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Parton fragmentation into photons beyond the leading order
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Photon production via deep inelastic quark and gluon fragmentation is studied beyond the leading
perturbative order within the framework of a specific factorization scheme (DIS~) chosen to provide the
maximally possible amount of perturbative stability. It is argued that the perturbative (pointlike) results
are expected to present a realistic estimate for photonic fragmentation functions, and the ambiguities re-
lated to the presently unknown, but possibly small, nonperturbative hadronic contributions are pointed
out.

PACS number(s): 13.85.Qk, 12.38.Bx, 14.80.Am

I. INTRODUCTION

Direct photons produced in deep-inelastic (leptonic
and hadronic) processes are often considered as a useful
signal for investigating various aspects of the standard
model. Usually the considered direct photon signal (e.g. ,
of a hadronically produced intermediate-mass Higgs bo-
son) must be separated from photonic backgrounds aris-
ing through the fragmentation of copiously produced
quarks and gluons. The introduction of isolation cuts for
the photon reduces the rate of these background events
and simultaneously reduces the importance of the non-
perturbative components involved in the partonic frag-
mentation into photons, provided the implemented isola-
tion cuts are sufficiently high. A study of the nonisolated
photonic fragmentation is, however, helpful in determin-
ing the size of the required isolation cuts. Moreover, re-
cent measurements of isolated prompt photons at the
Fermilab Tevatron [1] have shown that, despite the ap-
plied isolation cuts, these photonic fragmentation contri-
butions may remain at least as important [2] as the
"internal" photons produced directly in the hard sub-
processes at small xT ——2pj/&s (10, i.e., for pg (20
GeV. Beyond this more practical and urgent aspect, the
study of photonic fragmentation processes is an interest-
ing topic by itself within the framework of perturbative
QCD, somewhat comparable to the closely related but
more important photon structure functions.

The close relation, via crossing, between the timelike
(Q =q & 0) photonic fragmentation functions Dfr(x, Q2)
and the spacelike (Q—:—

q &0) photon structure func-
tions fr(x, Q ), where f=q, q, g, enables us to adopt
most of what has been learned for the spacelike situation
to the corresponding timelike photon production process-

es. To utilize this (formal) similarity to its full extent we

present in Sec. II a parallel treatment of both cases using
a unified notation. In particular, we point out the com-
mon formal aspects as well as the concrete differences
arising from the specific values of the correspondingly in-
volved splitting functions and Wilson expansion
coefficients. The one- and two-loop evolution equations
of the photonic fragmentation functions in the n-moment
space are discussed in Sec. III (with some of our main re-
sults for the timelike two-loop anomalous dimensions be-
ing given in the Appendix) and we compare their dom-
inant singularity structure in the modified minimal sub-
traction scheme (MS) with the one in a specific factoriza-
tion scheme [deep-inelastic y scattering (DIST)] where
troublesome MS poles (which destabilize the Q evolu-
tions) do not appear. The quantitative implications for
the photon production processes are discussed in Sec. IV;
in particular, the perturbative stability of the predicted
photonic fragmentation functions and the ambiguities
due to the presently unknown, but possibly small hadron-
ic contributions are pointed out. Our conclusions are
summarized in Sec. V.

II. SPACE- AND TIMKLIKE
PHOTONIC STRUCTURE FUNCTIONS

The analysis of photonic structure functions, in partic-
ular, at higher orders of perturbative QCD, is intimately
related to the appropriate definition of the so-called ha-
dronic part, which is uniquely specified by stating the
postulated boundary conditions [3,4] for the (input) dis-
tributions as well as the specific factorization scheme in
which these boundary conditions are implemented [5,6].
The latter is traditionally [3,4] fixed in the MS factoriza-
tion scheme with

f(, )( Q )
—ye2 (s T)( Q2)+q (s T)( Q2)+ [C(s T)~ (

(s Tl+ —(s T))+2C(s T)~ (s T)]+2 2 C(s T)( )
ST 2 cts(Q ) e

T q 7

X7T q, 1" g, T eq y p x
277

+f (S, T)( Q2) (2.1)
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where fP' =2Fj, fP' =F$ /x for the spacelike (S) deep-
inelastic process y'(Q )y~X, and f„' ' are the corre-
sponding structure functions for the timelike (T) reaction
y*(g )~yX. The summation extends over all light
quarks, lying well below the kinematical threshold of
heavy quark production, whose number is denoted, as
usual, by f. The contribution of the heavy fiavors near
threshold is entailed in f„'), ' and specified, e.g., in R f.
[5] for the spacelike situation of the photon structure
function. The convolutions in (2.1) are defined as usual:

like case, which destabilize the perturbative expansion of
the predictions for f„' ' ' as obtained for similar leading-
order (LO) and higher-order (HO) hadronic inputs for the
distributions at some Q =Qo in the MS factorization
scheme. As noted recently [5,6], perturbative stability is
regained by considering a different factorization scheme,
DISy, in which the troublesome Cy 2 term in the photon
structure function fP in (2.1) is removed by absorbing it
into the definition of the photonic (anti)quark distribu-
tions. In this new scheme the photonic distributions are,
in general, defined by

and

X

x
(2.2)

q' '(x, g')~, =q' ' '(x, g')+e' C' '„'(x),"r 7T
(2.7)

a, (g')
4m

1 Pi lnln(Q /A )

P()ln(Q /A ) P() [ln(Q /A )]

with an identical expression for the antiquarks, whereas
the gluon distributions remain unchanged, i.e., are the
same as in MS. An inspection of (2.1) shows that

C 2=CF(S) 1+x 1 x 3 1
In ——+—(9+5x )F

1 —x x +

C(s) C(s) C (2 )ql q2 F
r

C'"' =C",'+ C lnx ——(1+x )q2 F
1

nx
2

(2.4)

+m. 5(1—x)

O', '=C' '+C (2),

Cs 2' = T~ [x + (1 —x ) ]ln —1+8x (1—x )

Cs i' =Cs 2' —T~ [4x ( 1 —x ) ], (2.5)

C( T) —Cg, 2 F
1+(1—x )2 1 —x

[ln(1 —x)+2 lnx ]—6

C(;,) =C(;)+C 41
gl g2 F

with CF =—', and TR =
—,'. The photonic Wilson

coefficients C(r '„' in (2.1) are obtained from the gluonic
ones by an obvious replacement of the color factors CF
and TR .'

C(s) —(3/7 )C(s) C(T) —(1/C )C(T)
y, r R g, r & y, r F g, r (2.6)

It should be noted that the higher-order universal (loga-
rithmic) contributions to C' „' in (2.1) develop negative
spikes as x —+1, and a stronger one as x —+0 for the time-

with pa= ll 2f /3 and—p, =102—38f/3. The notation
chosen in (2.1) illuminates the close relationship between
the timelike photonic fragmentation functions (q' '=Dr,
g' ':Dr ) and th—e well-known spacelike photonic parton
distributions (q' ) =q ~, g' '—:g T ) which will be kept
throughout, unless stated otherwise. The coefficient func-
tions in the MS factorization scheme are [7—9]

C(S, T) ) C(S, T) C(S, T)
y, r ~DIS y, r y r' (2.8)

k(x, g') = k"'(x)+
277

aa, (Q )

(2')

P(x, g )=
2

P'"(x)+ ' P' "(x)
2~ 2m

(2.10)

Here q' ' ' denotes, as usual, either the Qavor nonsinglet

for which the aforementioned x —+1 and x ~0 instabili-
ties are eliminated. In our former [5,6] calculations for
the spacelike situation we have chosen r' =2 not only be-
cause fz( ) =F(/x refers directly to the experimentally
measured photon structure function, but also in order to
maintain some analogy to the hadronic parton distribu-
tions where this convention is motivated [7] by the Adler
sum rule. For our subsequent timelike calculations we
choose r'=1 in (2.7) and (2.8) motivated by momentum
sum rule considerations for fragmentation functions [8)
which are directly related to f i

'. In other words, we

adopt the factorization scheme prescriptions of Ref. [7,8]
for C' „' ', as inspired by these sum rules, to the analo-

gous [cf. Eq. (2.6)] photonic quantities C' '„'. It turns
out that choosing f'i for defining the DIS& scheme in

(2.8) in the timelike region also provides the (almost)
greatest possible perturbative stability. Having eliminat-
ed the troublesome perturbative instabilities, one can now
implement similar I.O and HO inputs at g =Qo provid-
ed these inputs are imposed for the distributions as
deftned in terms of the DIS factorization scheme

As was further noted in Ref. [5], the Q evolution of
the DISy distributions differs from that of the MS distri-
butions q' '"' and g ' ' due to a corresponding transfor-
mation of the inhomogeneous k terms appearing in the
evolution equations

(s, T)(x ri2)q tQ k(S, T)( Q2)+p(S, T)+ (S, T) (2 9)
d lng

where the photon-parton splitting functions k(x, Q ) and
the purely hadronic splitting functions P(x, g ) receive
the following one- and two-loop contributions:
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(NS) combination

qNs
(S, T)

(
(S, T)+ —(S,T)) (1/f )y(S, T) (2.1 1)

with X( ' '—:g (q' '+q' '), or the ffavor-singlet vec-
tor

(S, T)
(S, T) (2.12)

The corresponding splitting functions are kNs ', PNs '

and

g(S, T)
I {S,T)

q

g{S,T)

'p( T) p( T)
gq

p(T) p(T)
gg

p{S) p {S)
p(s) — qq qg

p(S) p(S)
gq

(2.13)

k(1)(s, T)(x)l —k(1)(s,T)(x) e2P(0)+ c(s, T)

k ' (x)lD1s =k ' (x) 2f (e )P ' 0 C"y (2.14)

)(x)
l

=k(1 T)(x)—2f ( e 2)p(0, T)g C(T)
g X

with (e ) =f 'gfe and

1 + 2
p(0)(x) —C

1+
+

(o,s) 1+(1P x =C~ (2.15)

P' ' '(x)=TR[x +(1—x) ] .

These transformations have the additional merit of can-
celing the dominant 1/x and lnx /x singularities of ks
and kg' in Eq. (A3), respectively, which destabilize the
perturbative expansion of the Q evolution for the pho-
tonic distributions in the medium- to small-x region. The
explicit verification of the singularity cancellations is
easily achieved and most transparent in the Mellin n-
moment space to which we now turn.

All these splitting functions are well known in Bjorken-x
space up to the two-loop order [5,10—14] and are, for
convenience, collected and appropriately presented in
Sec. A1.

Substituting now the transformation (2.7) into the evo-
lution equations (2.9) one notes that the inhomogeneous k
terms transform according to [5]

III. THE EVOLUTION EQUATIONS
FOR MOMENTS OF PARTON DKNSITIKS

AND THEIR DOMINANT
SINGULARITY STRUCTURE

In the n-moment space, defined by the Mellin transfor-
mation

f(n)= I dx x" 'f(x), (3.1)
0

the integral convolutions in (2.9) and (2.14) reduce to sim-
ple products of the corresponding n moments. This al-
lows for explicit analytic solutions [5] of the evolution
equations, in contrast to their Bjorken-x version (2.9),
which moreover allow for simply retaining only those a,
terms relevant for a consistent next-to-leading order
analysis [5). These moment expressions can then be easi-
ly (numerically) Mellin inverted to x space [5]. Apart
from being theoretically more transparent, this method of
solving the evolution equations is very efficient and stable
in the low-x and/or high-Q region since it avoids the
many numerical iterations involved in the more direct
but purely numerical Bjorken-x space calculation. (This
situation is similar to the one encountered for nucleon
structure functions [15,16].) The n moments of all re-
quired one- and two-loop splitting functions in the space-
like region (i.e., for calculating photonic parton distribu-
tions) are well known and conveniently presented in [5].
Since this is not the case for the timelike situation (pho-
tonic fragmentation functions), we have calculated the
moments of all photonic and hadronic two-loop splitting
functions and Wilson coefficients which are presented in
Sec. A2.

The dominant (as x ~0) 1/x and lnx /x singularities ofk" ' and ks" ' in (A3), respectively, mentioned at the
end of the previous section, correspond to the 1/(n —1)
and —1/(n —1) poles of k" '(n) and k(' '(n) present-
ed in the Appendix. Some of these troublesome poles of
kg q

in the MS scheme, which mostly destabilize the per-
turbative expansion for the solution of the Q -evolution
equations, do however ()anish for kz" lDIs in (2.14). This
property is of particular importance for k" ' whose neg-
ative MS lnx /x contribution in (A3) for small x seriously
aff'ects [11]Dr(x, Q ), thereby acquiring physically unac-
ceptable negative values in the medium- to small-x range.
This disturbing feature of D, arising in the MS factori-
zation scheme, disappears in the DIS scheme as can be
demonstrated analytically by identifying the dominant
x ~0 singularities of k"'(x) or equivalently and more
conveniently the rightmost poles of the moments k"'(n)

For completeness let us start with the dominant poles
for the spacelike case relevant for the photon structure
functions [5]. According to Eq. (2.14), using the relevant
moment expressions of Sec. A2, the dominant n =1 pole
term in k" ' cancels due to C( 2'(n =1)=1 and, further-
more, the subdominant 1/n pole is canceled as well:

(),s)(n)l k(1,s)(n) 2f (e2)p(0, s)(n)C(s) (n)g DIS g gq r2

=f(e )CF 3— —2 C'
2
—O(l/n )

3 n 1 n 1

=f (e ) C~[(12/n )+O(1/n )], (3.2)
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k "s'(n)lrns =f(e )CF[ (6/—n )+ O(1 /n)] . (3.3)

to be compared with the more singular MS quantity

k" '(n)=4f(e )C~/(n —1)—O(1/n )

corresponding to

k" '(x ) =3f ( e ) CF(4/3x )

as x —+0 in (A3). It is interesting to note that the leading
x ~0 singularity of the singlet

k "~'(x)=3f(e )CF[ln x+O(lnx)]

in (A3), or equivalently

k" '(n)=3f (e )CF[2/n —O(1/n )],
gets also canceled in the DISz scheme as can be easily
verified from Eq. (2.14):

Thus the DIS& scheme does not only remove the x~1
instabilities in f„', but also simultaneously tames the
x~0 singularities of the distributions. This is mainly
responsible for stabilizing the HO results [5] with respect
to the LO ones, in contrast with the MS scheme. It
should be noted that the dominant singularity would not
have canceled in (3.2) if we had used Cz '„ i.e., r'=1 in
(2.7) for the spacelike case, which is theoretically dis-
favored as discussed after Eq. (2.8).

The small-x singularities in the timelike region are far
more serious [11]in the MS scheme: As x ~0,

'(x) =f (e ) Tz [(16/3x )lnx+0(1/x )]

according to Eq. (A3), which corresponds to the singular
36(n ——1) term of k" '(n) in Eq. (A13). This dom-

inant n = 1 singularity is again canceled in the DIS
scheme where, due to Eq. (2.14),

k"r'(n)lots =k "r'(n) 2f—(e )P' '(n)C&,'(n)"y

=f&e'»~— 1 92 1

(n —1) 9 n —1

—2P" "(n)—
n

4 2 +01
(n —1)~ n —1

T

=f (e')T„+OR 9 n 3
(3.4)

kq~' '(n)logs ——2f &e')C~ 4m

3 n 1 n 3

(3.5)

where we have used the appropriate moment expressions
presented in Sec. A2 and the Taylor expansion around
n =1,

'(n) = Tz [2/3 —13(n —1)/18] .

From (3.4) we see that the (n —1) singularity gets en-
tirely canceled in DIS and that the size of the next-to-
leading (n —1) ' pole is reduced to —4(n —1) ', as com-
pared to the subleading —92(n —1) ' term in the MS
scheme in (A13), which corresponds to 64/9x in
ks" '(x)lz&&s . Thus, the huge instability encountered in'y
Ref. [11] for the perturbative predictions for Der(x, Q ),
where D~ becomes even negative mainly because of the
dominant (16/3x)lnx term in k" ', disappears in the
DIS scheme as will be demonstrated quantitatively in
the next section. On the other hand, the small-x behavior
of

k" '(x)=2f (e )CFln x

in Eq. (A3), which corresponds to the +2/n term in

(A12), becomes worse in the DIS scheme where Eq.
(2.14) gives, using

Pqq (n) =CF(5/4 qr /3)(n —1)—
around n =1,

which corresponds to the more singular small-x behavior
(5 —4qr /3 ) /x —2 ln x. (A 1/x singularity is already
present in the LO kq

' '). This, however, does not desta-
bilize the perturbative HO results in the DIS& scheme too
seriously since k'" is subleading as compared to k' ' in
Eq. (A2), in contrast with kg"' which dominates due to
kg '=0. It should be noted that the dominant pole in
(3.4) would also be canceled if the theoretically disfavored
C~ 2 were used, as discussed after Eq. (2.8), but the
strength of the remaining (n —1) pole would have in-
creased from —", to +'' in Eq. (3.4).

The aforementioned singularity cancellations are due
to the fact that they belong to just those two-loop graph
contributions to k' ' ' corresponding to the convolution
terms in (2.14) whose subtraction actually corrects the
unphysical features entailed in the MS factorization
scheme which artificially separates two components of
f„z in the limit mi, ~0. One should, in fact, recall that
the above-mentioned separation into a HO C& term and a

leading order k' ' term induces a different Q behavior of
two pieces which were originally combined in the single,
regular, and positive f„z. The DISr factorization scheme
restores the unity of the two pieces by bringing them to-
gether as components of k in (2.10) with Cz absorbed into
k"'ln, s . It is just this reunification which lies at the root"r
of the double success of the DIS factorization scheme,
namely, the stabilization of the perturbative expansion of
F~(x, Q ) as well as the simultaneous stabilization of the
perturbative expansion for the distributions X~ and g ~ as
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shown in Figs. 1 —3 of Ref. [5] for the spacelike situation
where r' =2 in (2.7) yielded optimal perturbative stability.
As was furthermore shown, for spacelike configurations
[17], the stabilization of the perturbative expansion for
the various cross sections is universal and not restricted
to I„~ alone. One could, of course, expect this to also
hold true for timelike situations involving photonic frag-
mentation functions since, as noted above, the trouble-
some n = I negative dipole singularity in k" ' vanishes
in the DIS factorization scheme.

IV. NUMERICAL RESULTS

(T)
1,PL

0.0

—0.2

—0.4

-0.6

0.6

LO

Q = S GeV

/ DIS

MS
I I I I I I I I I I I I I I I I I I

I I I
i

I I I
I

I I I
i

I I I
i

I I I

The predictions for Dj(x,Q ) afFord a specification of
Df (x, Qc ), where f=q, q, g. A measure for the perturba-
tive stability of various factorization schemes is provided
by choosing the same DJ(x, QO) for the LO and HO
analysis, e.g. ,

0.0

-0.2
Df(x, Qo=l GeV )=0, (4.1)

0.0 0.6 0.80.40.2
I I I I I I I I I I I I I I I I I I

1.0
usually referred to as the pointlike component or solution
[3,4]. The boundary conditions (4.1) at Qo= 1 GeV,
which determine D&~(x, Q )Qo), correspond to sitlla-
tions in which the emitted photon is isolated [11,18,19]
from its parent parton f by a pT cut. The scale Qo
should then be identified with the minimal relative trans-
verse momentum, i.e. , Qo =(p j~);„. For (pP)
GeV one expects that all nonperturbatively generated
photons are exponentially suppressed [1] as expressed by
(4.1). As noted in the previous section, the DIS factori-
zation scheme needed for stabilizing the perturbative pre-
dictions of f(i '(x, Q ) and of Dr(x, Q ) in the whole x
region, induces a slight destabilization of Dr(x, Q )Qo)
with respect to the MS scheme. To illustrate these points
we present in Figs. 1 —3 the perturbative predictions, us-
ing (4.1), for f=3 active flavors with A(Lo) =232 MeV and
A~O=248 MeV corresponding to A'„O=AHO=200 MeV.
We show the resulting f 'i '(x, Q ) of Eq. (2.1),

FIG. 1. The pointlike LO and HO solutions (for just f =3
active Aavors) for the timelike photonic e+e structure func-
tion fI

' defined in (2.1) in the DISr and the (more singular) MS
scheme. These results are obtained for the vanishing input (4.1)
at Q0= 1 GeV implemented correspondingly for the DIS~ and
the MS distributions.

Z Z, PL

0.4

(4.2)D)'s(x, Q )=g(Dq~+Dr),
f

and Dr(x, Q ) at Q =5 and 100 GeV as calculated in
leading (LO) and higher (HO) order, with the latter calcu-
lated, using (4.1), in the MS factorization scheme (in this
context, formerly [5] named MS„„„)as well as in the
DISr scheme with r'=1 in Eq. (2.7). As expected, the
perturbative stability properties of the DIS& factorization
scheme are superior to those of the MS scheme despite
the somewhat unsatisfactory situation in the quark sector
shown in Fig. 2. In the gluon sector, however, the (physi-
cally) disastrous negative MS results in Fig. 3 for
Ds (x, Q ), discovered originally in Ref. [11],disappear in

the DISz scheme. This unphysical negative MS result is
caused mainly by the inhomogeneous k" ' term, which
is negative throughout the whole x region (which is far
worse than stated in Ref. [11]) and becomes singular as
lnx/x for x —+0. Similarly, the perturbative stability of
the pointlike HO DIS& results for f'1 ', shown in Fig. 1,
with respect to the LO ones, is particularly satisfactory in
contrast with the MS predictions. It should be noted that

0.2

0.0 I I l I I I I I I I t I I I I I I

0.5

0 0 I I I l I I I I I I I t I I I I l I I

0.0 0.2 0.4 0.6 0.8 1.0

FIG. 2. The pointlike LO and HO (f=3) photonic fiavor-
singlet quark fragmentation functions, which also enter the pre-
dictions in Fig. 1, corresponding to the input (4.1) implemented
for the DIS~ and MS distributions at Qo =1 GeV, relevant for
isolated photon production. Note that the more common nota-
tion is x =z.
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1
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FIG. 3. As in Fig. 2 but for the pointlike
photonic gluon fragmentation function, corre-
sponding to the input (4.1), plotted on a (a) log-
arithmic and (b) linear scale.
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X

1.0

/004» I I « I I I I I I I I I I I I I
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X

the perturbative stability of the directly measurable f,'
in e+e experiments is superior to the one of the
theoretical quantities Df~ which also depend, in HO, on
the definition chosen for the hadronic Wilson coef5cients
in Eq. (2.1) and that, furthermore, the negativity of the
physical quantity f ', ' in the MS scheme is unacceptable.
Strictly speaking we have considered here only the per-
turbative pointlike hadronic part of f', ', corresponding
to (4.1), which should be supplemented by the nonpertur-
bative hadronic component. As noted in Refs. [5,6] for
the case of photon structure functions and photonic
quark and gluon distributions, as well as in Secs. II and
III above, the favorable results for the pointlike com-
ponent in the DIS factorization scheme allow for a
reasonable specification of the nonperturbative hadronic
component, e.g. , in Eq. (4.6) below, also for the HO
analysis (with the HO hadronic input being comparable
but not drastically different from the LO one) in contrast
with the situation in the MS factorization scheme (cf.
Ref. [5]).

Because of these superior perturbative stability proper-
ties, we shall adopt the DIS& scheme for our subsequent
calculations based on (4.1) or some similar boundary con-
ditions. For actual HO analyses of direct photon produc-
tion in purely hadronic (or lepton-proton) reactions, how-
ever, one uses the MS scheme [11,18] where the various
HO subprocesses have been calculated. In this case one
should, of course, also transform the photonic DIS~ dis-
tributions, satisfying (4.1), into the MS scheme according
to Eq. (2.7) [20]:

4 we show our predictions also at Q =10 GeV, the
heavy flavors have been included, following our previous
procedure [6] utilizing m, s =1.5 and 4.5 GeV for the
heavy quark thresholds and

A„'Q '=232, 200, and 153 MeV,

AHQ =248, 200, and 13 1 MeV
(4.4)

I I
(

I I I
f

I I I
)

I I I
I

I I I

xD (x Q )/n

0.5

0.3

O.i

for the scales in a, (Q ) for the corresponding f=3,4, 5

Aavor regions.
For inclusive direct photon production (i.e., with no

isolation cuts) the scale Q&& from which the photonic radi-
ation should be started is rather low [ll], just as in the
corresponding situation for the photon structure function

q q( 'Q i MS q q( 'Q ) iDIs q cI I (x)

D,'(,Q')i —,=D,&(,Q')i „. (4.3)

For illustration we show our pointlike DIS& results as
transformed to the MS scheme in Fig. 4. It is interesting
to note that our predictions for D~ in Fig. 4 are, as can be
inferred from Fig. 2, about twice as large as the ones ob-
tained by working throughout within the framework of
the MS factorization scheme [11]with the more singular
evolution equations as discussed in Sec. II. Since in Fig.

0.01

0.001

0.0 0.2 0.4
x

I I I I I I I l I I I

0.6 0.8 1.0

FIG. 4. Photonic LO and HO DIS& fragmentation functions
corresponding to the vanishing input at Qo =1 GeV in (4.1),
relevant for isolated photon production; the contributions from
the onset of heavy quark thresholds have been included as dis-

cussed in the text. All DIS~ results have been transformed into

the MS scheme according to (4.3).
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[6,21] where [6] Qo =p with

pLo 025 GeV, pHQ 03 + (4.5)

Df(x,p )= Df (x,p ), (4.6)

with f /4rt=2. 2, just as in the corresponding spacelike
situation [6]. Furthermore, it is expected [5,6] that in the
DIS& factorization scheme this nonperturbative input at
Qo=p is similar in the leading and higher perturbative
order utilized in the Q evolution of DJ(x, Q )p ). The
magnitude of Dft' (x,p ) in (4.6) may be inferred from [22]
where one notes the small amount of p production in
e+e annihilation as compared to the much higher rate
for m. production even at +s ='t/Q =29 GeV. Further-
more, since the threshold Q, for vector-meson produc-
tion in e e annihilation via y*~um. , with U=p, co, g,
satisfies

Q, =(m„+m ) =1 GeV &)p
one concludes that

(4.7)

Df(x, Qo=p )=0 (4.8)

may be considered as a realistic approximation for the
DIS& distributions which underestimates the true nonper-
turbative hadronic input rather slightly. To obtain a
plausible estimate for the possible upper bound on
DJ(x, Q ) we add to the "pointlike" solution, fixed via
Eq. (4.8), a VMD inspired hadronic component, utilizing

0 0
Df Df as proposed by Field and Feynman [23], with

Df h d (x, Q ) obtained from the homogeneous evolution
equations [5] using

Dfh, d(x, Q )=
2 Df (x, Q ),f2

(4.9)

for the DIS& distributions superimposed on the pointlike
solution. For our calculations we take [24]

xD~ (x ) =a„[0.073&x (1.703 —x )

+0.188x (1—x) ],
xD~ (x)=a„[0.188x ' (1—x) ],
xD~~ (x)=a, [0.225x (1—x)' ]

(4.10)

at Q =4 GeV and where q =(u, u, d, d), a„=0.5. We
expect, again in the spirit of the DIS& scheme, that Eq.
(4.9) as combined with (4.10) approximately holds in both
perturbative orders for the Q evolution of the DIS~ dis-
tributions here considered.

It should be emphasized that present experiments do
not constrain [11] the hadronic distributions in (4.10)
below x =0. 1 and leave the gluonic fragmentation func-
tion D~~ =Dg" almost unconstrained. We have therefore

henceforth also adopted for the LO and HO evolution of
the photonic fragmentation functions. Here the nonper-
turbative contribution at Qo=@ is, in principle, nonvan-
ishing and determined via a vector-meson dominance
(VMD) ansatz implemented, again, for the DIS~ distribu-
tions

chosen, in accordance with the momentum sum rule, a
slightly steeper x dependence for the sea and gluon distri-
butions in the small-x region in (4.10) than the fiat
(ad hoc) ansatz of Ref. [24]. This somewhat tames the
inhuence of the small-x singularities in the HO Wilson
coefficients [especially C' ' in (2.1)] and in the splitting
functions on the Q evolutions, similar to the well-known
situation for the spacelike parton distributions. There-
fore the ansatz (4.10) for the whole x range O~x ~ 1

should not be taken too literally and represents at most
some "educated guess" which is consistent with all
present measurements sensitive to the medium-x region
[11,24]. A more detailed quantitative study of these ha-
dronic inputs for DI requires, of course, measurements of
inclusive prompt photon production which are not yet
available. Presently available data for isolated photon
production [1,25,26] can only provide us with some in-
direct information on the fully inclusive photonic time-
like fragmentation functions DJ(x, Q ) whose further in-
vestigation affords [11,19] a complete quantitative study
of present e+e and pp collider data for isolated, as well
as additional data on nonisolated, photon production.

Our DIS& predictions for D ~ and Dr at Q = 102 and
10 GeV for the situation of unseparated photons
(Qo =p ), transformed to the MS scheme according to
Eq. (4.3), are presented in Figs. 5 and 6. Shown are the
purely perturbative pointlike (PL) LO and HO results, as
obtained from the boundary condition (4.8) in the DIS&
scheme, which, as discussed above, do represent realistic
expectations for Df~. We thus do not agree with the esti-
mates of Ref. [11]where large nonperturbative hadronic
contributions have been added, based on a huge

0
Ds (x, Q ) which strongly violates the energy-momentum
sum rule. A more realistic estimate for a (large) hadronic
component is obtained by adding [27] the hadronic input
(4.9) to the perturbative pointlike results which is shown
by the dashed-dotted and dotted curves for LO and HO,
respectively, in Figs. 5 and 6. It should be noted that our
purely perturbative pointlike HO predictions for D~ in
Fig. 5 are comparable and even larger than the HO re-
sults of Ref. [11] (cf. Figs. 10 and 11, dotted and dashed
curves) despite the unrealistically large hadronic contri-
bution considered there. Our predictions for D in Fig. 6
are, on the other hand, obviously smaller than the corre-
sponding ones of Ref. [11](cf. Figs. 13 and 14, dotted and
dashed curves).

Our LO results could also be compared with the
Owens parametrizations [28] currently used for D~ and
D~ in the range x ~0. 1, shown by the crosses in Figs. 5
and 6. These correspond to the simple (parameter-free)
asymptotic part of the LO pointlike solution where possi-
ble hadronic contributions as well as the boundary terms
[»5]

i —2r"'/P
[a,( Q') /a, ( Qo ) ]

are neglected although their purpose is essential to obtain
a nonsingular behavior as x —+0. It is therefore not
surprising to obtain a di6'erence with respect to our LO
results, at least for moderate values of Q .

It should finally be noted that the reason for our choice
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xD„(x,Q )/(x

of scales in Figs. 4—6 is that Q =10 GeV is representa-
tive for the theoretically ill understood small-pT region
(p)520 GeV) of prompt photon production at collider
energies [1,25] while the upper scale Q = 100 GeV corre-
sponds to the electro weak scale relevant for
intermediate-mass Higgs boson searches (via its decay
into two photons) at future hadron colliders [29] where
an accurate knowledge of the standard QCD background
of double-photon production will be of vital importance.

0.3

0.1

PL+had

I I I I I I I I I I I I I I I I I I

0.0 0.2 0.4 0.6 0.8 1.0
X

FIG. 5. LO and HO DIS~ predictions for the photonic frag-
mentation function D„~(x—:z, Q ), corresponding to the point-
like (PL) input at Q =p in (4.8); the additional hadronic (had)
contributions have been calculated [27] using the input
(4.9)—(4.10). The contributions from the onset of heavy quark
thresholds have been included as discussed in the text. The
DIS~ results have been transformed into the MS scheme accord-
ing to (4.3). These predictions are relevant for inclusive direct
photon production. The crosses refer to the asymptotic LO
solution as parametrized by Owens [28], using A=200 MeV.
The results for Q =10 GeV have been multiplied by a factor
0.5.

I I I
f
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I I I
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Q X 'r 2
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0.0 0.2 0.6 0.8 1.0

FIG. 6. As in Fig. 5 but for the photonic gluon fragmenta-
tion function. The results for Q = 10 CyeV have been multi-
plied by a factor 0.1.

V. SUMMARY AND DISCUSSION

Photon production via deep-inelastic quark and gluon
fragmentation into photons is studied beyond the leading
order within the framework of a physically motivated
factorization scheme (DISr) providing maximal perturba-
tive stability for the Q evolution to be started from an
appropriate scale Qo which depends on the experimental
conditions considered for the observation of the outgoing
photon. The perturbative stability is achieved through
the elimination of unphysical negative singularities in the
HO splitting functions appearing in the artificial, merely
mathematical, MS factorization scheme. We demon-
strate explicitly the elimination of the most conspicuous
MS singularities not only in the timelike but also in the
spacelike region, relevant for the photon structure func-
tions, where these disturbing singularities are somewhat
miMer.

The analysis of the above-mentioned singularity elim-
ination is most transparent in n-moment space and we
provide the required n moments of the HO timelike split-
ting functions which up to now were only available [13]
in fractional momentum x space. Furthermore, a (Mel-
lin) inversion to Bjorken-x (or -z) space is also most con-
venient for the numerical treatment of the Q -evolution
equations whose solution in n space can be stated analyti-
cally in terms of appropriate boundary conditions at a
suitably chosen input scale Qo. The nonperturbative,
VMD-like, hadronic input contribution at Qo was argued
to be rather negligible under all experimental conditions
considered for the observation of the outgoing photon.
Under these quite definite vanishing input circumstances
at Qo as prescribed for the isolated [Eq. (4.1)] or noniso-
lated [Eq. (4.8)] outgoing photon, it turns out that the
corresponding, so called "pointlike, " predicted distribu-
tions are perturbatively stable within the framework of
the DIS factorization scheme approach. For the situa-
tion of nonisolated photons we also considered the uncer-
tainties involved in the nonperturbative hadronic input
[30] by simply adding to the above-mentioned pointlike
predictions a further quite extreme hadronic component

0
specified by a VMD ansatz, Eq. (4.9), with Dg =DJ
yielding a possibly exaggerated prediction for the fully in-
clusive nonisolated photon production rates entailed in
D&. A definitive resolution of the uncertainties related to
the appropriate nonperturbative hadronic input involved
in the noniso1ated photon situation wil1 only be possible
by measuring f I

) and other related, fully inclusive,
quantities at e e and other (hadronic) high-energy col-
liders.

It is interesting to note that at Q = 10 GeV the Qo-
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input uncertainties, especially when Qo corresponds to a
photon-parton isolation cut scale such as (pg );„=1f
GeV, are almost washed out due to the long Q -evolution
distance. This enables a quite reliable estimate of the
standard QCD double-photon background encountered
in intermediate mass, mH-—80-150 GeV, Higgs boson
searches via H ~yy at future [CERN Large Hadron
Collider (LHC), Superconducting Super Collider (SSC)]
hadron colliders [29]. Here one could also consider more
realistic isolation cuts such as a axed Qo=o(5&&Q )
with 5 f representing the angular separation between the
emitting parton f and the photon. It is mandatory, how-
ever, to choose here a z-independent Qo and absorb the
remaining z dependence, implied by the angular isolation
cut kinematics [11,18,19,31], into the HO direct photon
production cross section or, alternatively, into the scale
Q of the fragmentation functions.
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APPENDIX A

1. Splitting functions in Bjorken-x space

The HO splitting function P"' and k'" in Eqs. (2.9)
and (2.10) and the related HO Wilson coefficients in (2.4)
and (2.5) depend on the chosen factorization scheme. In
our present discussion we adopt the expressions in the
MS factorization scheme in Refs. [7—9, 11—13]. It should

be noted that these expressions differ, for the timelike sit-
uation, from the ones in Ref. [14] due to a different un-
physical choice of the factorization scheme which does
not respect energy-momentum conservation for the quark
and gluon fragments [14]. We shall thus only consider
the HO timelike expressions in Refs. [8,9,11—13]. The
purely hadronic splitting functions in Eqs. (2.9), (2.10),
and (2.13) are related, for the flavor singlet case, to the
ones in Ref. [13]via

p(i, S) p(i, S) p(i, S) p(i, S)
gq FG & qg GF

P(i, T) —2 PP(iT) , P(i, T) (2N )
—1P(i, T)

gq & FG & qg F GF

(Al)

where N~:f and i—=0, 1; the diagonal singlet elements in
(2.13) are as in Ref. [13] with [32] F~q and 6—+g. The
relevant nonsinglet splitting function is, in HO, given by
P'+' in Eqs. (4.8) and (4.50)—(4.55) of Ref. [12].

The photonic spacelike (y~q, y~g) and timelike
(q ~y, gy) splitting functions k' ' and k' ' in (2.9)
and (2.10), respectively, are obtained from the purely ha-
dronic P,' ' ' by an obvious replacement of the color fac-
tors [3] and an elimination of the 5(1—x) terms in Pgg'
which do not contribute [5,10] to the off-diagonal yg ele-
ments k"'. Thi~ finally yields, in LO,

2 (e2})
—lk(O, S) ( 2}—lk(O, S) 3T—lP(O, S)

eq e NS, q q R qg

f( 2 ( 2})—lk(0 T) ( 2}—lk(O T) C —1P(0 T)eq e Ns, q gq (A2)

and, for the HO photonic splitting functions in the MS
factorization scheme,

f(
2 ( 2 })

—lk(1,S) ( e2 }—lk(1,S)
NSq e

q

=3FC~{4 9x —(1—4x—)lnx —(1—2x )ln x+4 ln(1 —x )

+ [4 lnx +2 ln x —4 lnx ln( 1 —x ) —4 ln( 1 —x )

+21n (1 —x)——23ir +10][x +(1—x) ]],
f( 2 ( 2})—lk(1T) ( 2}—lk(1T)eq e NSq q

=2fC~[ —
—,'+ —,'x —(8 —

—,'x)lnx+2x ln(1 —x )+(1—
—,'x )ln x

+[ln (1—x)+41nx ln(1 —x)—8S, (x)——', ir ][1+(1—x) ]x

k( ' )=3f(e }Cz —16+8x+ x + —(6+10x)lnx —2(1+x)ln xg F 3 3x

(A3)

k ' =f(e }Tie —4+12x — x + + 10+14x+ x + lnx+2(1+x)ln x(1,T) 2 164 2 92 16 2 16 2
g 9 9x 3 3x'

where

S,(x)—:—Li2(1 —x )=I ln(l —z),
0 Z

CF= ~, T& =
—,', and (e }=f 'g~ez, with f being the

number of active light quark flavors.

The evaluation of the convolutions in (2.14), required
for the transformation to the DIS~ factorization scheme,
can be performed analytically using standard Mellin in-
tegrals [5]. Since our numerical integrations of the evolu-
tion equations is performed for the analytic solutions in
the Mellin n-moment space [5,16], we refrain from
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presenting here the corresponding explicit x-space ex-
pressions for the timelike quantities in (2.14).

2. Moments of splitting functions
and coefBcient functions

p" ' (n) = —y(Ns)"(ii=+1)/8,
( )p( l, s)(n) ~(1)n/8

IJ 1J

with y(N)s)" (ii =+ 1) and yI. )" given by Eqs. (8.18) and

A4

The moments of the LO splitting functions are well
known: P. ' '(n)= —y(;. )"/4 for the spacelike case with
y(0)" given by Eqs. (8.14)—(8.17) of Ref. [14]; the diago-
nal quantities are universal, i.e., P' ' '(n)=P' ' '(n) and
Pgg' '(n ) =Pgs' '(n), whereas the timelike off-diagonal ele-
ments, given by (Al), are Ps(~' '(n) =2fPg '(n) and
Pqs' '(n)=(2f ) 'Pqs '(n). This also fixes the moments
of the photonic LO splitting functions in Eq. (A2).

The moments of the spacelike HO splitting functions
are known as well:

(8.19)—(8.22) of Ref. [14], respectively. The momentsk" '(n) and k" '(n) of the photonic HO splitting func-
tions in (A3) can be found in Ref. [5], Eqs. (2.9) and
(2.10), respectively. Similarly, the moments of the space-
like Wilson coefficients in Eqs. (2.4) and (2.5) are given by
C'z)(n)=B"/2 and C'2'(n)=BG/4f with 8" and 8G
given by Eq. (2.20) of Ref. [5], and

2
Cq(;1) (n) = Cq(,s2) (n) C—F

(A5)

C' '(n)=C' '(n) —Tg2 R +1

according to Eqs. (2.4) and (2.5). The moments of C(s)
are then fixed via (2.6).

The moments of the relevant timelike HO splitting
functions of Ref. [13] have not been calculated so far. A
straightforward but tedious calculation of the Mellin mo-
ments of P(' )(x) in (Al) yields

2
pN(1sT+) (n) =p(Ns+) (n )+CF —4S1(n)+ 3+

n n+1

p( 'T)(n)=P( ' (n)+C —4S (n)+3+ 2
qq qq F 1

n (n+1)

~2

2S (n)—2 3

772
2S (n)—2 3

2n +1
n (n+1)

2n +1
n'(n +1)'

(A6)

80 1 8 12
9 n —1 yg

'
pg

12 8 28
n (n +1) (n +1)

4 32 1 224 1

n+1 3 (n+2)2 9 n+2

(A7)

2fP" )(n)=(Tzf) S,(n+1) — + 2R 3 n

1

n (n +1)
2 4 1

(n+1)2 3 n+1

4 4 1+
(n+2) 3 n+2

+ +2+CFTFf [ —2S, (n+1)+2S)(n+1)+10$2(n+1)]

+4S1(n +1) — +—+1 1 1 + 2
n n (n +1) (n +1)2 (n +2)

2 5

n 3 n 2

4
(n +1)

12 4
n n (n+1)

4 23
n+1

12
n (n+1)

20
n+2

6
n(n +1)

2+ +2
+CGA f 2S2)(n +1)— S, (n +1)—6S2(n +1)+26"'(n +1)

3

2 1 1 6—4S, (n +1) — +—+ +
n n (n +1) (n +1) (n +2)

26 1 8 22 1 16 68 1

9 n n (n+1) 3 n(n+1) (n+1)3 3 (n+1)2

40 1 4 81
9 n —1 n 3 n

190 1

9 n+1

8

(n +1) (n +2)
4 356 1

(n +2)~ 9 n +2 (A8)
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2 2

(2f ) Pzq' (n)=C+ S&(n) —3S&(n)— n +n+2
(n —1)n (n +1)

+2S, (n)
4

(n —1)
2

(n —l)n
4 3

n (n+1)
1

n+1
8 8

(n —1) n (n —1)n

2 8

n n

1 1 5 1 9 1+ +-
2n (n+1)3 2 (n+1)~ 2 n+1

2 2+ +2—S, (n)+ 5'( n) G'—"(n)+
6 (n —1)n (n +1)

+2$, (n) — + +
(n —1) (n —1)n n

2 1

(n+1) n+1 (n —1)

6 17 1 4 12

(n —1) 9 n 1 (n —1) n (n —1)n
8 5 2+——

n n n (n+1)
2

(n +1)

7 1 8 1

(n +1)z n +1 3 (n +2)
44 1

9 n+2 (A9)

P""'(n)=P" '(n)+C T fgg gg F
16 1 80 I 8
3 (n —1) 9 n —1

16 12 8

n n (n+1)
24

(n+1)

n+1
16 1

(n+1)
224 1

9 n+2
T

8 1 1+CGT~ f —— S~(n)— +
(n —1) n

1 1

(n +1) (n +2)

+ CG —8S& (n)Sz(n)+ 8S, (n)
(n —1)

1 1

n (n+1)
1

(n+2) 6

4m+ 8S (n)—2 3
1 1 1+

n —1 n n+1
1 11

n+2 12
8 22 1

(n —1) 3 (n —1)
8

(n —1) n

8 8

(n —l)n n

14 1

n

8 14 1

(n+1) 3 (n+1)
8

(n +1) (n +2)
8

(n +1)(n +2)

8

(n +2)
22 1

(n +2) (A 10)

with the P J' '(n) given by Eq. (A4), Cz = ', ,Tz =
—,', CG =3, a—nd

n

S,(.) =—y dn 2
n

2
(A 1 1 )

where g(z) =d lnI (z)/dz, and the analytic continuation in n, required for the Mellin inversion to the Bjorken-x space,
are well known [5]. The moments of the photonic splitting functions k" ~(x) in the MS scheme as presented in (A3)
are then
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f(e' —(e')) 'k" '(n)=(e') 'k" '(n)
)

27T2
=2fCF S, (n) —3S2(n)— n +n+2

(n —1)n (n +1)

+2S, (n)
4

(n —1) (n —1)n
4 3

n (n+1)
1

n+1
8

(n —1) n

8 2 8

(n —1)n n n

1 1 5 1 9 1+ +
2n (n+1)3 2 (n+1) 2 n+1 (A12)

k(1, T)(n )
—f ( e2) T 16 1 92 1 4 10 4 4

(n —1) 9 n 1 n n n (n+1)
14

(n +1)

12
n+1

16 1

(n +2)
164 1

9 n+2 (A13)

Finally, the moments of the timelike Wilson coefficients in Eqs. (2.4) and (2.5) are given by

C' 2'(n) =C 5S (n)+S (n)+S (n)
3 1

q2 F 2 I 1 2 ( +1)
C', '(n) =C' 2'(n)+C (F2/n ),

2 2 3 3 1 9——+
n2 n (n+1)2 2 n+1 2

(A14)

C' 2'(n) =CF —S,(n)
(n —1)n (n +1)

4
n 1 n

(n —1)
4 4

(n —1)n n2
3

(n+1)

which fixes also the moments of C( „' via the relation (2.6).
Utilizing these moments of timelike splitting functions, one can use the Q -evolution formalism and the analytic solu-

tions for the spacelike situation of Ref. [5] without modification by noting the correspondence between I' ' ' and P '

presented in (2.13), and by the replacements k" ' —+k" ', qr(n, Q )~Dr(n, Q ) and gr(n, Q )—+Dr(n, Q ).
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