . . , n+N„.

The quark mass terms are

XM=uh;(m„), pURp+ Uh (MU) pU

+CLi ™d)ia Ra+Dhp(MD ~pa Ra (2)

—uh V p y dhpW
CKM P

2

&Z [Z aPuhaP "uhP ZaPdh—a1'"CLP
2 cosOgr

—sin O~J", ]Z„(a,P=1, . . . , 4),
where u, d p are mass eigenstates and

3
VCKM—

i=1

zap =5ap —U4aU4p

ap ~ap ~4a ~4p

(4a)

(4b)

(4c)

where U and 8' denote the matrices which relate the
weak and mass eigenstates:

u'

U 0 =U
ui d,' d,

0 =8'

Because of the presence of the vectorlike quarks there are
flavor-changing neutral currents which are closely con-
nected to the deviations from unitarity in V™ . Indeed,
using the unitarity of U and 8, one readily obtains

The dimensions of the four mass matrices are readily in-
ferred from the index range convention of Eq. (1). Al-
though most of our considerations apply to arbitrary n,

N„, we will, for simplicity, take n =3, Ed =N„=1.
The weak gauge currents can be written

+&z

mu u Ju=ox (7b)
u u

where G„, 1&„, and 1&d are diagonal real positive ma-
trices of dimension n, N„, and Nd. The matrix Gd is n di-
mensional and complex, while Jd and J„are (n X Nd ) and
( n XN„) complex matrices. Through a phase
redefinition, one can eliminate Nd and N„phases from Jd
and Ju, respectively. It is convenient to write in block
form the unitary matrices 8' and U which diagonalize
ALdALd, and At„A,„,respectively:

Ad Ed Rd

Bd Sd Td

Rd =Jdlk'd ',
while Kd is, up to O(m /M ), the unitary matrix which
diagonalizes Gd Gd. Analogous expressions obviously ap-
ply to U. The V M matrix is then given by

K„Kd K„Jd1&d
CKM

'JtK Q 'J J 1&u u d u u d d
(10)

Using unitarity of 8', U one readily obtains

( VV );j =5;j—[J„M„J„];j,
V)ij ~ij [Kd JdMd JdKd lij

where we have taken into account the fact that we have
chosen to work in the weak basis where C„ is diagonal
and therefore K„=I3. Since J„and Jd are O(m) it is
clear from Eqs. (11) that deviations from unitarity and
FCNC for the standard quarks will be suppressed by the
ratio m /M .

with analogous expressions for U. Let m be the mass
scale of ( Gd, Jd ) and M be the mass scale of 1&d. Since
Gd, Jd are b,I=—,

' mass terms while Qd is a b,I=O mass
term, it is natural to assume M »m. One can then find
an approximate solution for 8':

Td =I~, Sd = —(Qd Jd )Kd,

( VV ) p=z "p, (6a) III. REPHASING-INVARIANT
PARAMKTRIZATION OF Vc+M

( VtV) d
( V —VcKM) (6b)

An attractive feature of models with vectorlike quarks is
the fact that although deviations from unitarity in V
and FCNC's arise, they are related through Eqs. (6) and
are both suppressed in the standard quark sector by the
ratio of standard quark masses to the vectorlike quark
masses. This can be readily seen by making an approxi-
mate diagonalization of the quark mass matrices. By
choosing an appropriate weak basis one can put, without
loss of generality, the quark mass matrices in the form N, = —,'(n —1)[(n —2)+2(Nd+N„)] . (12)

Since the CKM matrix is no longer unitary, it is less
obvious to find the number of independent CP-violating
phases for arbitrary n, Nd, and N„. In Ref. [5] Branco
and Lavoura have studied the restrictions that CP invari-
ance imposes on the quark masses of Eq. (1). This was
done by constructing the most general CP transformation
which leaves invariant the charged and neutral current
interactions. They obtained for the number of CP restric-
tions
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A. The case Nq = 1, N„=o

In this case there are three phase variables and six an-
gle variables. We propose the following choice.

Phase variables:

v I
= arg( VII V23 Vi3V2i »

9 2
= arg( VII V33 V;3 V3I ),

9 3 g( 23 V32 V22 V33

(14a)

Angle variables:

(14b)

This corresponds in general to the number of indepen-
dent CP-violating phases X& which appear in V . At
this point it is worth noting that although the expression
for V™given by Eq. (10) is only approximate, it con-
tains the correct number of physical phases: namely,

Xz ~ ,'(—n—1)(n —2),
J~ ~(n —1)Ng,

J„~(n—1)N„.
We turn now to the question of finding an exact param-

etrization of V for models with vectorlike quarks.
There are two different approaches to the problem: one,
more traditional, parametrizes V through Euler an-
gles and phases; the other uses rephasing-invariant quan-
tities [8] to parametrize V . In the case where there
are only isosinglet quarks of a given charge (e.g. , N„=O,
Nz =arbitrary) the V matrix consists of the first n

lines of an (n+Nz)-dimensional unitary matrix, and the
problem amounts to finding a parametrization of this uni-
tary matrix where —,

'
( n —1 )[ ( n —2 ) +2N~ ] physical

phases appear in the first n lines. This problem was
solved in Ref. [5], where as explicit parametrization
through Euler angles and phases was given. At this
point, it is worth mentioning that, for more than one vec-
torlike quark, the "standard" parametrization [9] of
V does not have the above property and therefore it
is not adequate. Although the solution presented in Ref.
[5] is mathematically correct, parametrizations through
Euler angles and phases are not the most convenient,
especially when isosinglet quarks are present. Therefore
we will propose here the use of rephasing-invariant pa-
rametrizations and analyze the two simplest cases: name-
ly, (N& =1, N„=O) and (N& =N„=1).

Zb&

VcdVcb

FIG. 1. The unitarity quadrangle in the Bz sector, corre-
sponding to the first of Eqs. (26).

tary matrix W defined by Eq. (5), whose first three lines
constitute V

VcKM

V„, V„b V„~

V.s ~eh Vca

Vtb Vta

~4 I ~42 ~43 ~44

(15)

Without loss of generality, one can choose the quark
phases so that the second row and the third column are
real. Then y„y2, y3, fix the arguments of V», V3I V32,
respectively. Normalization of the first column
(IW4(I'=1 —@3=,1V„1') gives us 1W4&1. Then ortho-
gonality of the first and third columns together with nor-
malization of the third column give us
arg(W~, ), 1V331, 1W~31. At this stage, the first and the
third columns are completely determined and in the
second column 1V321,arg V32,arg V23 are also known. The
remaining elements in the second column can be deter-
mined from orthogonality of the second column to the
first and third, together with normalization of the second
column. We have omitted the usual ambiguities [8,10]
which arise in reconstructing the CKM matrix from in-
put data. Note that our parametrization is such that for
angle variables we have only used the moduli of V
connecting the standard quarks. Therefore V can be
reconstructed without directly measuring the coupling of
the isovector quark B to the standard quarks. We have
considered the case Nz=l. The extension to Ã& &1 is
straightforward. However, there are some special
features which only hold for N&=1. For example, for
N& =1, it can easily be verified that one can choose the
quark field phases in such a way that the couplings z"&
are all real. In general this is not possible for X& & 1.

We have presented a rephasing-invariant parametriza-
tion of V where invariant phases and moduli were

We have chosen a complete set of variables containing
quantities that are either already measured or likely to be
directly measured in the future. Indeed it will be seen
that p„(()2,p3 correspond to the angles y, a,p„respective-
ly, which appear in the unitarity quadrangles of the
1DVLQ model (see Figs. 1 and 2).

We will show next that one can obtain the remaining
elements of V from the input data of Eqs. (14). In or-
der to facilitate our task, we work in the weak basis
where m„ is diagonal and real. Let us consider the uni-

VcsVc*b

FIG. 2. Unitarity in the B, sector. We have neglected
1V„,V»1 and exaggerated 1z&&1 to show the angles.
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used. In the standard model, one can also parametrize
Vc~M using only independent moduli [11]. One may ask
whether that parametrization is also possible in the pres-
ence of isovector quarks. We will show that it is only
possible for Ad=1. The number of independent moduli
(N )is

N =n(n+Nd —1), Nd ~ 1,
while the number of angles is

N, =
—,'n [(n+Nd —1)+Nd ] .

(16)

Taking into account that the number of independent
phases N& is given by Eq. (12), with N„=O, one obtains

N =N&+N, =N +(Nd —1)(n —1) . (18)

B. The case Nd=N„=1

We consider now the case where there are both isovec-
tor quarks of charge —

—,
' and of charge —', . The parame-

trization of V is less obvious in this case, since there
no longer exists a weak basis where either the up or down
quark mass matrices are diagonal. It is convenient to in-
troduce the auxiliary matrix X defined by

VcKM
ll

(19)X=

Therefore for Xd ) 1 the number of parameters exceeds
the number of independent moduli, and a parametriza-
tion through moduli is no longer possible.

IV. CI' ASYMMETRIES IN B DECAYS

In this section we study B-B mixing and CP asym-
metries in B decays in models with vectorlike quarks. In
Ref. [6], Nir and Silverman have studied these sym-
metries under the assumption that Z-mediated FCNC's
give the dominant contribution to B-B mixing. We will
consider here the more general case where nonstandard
contributions compete with the standard box diagram at
inducing B -B mixing. The relevance of this analysis
stems from the fact that even a relatively small contribu-
tion from new physics can produce significant departures
from the SM predictions for the CP asymmetries in B
decays.

This section is organized as follows. First we present a
general analysis of CP asymmetries in B decays when
new physics is added to the mixing matrix. Then we par-
ticularize to the model with charge —

—,
' vectorlike

quarks. It turns out that it is sufficient to consider the
case where there is only one such quark, since CP asym-
metries cannot distinguish X„=1 from Nd & 1.

Let us assume that the off-diagonal element of Bq Bq is
changed by a factor Aqb as a result of a new contribution
from physics beyond the SM:

(21)

where M', z' is the box diagram contribution. We will as-
sume that all amplitudes contributing to the decay have
the same CKM phase and furthermore that I'&z' «M'&z'.
In this case the CP asymmetry is given by

where V = Ad Ad, and A„, Ad, B„,Bd were defined in
Eq. (8). For the moment n, Nd, N„are arbitrary. X is an
(n+Nd+N„)-dimensional matrix and it can readily be
verified that X is unitary. The fact that V is a subma-
trix of a unitary matrix obviously facilitates the task of
finding an appropriate pararnetrization. We will special-
ize now to the case Xd=%„=1. There are five phase
variables and nine angle variables. Our choice is the fol-
lowing.

Invariant phases:

1(B0 f )
—r(B' f )a = = —sin b,Mt sin

I (B f)+I (B f)
where

+ rga~„, q~, q
'(0)

y(0) ar '9 f
A (f)

(0) (O)~ 1/2
q

12

(22)

(23)

= arg( V1, V23 V)3 V21),

1(('2
= arg( V11 V33 V*,3 V31 ),

v3= g(V V V33V* »
v 4= arg( V11V4~ V13V41»

arg( V12 V21 V11 V22 )

(20)

Moduli:

I V4, 1
.

It can be readily seen that these input parameters enable
one to reconstruct the CKM matrix using unitarity of the
auxiliary matrix X.

The index (0) denotes the contributions arising within the
three generation SM, and A(f), A(f ) stand for the de-
cay amplitudes from the initial state ~B ), )B ) to a CP
eigenstate f ). From Eq. (23) it follows that there are
two possible sources which may change the SM predic-
tion.

(i) The presence of the phase of b, 1,q, which determines
the deviation from the box diagram contribution P( '. It
is possible to incorporate difFerent new physics contribu-
tions for Bd and B„if arghbdWargb, ».

(ii) Although the expression for 1'(0) is the one given by
the SM, the actual numerical value of P( ' may differ
from the SM prediction. This is due to the fact that mod-
els beyond the SM allow in general for a difT'erent range
of the CKM matrix elements.

In Table I we establish our notation by explicitly giving
1)I) for various final states. For comparison, the standard
model values are also shown.
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TABLE I. The predicted values for the angles P;». The values shown are for CI' even final states.
Thus p, q= —2p= —

p&x . By definition a= arg( —Vd Vb/V„d V„b); p=arg( —Vd Vb/Vd Vf );

y = arg( —V„d V„*b / V,d V,b ); a' =arg( V„d V„*b /zb~ ); P'= arg(zb„/V, d V,b ); and P, =arg( —V„v,*b /V„v, b ).
See Figs. 1 and 2.

Initial
state

Quark
subprocess

b ~ccs
6 ~ccd
6 ~QQd

Final
state

elis
D+D

Standard
model

—2P—2P
2'

Beyond standard
model

—2P+ arghb„—2P+ argb, bg

2'+ ar gAby

B, b ~ccs
6 ~cdd
b ~Qtld

D,+D,
gas
pcs

—2P,—2P,—2y —2P,

—2P, +arg b b.—2P, +arg b b*—2y —2P, +argb, b,

1 zbq

Vib Vi*,
(24)

zbq
0 =arbq= g

tq tb

where v=a/4»r sin 8~ and E(x, =(m, /mib ) ) is an
Inami-Lim function for the top quark box diagram. Note
that vE(x, ) = —0.0046 for m, =140 GeV. We assume
the same QCD correction factor for both the box dia-
gram and the Z exchange diagram. This should be a
good approximation since QCD corrections above the
scale of Mz are negligible. From Eq. (24) one readily ob-
tains

We turn now to the detailed analysis of models with
charge —

—,
' vectorlike quarks. The new contribution to

the hB =2 efFective Hamiltonian arises from Z exchange
tree graphs and one readily obtains

2i Ob=1+r e

Vtb Vtd + Vcb Vcd + Vub Vud bd

V,b V„+V,b V„+V„*b Vu, =Zb, ,

(26)

There are two distinct cases of interest in the study of CP
asymmetries: (a) Z exchange and box diagrams give com-
parable contributions to B Bmix-ing; (b) Z exchange
gives the dominant contribution to Bq-B mixing. These
two cases are distinguishable by the value of the parame-
ter r».'(a) rq =1; (b) r» »1. Case (b) was studied in Ref.
I6]. Therefore our emphasis will be on case (a); we find
that even a relatively small contribution from Z exchange
to B -B mixing can imply very significant departures
from the SM predictions for CP asymmetries.

In order to derive the numerical predictions for the CP
asymmetries, one has to take into account the unitarity
constraints. The relevant ones for our purposes are

r sin 28bq
arghb =arctan 1+rq cos28bq

Ib, b l=(1+r +2r cos28b )'
(25)

which lead to the unitarity quadrangles of Figs. 1 and 2.
In order to determine the angle P for the various final
states (Table I), one has to know the values of the angles
a, P, and P, shown in Figs. 1 and 2. One readily obtains

I V.b V.d I +(I Vb Vd I

—2I Vb Vd I lzbd I cos|)bd+ lzbd I ) I
V b V d I

2I V.b V.d I(I V,b Vd I

—2I Vb &g I Izbd I «s~bd+ Izbd I )

I v,b vd I +(I vb vd I

—2I vb vd I lzbd I cos6)bd+ lzbd I ) I
V b vgd I

cos(p+5) =
2I V,b V,d I(I Vb Vd I' —2I Vb Vd I zbd I cos&bg+ lzbd I

)
"

(27)

lzbd I »«bd5= arg, =arctan
V,', V,„z,„—

I v b V, I
+

I v, i, V„ I Izb, I

2I v,i, V„ I I v, i, V„I'
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where we have neglected
I V„, V„b I. When zb~ =0, 5=0,

one recovers the SM expressions giving u, P, and P, in
terms of the sides of the SM unitarity triangles. We turn
now to the experimental constraints on zb . A recent ex-
perimental search [7] for the decays B~X)u,+p by the
UA1 Collaboration [7] has led to the upper bound

B(B~Xp+p ) ~5.0X10 (28)

+ 0.029,
V,b

Zbs +0.029 .
V,b

(29)

These bounds on zb are almost an order of magnitude
stricter than the bounds considered in Ref. [6]. If one
writes Eqs. (26) as

Vtb Vtq zbq —V
Vg Vg

cb cb

V„*b V„
g =d, S

cb

At this point, it is worth noting that for I,= 150
GeV and within the context of the SM, the above
branching ratio is predicted [13] to be
B(B ~Xp+p )=(6—8)X10; therefore, one order of
magnitude smaller than the UA1 bound. From Eq. (28)
one derives the bounds

Buras and Harlander [12]:

160 MeV ~ QB~F~ ~240 MeV (35)

following recent lattice calculations in the static limit.
For qQCD we will use here the value gQcD=0. 55, which is
consistent with the renormalization used in obtaining Eq.
(35), and for ri, we will take rii =1.28+0.06 ps, which is
the recent world average for 7Bp including the results
from the CERN e+e collider LEP [13]. Equation (34)
fixes for us the experimentally allowed range for the
product

I V«v, b I I
b, bd I

', given by
1/2

6m

GFgQCDM ~MB2 2

1/2
d

1/2 1/2 (36)
&a Ba Fa QIE(x, )I

The terms in the first set of square brackets are taken as
exact. In the second set of square brackets, ~B,BB FB
are constrained to be within the indicated ranges, while
xd is within the range implied by the experimental results
of ARGUS, CLEO, and LEP [14]:

and takes into account the experimental constraints

o 9734 ~
I v„d I

~ 0.9754, 0.2173 ~
I vms I

~ 0.2219,

V„b
0 187~ Vdl ~0 221 0 07~ ~0.13,

V,b

I v„l ~ 0.8,
one readily obtains

V )fc

+ 0.031,

Combining Eqs. (29) and (32) one finally gets

(31)

(32)

xd =0.67+0. 10 . (37)

We are now in a position to evaluate CP asymmetries
in the model, taking into account all the experimental
and theoretical constraints [15]. At this point it should
be obvious that the number of DVLQ's is irrelevant to
the discussion. None of the input in this section is depen-
dent on the value of Nd ~ 1.

For given values of rq and Obq p one obtains arg4bq
Ih&~l from Eqs. (25) and then Eq. (36) fixes the allowed
range of

I Vd V,i, I.
In Fig. 3 we present our main result. Recall that one

of the most important predictions of the SM is the sign of
some of the CP asymmetries in the B decays. In particu-
lar, sin(P&x ) = —sin(/id ) is predicted to be positive and

in fact [16] for m, ~ 120 GeV and Fii ) 170 MeV,

Zbd

Vtb Vtd

Zbs

Vtb Vr.
(33)

360

Now the condition for Z exchange to give the dominant
contribution to B Bmixing is that Iz-& /V, b V, I

0.07
for m, =140 GeV. One therefore concludes that in the
case of Bd the dominant contribution to the mixing may
arise from Z exchange, while in the case of B„Z ex-
change can at most compete with the box diagram contri-
bution. This completes our analysis of the unitarity con-
straints in the model.

We consider now Bd-Bd mixing which is given by

AMd GF
xd — r — 2rBRQCDMBBBFBM W

x IE(x, )ll V,„V„I'ls,„l, (34)

where we have followed standard notation. For QB&F&~
we will use the range suggested in a recent review by

240

120

0
0 4

rd

FIG. 3. The regions of rd, 8bd space where (a) The model pre-
dicts sin(/, z) to be positive, thus contradicting the standard
model result, (b) the model predicts sin(P&d) to be negative,
and (c) the unitarity quadrangle does not close. For these
values of rd, 8bd Eq. (26) is not consistent with Eqs. (25) and (36).
For this figure the values m, = 140 GeV,

I V„d I
=0.9744,

IV„,IIIV„I=0.1, IV„I=0.204, and QB+F~=0.2 GeV were
Used.
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r
(argb, b, ),„=arctan

Q 1 r,'— (39)

Therefore argA&, ~ 21'. As the measured angle is
p„=—2p, +argb, b„strong deviations from the SM pre-
diction are again possible.

V. CONCLUSIONS

We have analyzed some of the main features of a
minimal extension of the SM where vectorlike quarks are
introduced. We show that in these models deviations
from unitarity and FCNC's are related and both are nat-
urally suppressed. We advocate the use of rephasing-
invariant parametrizations of the CKM matrix and give
two examples for Nd = 1, N„=O and for Nd = 1, N„= 1.

Special emphasis was given to the consequences of the
model for CP asymmetries in B decays. It was shown
that even a small contribution of the Z exchange dia-
grams to B -B mixing can lead to drastic deviations
from the SM predictions for CP asymmetries in B de-
cays.

After this work was essentially completed we received

One readily verifies that for r & 1, the maximum value of
argAbq is given by

a paper by Soares and Wolfenstein [17]where the authors
examine the implications of new physics on CP asym-
metries in B decays. We thank Soares for having given
us a copy of the paper. We have also noticed a recent pa-
per by Silverman [18] whose content partially overlaps
with our Sec. IV. However, Silverman only considers the
case of FCNC Z exchange dominating Bd-Bd mixing. As
previously emphasized, the main point in Sec. IV is that
even a small contribution of Z exchange to B -B mixing
can lead to predictions for CP asymmetries in B decays
drastically difFerent from those of the standard model.
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