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Determination of the reaction plane in ultrarelativistic nuclear collisions
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If the particles produced in a nuclear collision undergo collective Bow, the reaction plane can in prin-
ciple be determined through a global event analysis. We show here that collective Bow can be identified

by evaluating the reaction plane independently in two separate rapidity intervals, and studying the corre-
lation between the two results. We give an analytical expression for the correlation function between the
two planes as a function of their relative angle. We also discuss how this correlation function is related
to the anisotropy of the transverse momentum distribution.

PACS number(s): 25.75.+r, 12.38.Mh, 24.60.Ky, 47.75.+f

I. INTRODUCTION

In searching for evidence of the formation of a quark-
gluon plasma in ultrarelativistic nucleus-nucleus col-
lisions, one is led to address the question of whether the
matter produced in these collisions can be considered, at
least locally, to be in thermal equilibrium. Local equilib-
rium implies that the matter behaves collectively, which
may have observable consequences. When collective flow
is present, the evolution of the system is determined by
the pressure gradient, and is therefore strongly influenced
by geometrical factors (nuclear size, impact parame-
ter, . . .). Effects of geometry on global event shapes have
made possible the detection and the study of the collec-
tive flow of nuclear matter at colliding energies up to 1

GeV per nucleon [1]. However, few such studies have
been undertaken at ultrarelativistic energies, and no con-
clusion has been drawn so far [2].

Most analyses at intermediate energies have been con-
cerned with the determination of the flow direction,
which is the direction of maximum kinetic-energy flow.
However, the flow angle (angle between collision axis and
flow direction) decreases with increasing energy and can-
not be measured at ultrarelativistic energies; this is be-
cause longitudinal momenta are much larger than trans-
verse momenta. When it can be measured, the flow direc-
tion gives an experimental determination of the reaction
plane, which is the plane spanned by the collision axis
and the impact parameter. The latter can also be deter-
mined independently by measuring the transverse
momentum transfer between target and projectile regions
[3]. Although this method has not been successful at the
CERN Super Proton Synchrotron SPS [2], it has been re-
cently argued that it should give results with heavy nuclei
[4].

Since the flow direction merges with the collision axis
at ultrarelativistic energies, whether or not there is col-
lective behavior, evidence for collective flow should be
sought for rather in the transverse directions. Note fur-
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ther that while analyses carried out at intermediate ener-
gies are mostly concerned with nucleons, the large num-
ber of mesons created at ultrarelativistic energies in the
central rapidity region offers an opportunity to study col-
lective flow, not only of spectators and/or participant nu-
cleons, but also among the produced particles. Starting
from these observations, we have proposed a new signa-
ture in a previous work [5]. The idea is that for peri-
pheral collisions, the region where nucleon-nucleon col-
lisions take place, when projected onto the transverse
plane, is anisotropic: it has a smaller size in the direction
of the impact parameter than in the perpendicular direc-
tion. This causes the matter produced in the central rapi-
dity region to flow preferentially in the direction of the
impact parameter, which results in a corresponding an-
isotropy of the transverse momentum distribution. This
anisotropy should increase with the impact parameter.

We propose to study collective flow in the plane or-
thogonal to the principal flow direction (here, the col-
lision axis). This has also been done at lower energies [6],
where it was found that matter escapes preferentially in
the direction orthogonal to the reaction plane. This was
referred to as the squeeze-out effect. By contrast, we pre-
dict a larger flow in the reaction plane. However, this is
only an apparent contradiction since the effects that come
into play are very different [7]. Squeeze-out results from
an interaction between the participant nucleons, which
try to escape the fireball, and the spectators which block
their path in the reaction plane. But at ultrarelativistic
energies, the time it takes for the nuclei to cross each oth-
er is so short that the particles produced in the central ra-
pidity region do not "see" the spectators. Anisotropy re-
sults from the interaction of particles in the central rapi-
dity region among themselves.

The main problem one usually encounters in global
analyses is that fluctuations occur due to the finite multi-
plicity, which may hide collective effects [8]. In this arti-
cle we would like to show how statistical and dynamical
effects can be separated in the anisotropy analysis. The
idea is that in a given event, one can perform two mea-
surements of the reaction plane by doing global analysis
with two separate subsets of the emitted particles (by
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selecting, for instance, the particles produced in two
separate rapidity intervals). Then the difFerence between
the two results gives a direct measure of the dispersion
due to statistical fluctuations.

In Sec. II we recall the definitions of the variables we
use in the global analysis [5]. In Sec. III we give a gen-
eral discussion of finite multiplicity fluctuations. The
main results are contained in Sec. IV where we calculate,
under quite general assumptions, the correlation function
between the two measurements of the reaction plane. We
show how to measure the ratio of dynamical to statistical
effects directly from the experiment. In Sec. V we show
how this can be used to isolate the dynamical part in the
anisotropy. The relevance of this work to current and fu-
ture experiments is discussed in Sec. VI.

II. GLOBAL ANALYSIS

In Aow analyses, an event is characterized by means of
global observables describing its shape. At ultrarelativis-
tic energies, we are only interested in the transverse
directions. We therefore define the 2 X 2 transverse
sphericity [9] tensor S by

M
SJ= g w(v)u;(v)uj(v),

where {u,(v), u2(v)) is the unit vector parallel to the
transverse momentum of the vth particle, w(v) is a
weight, and the sum runs over all the particles detected in
a given rapidity interval. If there is no particle
identification, w(v) can be chosen to be equal to some
function of the transverse energy Er(v) deposited by the
particle in the calorimeter; for instance, w(v)=ErP(v),
with p equal to some real constant. Collective Row usual-
ly results not only in a larger number of particles emitted
in the Row direction, but also in a higher energy per par-
ticle in this direction, so that P should be taken positive;
for instance, p= l. Which is the best weight to consider
should be determined on the basis of a more careful
analysis. However, the results which are presented here
do not depend on such details.

S; has three independent components and is therefore
fully determined by its two eigenvalues f, and f2 (we
choose f, ~fz ) and the angle 8 between the x axis and
the eigenvector associated with f„with —m. /2 ~ 8 ~ ~/2.
Instead of f, and f2 we choose the variables 6 and a
defined by

III. FINITE MULTIPLICITY FLUCTUATIONS

Macroscopically, a collision between two spherical nu-
clei is fully characterized by the colliding energy and the
impact parameter. However, particle emission is the re-
sult of microscopic processes (parton-parton or nucleon-
nucleon collisions) which are not described by these mac-
roscopic variables. For fixed energy and impact parame-
ter, this results in statistical fluctuations of global macro-
scopic quantities such as the sphericity tensor S, Now,
since particles are created independently at different
points in the system, it is reasonable to assume that S; is
the sum of a large number of independent random contri-
butions. Then the central limit theorem states that the
probability law of S; is Gaussian. To avoid having to
deal with too many indices, we rearrange the three in-
dependent components of S;- into a three-vector S whose
components S,. are defined as

S, =S))+S22=6",

S2 =S
& & S22 =Ba cos20

S3 2S ]2
=8a sin20

(4)

The most general Gaussian probability distribution for S,
is of the form

~ exp[ —('S —'S)T '(S —S)/2],

calculations predict that o, decreases linearly with the
multiplicity or the transverse energy (which are measures
of the impact parameter). The highest value of a, ob-
tained for very peripheral collisions, is about 0.25 —0.3 for
a Pb-Pb collision, and slightly less, about 0.2, for a S-W
collision.

There is a larger How in the direction of the impact pa-
rameter than in the direction perpendicular to the reac-
tion plane [6]. Thus we expect that the principal axis as-
sociated with the larger eigenvalue f &

is the direction of
the impact parameter. Since S is directly measurable,
this in turn gives an experimental measurement of the
orientation of the reaction plane. However, this estimate
is reliable only if the measured anisotropy originates from
collective How. Statistical fluctuations related to the
finite multiplicity also generate anisotropy, which must
be disentangled from the dynamical anisotropy created
by collective behavior. It is the purpose of this paper to
show how this can be done experimentally.

6'=trs =f, +f2,
fi f2-
f&+f2

(2)

r,,=(s,s, ) s,s, . — (6)

where S= {S ) is the average value of S and T is the 3 X 3
covariance matrix defined by

S can then be expressed as a function of 6, a, and 0:

S =—1+a cos20 o. sin20
a sin20 1 —a cos20 (3)

n measures the relative difference between the eigenval-
ues of S, i.e., the anisotropy of the momentum distribu-
tion. As we said in Sec. I, collective fIow results in an-
isotropy for peripheral collisions [5]. Hydrodynamical

If one considers two independent random variables S and
S' with Cxaussian probabilities such as (5), with respective
covariance matrices T and T', the probability of S +S' is
Gaussian, with a covariance matrix equal to T+T'.
Thus T,. is proportional to the number of particles M
used in the analysis.

Since the system is symmetric with respect to the reac-
tion plane for spherical nuclei, so must be the probability



1134 JEAN- YVES OLLITRAULT

(5). We choose x to be the direction of the impact param-
eter. Then the symmetry with respect to the reaction
plane changes 8 into —8. Equation (5) is invariant under
this transformation if

S3 =0,

y=a/o. and @=a/o .

Equation (10) becomes then

dP
dyd8 exp( —g —y +2' cos28) .4X -2 2

(12)

(13)

T13 23

t'

dP 4a c7 +a —2aa cos20
expda d8 ~gz 0 2 (10)

with

a=+2T„/F .

o. is the order of magnitude of the anisotropy created by
statistical fluctuations alone, as can be seen easily if cT=O:
the probability distribution for a, apart from the pre-
exponential factor u which arises from the Jacobian
transforming (a, @,8) into (S„S2,S3), is a Gaussian of
width cr/&2. Note that since both Tzz and 8 are pro-
portional to the number of particles M used in the
analysis, cr scales like I/&M. For an uncorrelated emis-
sion of identical particles, one finds
o =(1/&M )t/(w ) /(w ) where w is the weight of the
particle in the sphericity tensor, Eq. (1). We have chosen
to normalize Eq. (10) to unity in the interval [O, m/2j
(rather than [ —m/2, m/2] because the function is even),
that is,

This will be checked below.
It is convenient to express the probability as a function

of the scaled quantities

Thus S depends only on two parameters:

S,=6,
S2=@a .

c7 represent the anisotropy associated with S, that is, the
anisotropy in the emission law. Although S is the aver-
age value of S, a is in general not equal to the average
value of a, (a): for an isotropic emission, a=O, but in
general a &0 with a finite number of particles. While c7

represents the anisotropy associated with macroscopic
effects —for instance, with collective How —the average
value (a ) also receives a contribution from finite multi-
plicity fluctuations.

If the emission is weakly anisotropic, i.e., if a &(1, the
covariance matrix T is approximately the same as for an
isotropic distribution. For an isotropic distribution, the
probability (5) must be invariant under rotations, that is,
under transformations 8~0+00 with Oo fixed. This im-
plies

T„=o,
T22=T33 .

Then the probability (5) can be integrated over 6' with the
result [5]

dX
=2X exp( X X )Io(2XX) . (14)

To check that this distribution is normalized to unity, we
integrate (14) by parts and use the relation
I, (z) =dIo/dz. Then the formula

I exp( y)I (2g—g)dy= exp I,/2

with v= 1 gives the result, using the fact that

I, /2(z) =2sinhz/&2mz

(15)

In principle, the distribution (14) can be compared to
the experimental distribution of the anisotropy a: g and
the scale factor o. can be fitted so as to obtain the best
agreement with the data. However, this may be difficult
in practice, as we are going to see shortly. Figure 1

1.0

0.5

0.0

FIG. 1. The solid lines display the values of {1/y)(dP/dy),
given by Eq. {14),as a function of y for three values of the pa-
rameter y. The dashed line is an approximation to the curve
y=0. 5 by a Gaussian corresponding to the same average value
(g) of y, calculated from Eq. (26) (see Sec. V). All curves are
normalized to unity: J (1/g)(dP/dg)dg= l.

This equation only involves the dimensionless parameter
y, which will play a crucial role in our analysis. Physical-
ly, y represents the ratio of the anisotropy cz generated by
dynamical collective effects to the typical anisotropy o.

yielded by statistical fluctuations. Note that strictly
speaking, Eq. (13) also involves the parameter o since y
varies from 0 to 1/cr. However, rr (& 1 for a large system
and the probability (13) decreases exponentially for
y»1. Thus we will let y vary from 0 to + ~ when we
integrate over y.

Equation (13) can be integrated over 8 using the
modified Bessel function Io defined in Eq. (A2). One gets
then the distribution of the scaled anisotropy y:
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where

X exp(g cos 28)J, (16)

erf(x) = —f e ' dr
0

is the standard error function. dP/d8 is a decreasing
function of 0. If statistical Auctuations are large com-
pared to the dynamical anisotropy, that is, if y «1, Eq.
(16) reduces to

dP 2=—(1+&~gcos28)+0(f ) .—2

dO
(18)

The anisotropy results here in a small deviation, with an
amplitude proportional to y, from the constant value cor-
responding to isotropic emission. On the other hand, in
the limit where g))1 (strong anisotropy), Eq. (16) be-
comes

displays (1/y)(dP/dy) [that is, the distribution (14) di-
vided by the factor y arising from the Jacobian] for three
values of the parameter g. For g=O (no collective liow),
this quantity would be a Gaussian of width 1/&2 cen-
tered at y=O as can be seen from Eq. (14). On the other
hand, if g) 1, one easily shows that (1/g)(dP/dg)
reaches its maximum at a nonvanishing value of g, which
becomes closer to g as g increases. This can be used [5]
as a signature of collective Aow. If y&1, however, the
maximum is reached at y=0 and the distribution is very
close to a Gaussian as illustrated in Fig. 1 for y=0. 5.
Thus, the effect of y is simply to increase the width of the
y distribution, compared to g=O. Since the n distribu-
tion has the same shape as for y= 0 it is impossible to ex-
tract y from the anisotropy distribution alone.

Equation (13) can also be integrated over y, which
yields the probability distribution of the angle 0:

dP 2=—exp( —g ) [ 1+&rrjcos28[ 1+erf(g cos28) ]dO

pact parameter x. But since there is no direct access to
this direction in the experiment, 0, unlike a, is not an ob-
servable. We do not get any physical information from 0
unless it is correlated with another independent evalua-
tion of the reaction plane.

IV. REACTION PLANK CORRELATIONS

If one measures the reaction plane from S in two
separate rapidity intervals with the same multiplicity, one
obtains two angles 8, and 82 (measured from an arbitrary
fixed direction) which are two measurements of the reac-
tion plane. The determination is reliable only if 0, and 02
are strongly correlated. In this section, we calculate the
probability distribution dP„„/dO of the relative angle0:—0,—0,. If this probability if Aat, 0, and 0, are un-
correlated and no conclusion can be drawn concerning
the occurrence of collective Aow. We expect this to be
the case if anisotropy is small or statistical Auctuations
are large; that is, if y « 1. If, on the other hand, y)) 1,
we expect dP„„/d 8 to be strongly peaked at 8=0.

We shall assume that the rapidity intervals are well
separated, so that there is no correlation between them,
and consider the two corresponding sphericity tensors as
statistically independent. Then 0& and 02 are two in-
dependent random variables. We further assume that
macroscopic quantities (fiuid velocity, energy density) are
invariant under Lorentz boosts along the collision axis
[10] and postpone the discussion of this point to Sec. VI.
Since the sphericity tensor S involves transverse coordi-
nates only, it is also boost invariant. Thus K and o. are
the same for both rapidity intervals and 0, and 02 have
the same probability distribution, given by Eq. (16). The
correlation function is then given by

d8 J d82 (8 ) (82)
d0 2 —~/'2

' —~/'2 dO ' dO

X5(8—8, +8~)

dP 4y
d8 v'~—exp( —4g 8 ) . (19) d8, (8, ) (8,—8),

2 —~/2
' d0 ' dO

(20)

In this case, the probability is a Gaussian of width
1/(2&2@)« 1, centered at 8=0. Note that Eq. (16) is of
little practical use: 0 is measured from the x axis which
we have chosen, in this section, to be the direction of im-

where dP/d8 is given by Eq. (16). The factor —,
' normal-

izes dP„„/d 0 to unity between 0 and ~/2.
The integration can be carried out analytically (see Ap-

pendix A), which yields the results

dPcorr

dO
=e r —(1+/ )+g [cos28(IQ+LD)(g cos28)+(I, +L, )(g cos28)]

2

where I0 and I& are modified Bessel functions of the first
kind and L,0 and L, are modified Struve functions. Equa-
tion (21) reduces to

1/2
corr 8

dO
Xexp( —2X 8 ) (23)

dP„„=—+g cos20
dO m

if y « 1, and to

(22)

if g)) 1. These asymptotic forms can be deduced direct-
ly from Eqs. (18)—(20). Note that for small j, the correla-
tions (deviations from a Oat probability) are of order g .
Thus, when statistical Auctuations become larger than
dynamical effects, correlations decrease very quickly. Q "i

the other hand, if y»1, dP„„/dO is the convolution of
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p
O

C4

I I I I I I I I I I I I I I expected, it decreases from l to 0 when g goes from 0 to
+(x). One observes that this ratio differs significantly
from unity already for modest values of g, so that collec-
tive effects should be seen easily by measuring reaction
plane correlations. Any deviation of dP„„/do from a
constant value can be attributed to collective liow (within
our hypotheses), which makes this signature less ambigu-
ous than that associated with the distribution of anisotro-
py (see Fig. 1 and the corresponding discussion in Sec.
III).

The ratio in Eq. (24) can be measured directly, and
from its value one deduces the value of y. One may then
check whether Eq. (21) reproduces the observed behavior
of the correlation function.

0 20 40
0

60
V. REI,ATIGN TG ANISQTRGPY

FIG. 2. Solid lines: correlation function defined by Eq. (21)
for three values of y. Dashed line: Small y approximation, Eq.
(22). Dot-dashed line: large g approximation, Eq. (23).

~/'2 d~corr
dO~e) 45 J.g4 d e

8&45' f ~/4 dPcorr
dO

0

1

2exp(X ) —1
(24)

This quantity is displayed in Fig. 3 as a function of g. As

1.0

two identical Gaussians (19), that is a C'gaussian of width
I/(2X). The correlation function given by Eq. (21) is
displayed in Fig. 2 for three values of y, together with the
approximations (22) and (23). One sees that these ap-
proximations are very good for g ~ 0.5 and y ~ 2, respec-
tively.

A measure of the correlation strength is obtained by
forming the ratio of the number of events with 0 & 45 to
the number of events with 0 & 45 . This ratio is equal to 1

if there is no correlation between reaction planes and
vanishes if they are strongly correlated. Integrating Eq.
(21) over 0, one obtains a simple analytic expression for
this ratio (see Appendix A):

The correlation between reaction planes clearly does
not exhaust all the information we get from the sphericity
tensor analysis. We also have a measurement of the an-
isotropy a. The value of g one gets from the analysis of
plane correlations fixes the shape of the g distribution,
using Eq. (14). In order to get the a distribution, the
scale factor u is required [see Eq. (12)]. As we shall see
shortly, this quantity can be determined through the
measured average value of a, which we denote by (a).
It is directly proportional to o..

When we studied reaction plane correlations in Sec.
IV, only half of the detected particles (at most) could be
used to construct the sphericity tensor since we needed
two independent evaluations of the reaction plane in each
event. On the other hand, when measuring the anisotro-
py distribution, it is better to use all the particles detected
in the central rapidity region, in order to minimize sta-
tistical fluctuations. Then the value of y which has been
determined from reaction plane correlation cannot be
used directly in analyzing the a distribution. Since o
scales like I/&M and a is independent of M, X must be
scaled like &M. If, for instance, the set of measured par-
ticles is divided into two approximately equal subsets for
the measurement of reaction plane correlations, and then
used as a whole for measuring the anisotropy distribu-
tion, the value of X must be multiplied by &2.

Let us now calculate the average value of a:

IX(dP/dX)dX
(~) =o (X)=o (25)f (dP/dX)dX

V

A

0.6

0.4

0.2

0.0
0.0 0.5 1.0

X

2.0
&X) =

—2 —2

X 0 2 X(1+ ~)1 X +

The denominator of this expression is equal to unity since
dP/dX given by Eq. (14) is normalized to unity. To cal-
culate the numerator, we integrate Eq. (14) by parts and
use the relation

[Io(z)+I2(z)]
dI, /dz =

2

and Eq. (15) to calculate the remaining integrals. The re-
sult is

FICx. 3. Ratio defined in Eq. (24) as a function of the dimen-
sionless parameter y. Xexp( —X /2) . (26)
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x
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FIG. 4. Solid line: ratio of the "dynamical" anisotropy c7 to
the measured average value of a, denoted by (a ), as a function
of y. Dashed line: small y approximation, Eq. (28). Dot-
dashed line: large g approximation, Eq. (29).

This quantity is displayed in Fig. 4. For a small anisotro-
py, g«1, the y distribution (14) is Gaussian and one
gets

(2g)

In this case most of the observed anisotropy results from
fluctuations and the dynamical component cz is only a
small fraction of the average anisotropy. On the other
hand, for y »1, statistical fluctuations become negligible
and the average anisotropy (a ) is close to a. Asymptoti-
cally,

a/(a) =1—I/(4y ) (29)

Once cx and o. are determined, the measured o, distribu-
tion can be compared to the theoretical prediction, Eq.
(14).

VI. DISCUSSION

Let us recall and discuss the hypotheses on which our
calculations are based. The first hypothesis was made at
the beginning of Sec. III, where we assumed that the
sphericity tensor S, - has a Gaussian distribution. This is
true if it can be considered as the sum of a large number
of independent sources, which is a reasonable assumption
if the nucleon-nucleon collisions creating the particles are
incoherent. However, deviations from this behavior can
occur due to jets, which result in strongly correlated,
strongly anisotropic emission of particles. At very high
energies —for instance, at the CERN Large Hadron Col-
lider (LHC) —one expects a large number of jets per

Thus, if one measures g and ( a ), the last two equations
give the scale factor cr and thus a=of. From Eq. (25)
one immediately gets

(27)

event, and pairs of jets can be considered independent so
that our statement holds: the only consequence is that
the number of independent sources is the number of jets
rather than the number of produced particles, so that we
expect larger statistical Auctuations. On the other hand,
if only a few jets (for example, one or two) are produced
in each event, which may be the case at lower energies,
significant deviations from the Gaussian distribution may
occur. These would cause deviations of the anisotropy
and angle distributions from the shapes predicted by our
model, given by Eqs. (14) and (21).

The second hypothesis was made in Sec. IV where we
treated the sphericity tensors measured in two separate
rapidity intervals as independent variables. This is not
strictly true if the rapidity intervals are too close to each
other: for instance, a resonance decay or a pair of jets
can give contributions to both rapidity intervals. This
can be avoided by taking two remote rapidity intervals.
This will be possible at the BNL Relativistic Heavy Ion
Collider (RHIC) and LHC if detectors have a large rapi-
dity acceptance. In current experiments at CERN and
Brookhaven, the rapidity window is not so large and one
may be constrained to work with adjacent rapidity inter-
vals. One may check directly, as a test of statistical in-
dependence, that the value of y deduced from the
analysis indeed scales like &M, with M being the number
of particles used in the analysis.

We also assumed in Sec. IV that the probability distri-
bution of S was the same for both rapidity intervals as a
consequence of Bjorken's scenario [10]for the fiuid evolu-
tion. This scenario is known to be unrealistic in current
experiments since the measured rapidity distributions are
not Hat. However, this hypothesis is not crucial here. It
simplified the calculations since we used the same value
of the scaled anisotropy y for both rapidity intervals.
Without this hypothesis, we would not have obtained
analytical expressions, but the qualitative ideas would
remain the same. In particular, the correlation between
reaction planes could still be used to identify collective
Aow. Note further that recourse to Bjorken's scenario
can be avoided for a symmetric collision: if the two rapi-
dity intervals are chosen symmetric of each other in the
center-of-mass frame, they are equivalent by symmetry
and the value of g is the same for both. Even more gen-
erally, it is reasonable to assume that the anisotropy K de-
pends only weakly on the rapidity since it is not much
affected by the longitudinal expansion [5]. If the two ra-
pidity intervals have the same multiplicity, the statistical
Auctuations o. should also be comparable and therefore
there is no reason for y to change drastically from one ra-
pidity interval to another.

Although one must be careful in applying our results
according to the above discussion, reaction plane correla-
tions appear to provide a powerful tool for identifying
collective flow. The ratio defined in Eq. (24) is very sensi-
tive to collective e8'ects: for y=0. 3, this ratio is about
0.85, and such a deviation from unity would be seen
clearly in an experiment. We have shown [5] that the an-
isotropy distribution alone should allow one to identify
collective flow at the BNL Alternate Gradient Synchro-
tron (AGS) and SPS with heavy nuclei (Au or Pb projec-
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tiles). With the plane correlation method presented here,
the possibility is not excluded that collective effects could
be seen with lighter projectiles; for instance, with S or

Ca beams on heavy targets.
Note added in proof. We would like to point out that

some of our results can also be used in analyzing inter-
mediate energy data with the method proposed by
Danielewicz and Odyniec [3]. These authors measure the
reaction plane by constructing the transverse momentum
transfer Q between target and projectile. Q is an oriented
vector in the transverse plane, whose azimuthal angle y
may vary between 0 and 2m. In contrast, the eigenaxis of
our sphericity tensor 5, is not oriented, and its azimuthal
angle (which we denote by 8) varies between 0 and m.

only. However, Q, as S;~, is the sum of a large number of
independent contributions and, therefore, has a Gaussian
distribution. Its distribution is given by Eq. (10), in
which one replaces a and c7 by Q and Q—:

~ (Q) ~
and 28

by p. The width cr in Eq. (10) becomes then a measure of
fiuctuations of Q due to finite multiplicity. Introducing
the variable g=g/cr, the y and P distribution are then
given by Eqs. (14) and (16), and the average value of cos@
is

&7r(cosy) = ge z ~ (ID+I, )(y /2) .

In order to estimate the accuracy of their transverse
momentum analysis, Danielewicz and Odyniec divide
each event randomly into two subevents, measure Q in
each subevent, and study the azimuthal angle distribution
dN/dy of the two vectors with respect to each other.
This is similar to the method proposed in Sec. IV of this
paper, and dN/dy is equal to our dP„„/d8 in Eq. (21).
We have checked numerically that the various Monte
Carlo results presented in Ref. [3] are perfectly repro-
duced by our analytical formulas in which one takes
g=0. 87 for the whole set of measured particles. This
gives a measure of the ratio of collective effects to statisti-
cal Auctuations in intermediate energy nuclear collisions.
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APPENDIX A: DERIVATION OF THE CORRELATION FUNCTION

Inserting Eq. (13) in Eq. (20) one may write the correlation function in the form

dPcorr 8 + oo + oo 2 2
2 exp( —2g ) y, dy, y2dg2exp( —y, —g, )

0 0

~/2
X f d 8,exp[2jy, cos28, +2gyzcos2(8, —8)] .—m. /2

This can be integrated over 0& by using the modified Bessel function I0..

f d8, exp(A cos28, +B sin28, )=vrIo(VA +82) .—n/2

This gives

dPcorr 8 —2 + ~ + oo 2 2 — 2 2=—exp( —2g ) g,dy, y,dy~exp( —y, —y, )Io(2/V y, +y, +2y,y,cos28) .

(A2)

(A3)

Introducing polar coordinates in the (y„y2) plane, defined by y, = r cosP, y2= r sing, with r ~ 0 and 0 ~ P ~ vr/2, the in-
tegral over r is of the type

f +oo 3 2 1 a 2 a 2

dr r exp( r)Io(ar ) =—1+ — exp
0 2 4 4

(A4)

as may be checked by expanding Io. Equation (A3) thus becomes

=—e ~ f dgsin2$[1+g (1+sin2gcos28)]exp(f sin2$cos28) .
dO ~ 0

(A5)

Note that the integrand is invariant under P~~/2 —P, which refiects the fact that y, and yz play symmetric roles in
Eq. (Al). The integration range can then be restricted to the interval [O, vr/4]. Making the change of variables
vr/2 2$~$, the integr—al can be expressed in terms of the modified Bessel functions

2 m-/2

Io(z) =—f cosh(z cosP)dP,
7T 0

(A6)
m'/2Ii(z)= f sin /cosh(z cosP)dP

77 0

and the modified S«uv«un«ions [11]Lo(z) and L,(z) which have expressions similar to Io and I„with cosh replaced
by sinh. After integration by parts, Eq. (A5) yields the result
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=e r —(1+/ )+g [cos28(I&+Le)(g cos28)(Ii+Li)(g cos28)] (A7)

and

7T/2f d 8 L,(g'cosO) = —1+f dP cosPIo(g'cos(t )
0 0

sinhy'+
x

(A8)

f d 8 cosOLo(g cosO) = f d(t I, (gzcosp)

coshX —1

x' (A9)

Normalization of the probability (A7) follows immediate-
ly.

identical to Eq. (21). Let us check that this expression is
normalized to unity when integrated from 0 to ~/2 Th. e
functions cos28Io(g cos28) and I, (g cos28) are odd in
cos20 and thus do not contribute to the integral. Using
the relations I, (z) =dIo/dz and L,(z) =dLO/dz+2/m
and the definitions (A6), the integrals of Struve functions
can be expressed in terms of integrals of Bessel functions,
which can be found in the literature or calculated directly
by a power-series expansion: = ———f dOL, (g cos28)

1 ~/z

2 m. /4
(A10)

and

f dOI, (g cos28)= —f dOcos28Lo(g cos28) .
7I /4 71./4

(Al 1)

The terms involving Bessel functions and Struve func-
tions in Eq. (21) thus cancel pairwise in the integration
and one gets

f dO= —exp( —g ),
~/4 d 0 2

from which Eq. (24) immediately follows.

(A12)

Let us finally calculate the ratio defined in Eq. (24).
Since the correlation function (A7) is normalized to uni-

ty, we only need to calculate f «(dP„„/d 8 )d 8 O.n

this interval, all the terms in Eq. (A7) give a nonvanishing
contribution. However, using Eqs. (A8) and (A9) one ob-
tains

f d 8 cos28Io(g cos28)
7T/4
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