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A structure function approach to e+e annihilation into fermion pairs and to large-angle Bhabha
scattering at energies reached at the CERN LEP and/or SLAC SLC is described. Higher-order
QED corrections to cross sections and forward-backward asymmetries are computed according to a
semianalytical procedure which accounts for realistic experimental cuts on the 6nal state fermions.
The effect of cuts on the ff acollinearity angle, energies or invariant mass, and angular acceptance
of the outgoing fermions is investigated at the level of initial state radiation. The interplay between
initial- and final-state QED corrections in the presence of experimental cuts is also discussed. In
the case of Bhabha scattering the contribution of unresolved hard collinear photons to calorimetric
measurement is analytically included as well. A general formula for QED effects in the presence
of realistic cuts is proposed and analytically worked out in order to obtain fast and high-precision
numerical predictions.

PACS number(s): 13.10.+q, 13.40.Ks

I. INTRODUCTION

In a recent paper [1] a realistic theoretical approach
to e+e annihilation into fermion pairs and to large-
angle Bhabha scattering around the Z peak has been
described. Reference [1] represents the completion of a
rather ambitious program, started more or less one year
ago and aimed at analyzing data from the CERN e+e
collider LEP through a direct comparison between ex-
perimental results for cross sections and asymmetries ac-
tually measured, i.e., on a realistic experimental setup,
and the corresponding theoretical predictions within the
minimal standard model (MSM). All the corrections,
pure weak, QED, and QCD, necessary for such a real-
istic description, i.e. , a description including energy or
invariant-mass thresholds, cuts on the acollinearity an-
gle, and angular acceptance of the outgoing fermions,
have been included in the formulation [1]. Correspond-
ingly, a semianalytical program (TOPAZO) [2], designed
for computing observables and fitting cross sections and
forward-backward asymmetries at energies reached at
LEP andior the SLAC Linear Collider (SLC), has been
developed and used to analyze LEP data and in partic-
ular to derive constraints on the unknown parameters
(Mz, mq, m~, and o.,) [1, 3] of the MSM of the elec-
troweak and strong interactions.

The formulation and its interplay with the experi-
mental results as described in [1] constitutes, as already
stated, the achievement of a project aiming at an analysis
of the MSM by directly comparing theoretical cross sec-
tions and asymmetries with the experimental ones with-
out the need of relying upon the results for the Z pa-
rameters (total and partial widths, peak cross sections,

deconvoluted asymmetries, and so on) published by the
LEP Collaborations. In order to succeed in this program,
the formalism of the structure functions (SF's) [4, 5] for
the evaluation of QED corrections and a complete one-
loop calculation of pure weak corrections, together with
leading higher-order terms [6, 7], were chosen as basilar
ingredients of the formulation.

The interfacing of the various kinds of corrections re-
quired some preliminary steps. In Ref. [8] pure weak
corrections were successfully interfaced with the SF for-
mulation, previously given in [9], for QED corrections in
the presence of cuts, by constructing an improved Born
approximation essentially based on [6, 7]. The interplay
between electroweak and strong corrections was studied
in [10]. The accuracy of the obtained results was criti-
cally checked against independent calculations for typical
realistic configurations.

These comparisons pointed out that the approximate
description of the final-state radiation adopted in [9] was
not appropriate in order to give theoretical predictions
at the per mill level in particularly exclusive situations.
Moreover, for the fitting purposes discussed above the
QED formulation of [9] revealed to be not suitable from
the point of view of CPU time requirements, showing the
need of further analytical developments of the approach
at the level of initial-state radiation.

The treatment of Anal-state QED corrections over a
realistic experimental setup was improved by integrating
the full matrix element of e+e ~ ffp (with p emitted
by the final state) over the three-particle phase space al-
lowed by cuts and deriving completely analytic formulas
exact at O(n) [11]. As far as initial-state radiation in
the presence of cuts is concerned, a proper strategy was
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adopted in order to improve the SI formulation proposed
in [9] and it has already been sketched in Ref. [1].

The aim of this paper is to give about the subject
of QED corrections in realistic setup more details and
formulas not reported in Ref. [1] and to describe in a
self-consistent way the theoretical QED SF formulation
developed in order to carry out the general program dis-
cussed in [1]. Pure weak and QCD corrections are not
considered in this work, but their formulation can be
found in [1], which the reader is referred to for details
about non-QED effects, comparisons with independent
formulations, overall numerical results, and analysis of
LEP data.

Semianalytical and Monte Carlo approaches, based on
diferent theoretical strategies, to realistic e+e processes
at LEP/SLC energies are already available in the litera-
ture and can be found in [8, 9, 12—17]. The cross-checks
so far available [8, 14, 15], although showing a generally
satisfactory agreement if compared with present day ex-
perimental errors, point out that, especially when consid-
ering Bhabha scattering, improvements and refinements
on the subject of realistic QED corrections are possible
and a better understanding of the theoretical uncertain-
ties is mandatory.

The article is organized as follows. In Sec. II we briefly
describe the kinematics of an e+e collision with initial-
state radiation within a soft and/or collinear approxima-
tion. In Sec. III we discuss the conditions imposed by
realistic experimental cuts on the initial-state radiation
phase space. The interplay between cuts and final-state
radiation is tackled in Sec. IV, which summarizes ana-
lytic results derived in previous works [11,18]. Section
V contains the general description of the approach to
the calculation of QED corrections to physical observ-
ables (cross section and forward-backward asymmetry)
for pure s-channel annihilation both in inclusive and re-
alistic configurations. Section VI is devoted to explaining
some technical details adopted in the calculation of the
corrected observables. Section VII describes the applica-
tion of the procedure to large-angle Bhabha scattering,
while in Sec. VIII we give our conclusions. Appendixes A
and B contain some useful analytical formulas recalled in
the text.

E

I IG. 1. Kinematics for a realistic e+ e collision in the
laboratory frame. Because of initial-state radiation (external
blobs on the beam line), the electron and positron reduce
their energy to x&E and x2E'. The central blob represents
the hard-scattering process. The outgoing fermions emerge
with difFerent energies (Eq and E2) and angles (6q and 82).

conservation the following conditions can be easily de-
rived:

2 xp

2

x E
cos 62 ——

2 2
xp x
—x~ cos 'l9y

—2x xpcos6g+ x

Xp —X~ COS 8y
—E] cos 'i9]

(2.1)

(2.2)

(2.3)

where, for the sake of simplicity, we have introduced the
notation xp ——xq + x2 and x = xq —x2. It is worth
noting that knowledge of the analytical solutions of the
kinematics is essential, as shown in the next section, to
derive the portion of initial-state radiation phase space
allowed by realistic experimental cuts.

III. REALISTIC CUTS ON THE
INITIAL-STATE RADIATION PHASE SPACE

(xg+ x2)E = Eg + E2,
E] sine] ——E2 sin62)

(xl x2)E = El cos 81 + E2 cos f92.

Choosing xq, x2, and the fermion-scattering angle 6q
as independent variables, the previous equations can be
solved analytically to get the final energies Eq and E2
and the cosine of the antifermion scattering angle 62. In
the ultrarelativistic limit the solution reads

II. KINEMATICS

We describe the kinematics of the e+e process in the
laboratory frame [19],where, before initial-state electro-
magnetic radiation, the incoming electron and positron
have the same energy E. Before colliding, the two parti-
cles can radiate photons and reduce their energy to x&E
and x2E, respectively. As a consequence, the center of
mass of the hard-scattering process is boosted with re-
spect to the laboratory kame, and the scattering angles
8q and 82 as well as the energies Eq and E2 of the out-
going fermions are in general different (see Fig. 1). We
will consider a soft and/or collinear radiation approxi-
mation, neglecting emission &om the initial state of hard
noncollinear photons which are strongly suppressed in
presence of a resonance. By virtue of energy-momentum

Usually, in a realistic experimental setup cuts on the
the energies or invariant mass, acollinearity angle and
angular acceptance of the outgoing fermions are imposed.
As a consequence of Eqs. (2.1)—(2.3) each of these cuts
introduces limits on the possible values for xq and x2,
which, in the case of a totally inclusive setup, would only
be limited by the minimum invariant mass of the ff pair

4m)through the condition xqx2 &
Let us briefly examine the conditions imposed by each

kind of cut.
Cuts on the scattering angles
Since we treat the fermion scattering angle Pi as an

independent variable, we have to analyze the constraint
on the phase space imposed by a cut on the antifermion-
scattering angle 82. Limiting our analysis to symmet-
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ric angular cuts, it is necessary to consider the following
condition:

~

cos 62~ & H, where H stands for the cosine
of the minimum value of 82. By means of the analyti-
cal solutions of the kinematics, one derives the relations
x2 & Hixy and x2 & H2xy, with

b
!

/

/

and

(1 —H) (1 —cos Bi)
(1 + H) (1 + cos 61)

(3.1)

Xg

(1 + H)(1 —cos 61)
(1 —H) (1 + cos 81)

(3.2)

(1 —cos 81)(1 + B)
(1 + cos 81)(1 —B) (3.3)

In the second case (xi ) x2), if 61 & 7r —I,'p the cut has
no efFect. When 81 & m —(p it is necessary to consider
the condition 82 ) 7r —81 —(p which is equivalent to
x2 & Kgxg, where

As can be easily seen, for H g 0 it is always H2 ) Hi.
Moreover, we always assume cos 8z '" ( cos 8& '", which
in turn implies H2 & 1 and Hi ( 1. The conditions
imposed by cuts on the scattering angles can be therefore
synthesized as Hi x& & x2 & H2 xz .

Cut on the maximum at"ollinearity angle
Let us consider the effect ascribed to a different amount

of electromagnetic radiation emitted by the incoming
electron and positron, i.e. , xi g x2. As already stated,
the case xi g xq corresponds to a situation in which
the center of mass of the reaction is boosted with re-
spect to the laboratory &arne. Consequently, the final-
state fermions are not produced back to back; i.e. , an
acollinearity is generated. Denoting with (p the inaxi-
mum allowed acollinearity angle, we have to distinguish
the two regions xi ( x2 and x~ & x2. In the first
case (xi & x2), if 61 & (p, the cut has no efFect be-
cause no boost can generate an acollinearity larger than

When 81 & (p the following condition must be
satisfied: 62 & m —81 + I,"p. Introducing the nota-
tion B = cos(81 —(p) and using the analytical solu-
tions (2.1)—(2.3) of the kinematics, one has the inequality
x2 & K2xg, where

FIG. 2. Effect of realistic experimental cuts on the initial-
state radiation phase space. The variables xq, 2;q give the
energies of the colliding particles as xq, 2E. The restrictions
imposed by a cut on the invariant mass (a), on the scattering
angles, and on the maximum acollinearity (b, c) are shown
with the resulting allowed portion. of the phase space I'(0).

invariant-mass cut by setting sp —— 2Ep~s. The two
kinds of cuts differ because an energy-threshold cut al-
lows for hard noncollinear photons which are excluded by
the corresponding invariant-mass cut. However, initial-
state hard photons are suppressed in the Z peak re-
gion; moreover, in a realistic setup an energy or invariant-
mass cut is usually accompanied by an acollinearity cut,
which, suppressing hard noncollinear radiation, almost
eliminates the difference.

To conclude this section, the portion of initial-state ra-
diation phase space allowed by realistic cuts is in general
the region I'(0) shown in Fig. 2, defined as the intersec-
tion of the regions delimited by the various experimental
constraints, i.e.,

Xi X2 & SP/S)l

x, & K+x„
x, & K-x„

where K+ = min (H2, K2) and K = max (Hi, Ki). As
shown in Sec. VI, once the phase-space region allowed by
cuts is known, the treatment of the initial-state @ED
corrections in the &amework of the SF can be analyti-
cally worked out in order to increase the accuracy of the
required multidimensional numerical integrations.

(1 —cos 81)(1+ A)
(1 + cos Bi)(1 —A)

' (3 4) IV. FINAL-STATE RADIATION
WITH REALISTIC CUTS

with the notation A = cos(81 + gp). A cut on the
maximum acollinearity therefore requires Kz xz & x2 &
K2 xg

Cut on the invariant mass or the energy thresholds of
the outgoing fermions

Generally, one can require a cut So on the minimum
invariant mass of the final fermion pair ff by setting
xix2 & e' = sp/s, where s = 4E . Alternatively, one
can impose a cut on the energy thresholds of the outgo-
ing fermions by requiring Ei 2 & Ep (we assuine that
E;„=E;„).We have adopted an approximated pro-f
cedure and implemented an energy-threshold cut as an

In this section we will consider the correction coming
&om final-state radiation in presence of realistic kinemat-
ical cuts by recalling analytic O(n) results obtained in
Refs. [11,18] in order to iinprove the treatment adopted
in Ref. [9] in the context of the fit program discussed
in the Introduction. When no cuts at all are applied,
the correction amounts to the factor 4

—Qt for the total
cross section, while the forward-backward asymmetry re-
mains unchanged. If we assume that an invariant-mass
cut such as M2(f f) & p, & (@2& & sp) is present, the fol-
lowing correction factors have to be included [11]:
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m2
b~' = —Q2& —x+ i x2 ~ 2 ln(1 —x) ln

s
F, ii

——2 —C,

+x (1+ —,'x) ln x

+2 In(1 —x) (ln x —1) + 2 1 is(x) ),

m2
6&' = —Qs1 ( —x+-,'x*+ 21n(1 —x) In

+2 ln(l —x) (ln x —1) —2 x

+21is(x)),

(4 1)

(4 2)

where

C = —ln(1 —x) ln 1+ r x —1

1+ r2~2

9 5 1
(1 —x) + —(1 —x)'

3 4 2 4
+ 2 ln x ln(1 —x) + 2Li2 (1 —x), (4 3)

(4 4)

where x = p, ~&/s and (I" 6 B) denotes the forward +
backward cross sections. When the initial-state radiation
is switched on then, in the definition of the variable x, s
has to be replaced by s, s being the invariant mass of the
event after initial-state radiation, s = xq x2 s.

In addition to an invariant-mass cut, also acollinearity
and/or energy-threshold cuts can be treated analytically.
The expressions for the corresponding O(n) correction
factors were derived in [11]by integrating the full matrix
element of the process e+e -+ ffp (with p emitted from
the final states). They are too lengthy to be displayed
here, but they are explicitly reported in [11]. Whereas
at the level of initial-state radiation a cut on the an-
gular acceptance of the antifermion can be represented
as an acollinearity cut, at the level of 6nal-state radia-
tion it cannot be treated analytically. Some numerical
checks [11] have, however, shown that its contribution,
for realistic acollinearity cuts, is small, of order 1—2 per
mill. Of course, in the case of a totally inclusive setup,
the correction factors with cuts correctly recover the re-
sults for extrapolated situation discussed. at the begin-
ning of this section. In Ref. [11] the above correction
factors were derived exactly at O(a), neglecting resum-
mation of higher-order contributions. However, for real-
istic observables higher-order final-state effects could be-
come important and a procedure of resummation should
be introduced. Some possible recipes are proposed and
compared in Sec. V.

When considering Bhabha scattering one is also faced
with the problem of the calorimetric measurement for
electrons. Actually, it is experimentally impossible to
discriminate between a single electron in a calorimeter
and an electron plus a hard photon suKciently collinear
with the electron, and therefore the two possible Anal
states provide indistinguishable experimental con6gura-
tions. What is detected is an electromagnetic jet of semi-
aperture b, where b is an experimental parameter de-
scribing the resolution power of the calorimeter. In our
approach this effect is accounted for by add. ing to the
O(n) part of the final-state QED correction the contri-
bution due to an hard photon of energy fraction greater
then 1 —x, where x is so/s for an invariant-mass cut and
2EO/~a for an energy-threshold cut, and collinear with
the final fermion within an angle 0 & 8~ & b . For elec-
trons in the energy regime of LEP/SLC the contribution
reads [18]

m, being the electron mass. The approximation b
1 rad and r )) 1 is assumed since these conditions are
very well satisfied at LEP/SLC. Equation (4.3) is a good
approximation of the general formula derived in [18] and
also reported in Appendix A, which holds for arbitrary
values of r and of the calorimetric threshold. Taking
into account the effect of Gnal-state hard collinear pho-
tons is equivalent to adopting two different algorithms
in computing the final-state QED correction, namely, an
exclusive algorithm for hard noncollinear photons such
that the invariant mass of the final ff pair or the en-

ergy of each fermion is above a given threshold and a jet
algorithm for photons such that the system ffp is de-
generate with a system ff From t.his point of view the
QED final state is equivalent to a QCD final state, where
it is in principle impossible to tag each parton inside the
hadronic jet. As a last remark, we stress that the effect
of the calorimetric measurement depends very critically
on the energy or invariant-mass threshold. Its numerical
contribution is of order 1 per mill at thresholds around 1
GeV, but raises to order 1 percent at, say, 10 GeV [1].

V. FORMULATION
FOR s-CHANNEL OBSERVABLES

1—e
sx(s) = dx2I(x, s)ss+((1 —x)s),

0

where

(5.1)

i 0

oo (s) = 22r + dcos8 do 0

0 —1 dcos8 (5.2)

and doo/dcos8 is the differential cross section. From
the point of view of QED corrections, do.o/dcos8 is an
arbitrary kernel. However, in order to compare theoreti-
cal cross sections and asymmetries with the experimental

In this section we d.iscuss the formalism adopted for
the calculation of the QED corrections to physical observ-
ables (total cross section and forward-backward asymme-
try) in the case of s-channel annihilation over a fully ex-
trapolated experimental setup and a realistic one. In the
extrapolated situation, the initial-state radiation can be
effectively accounted for by adopting the so-called radi-
ator approach, which amounts to write down a corrected
cross section in the form [4, 5]
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4——ln(1 —n) —6+ n). (5 3)

The variable x gives the total amount of energy emitted
by the initial state and is linked to xz and x2 by the
relation x = 1 —xix2. In Eq. (5.3) the meaning of the
symbols is

ones and derive &om a 6t to the data limits on parame-
ters such as mq, m~, and o.„weak loops and form factors
and /CD corrections are fundamental ingredients for the
calculation of the kernel cross section. Actually in Ref. [1]
do()/dcos8 has been computed strictly within the MSM
as far as pure weak [6, 7], strong 20], and recently pro-
posed higher-order corrections [21] are concerned.

H(x, s) is the radiator which takes into account soft-
photon exponentiation and hard-photon emission up to
O(n ) (see later for its definition) and is given by

H(x, s) = (1+ b + b„) P x~ ' —
—,
' P (2 —~) + I' P'

x 2 —x 3ln 1 —x —41nx

P = 2 —(L —1),
SL=ln m2'

e
(5.4)

3 L+ 7c

—
~ ((3) —n ln 2 + ,'4~4 n* + ~~ ), (5.5)

gl + gh (5 6)
l =e,p. h

The factor b reabsorbs the next-to-leading terms up to
O(n2) which come from the electron form factor and soft
bremsstrahlung and represent the universal part of the
initial-state @ED corrections. bi and b'„" refer, respec-
tively, to lepton and hadron pair production &om the
initial state. For energies around the Z peak they have
the expressions [22]

b'„= 2L„i ——+(ln4 —z) L~i +21n 4 ——ln4+ s (sL + —)+(zL —12)ln 2 +sL +s(,'(3)+s,
l

(5.7)

7r2
b„"= 4

~
2L h

——
~

—8.31Lpi, +13.1 (sL +2)+(4L„p, —831) (sL —12)+4 sL +2((3)+ s

(5 8)

with I„y = ln(s/4m2f) and Ls = in(21's/~s). For the hadrons we used Ii = m, K, 11, p, and u. The parameter e is
defined by

2mfa=4
8

(5.9)

when including the whole photon phase space. It can also be used to account for a cut on the invariant mass after
initial-state radiation by simply replacing 4mf with a cut so.

Having defined 0 and 0+, the forward-backward asymmetry is computed as [23]

A~gy(s) = o. (s)
o.,+ (s)

(5.10)

For a completely inclusive setup, the final-state radiation can be easily included by incorporating a factor 1+b&+&

in the kernel cross section. The expressions for b&+& are given by Eqs. (4.1) and (4.2).
Let us now consider the more involved case of a realistic experimental setup. For such a configuration the starting

point is the following formula, based on factorization theorems of mass and collinear singularities [24], for the corrected
I' + B cross section in the laboratory frame [9]:

(s) dfl d+1 d&2D(&l & s)D(+2) s) J(&1)+2
& ~1) (s(+1 ) +2) y t(+1 ) +2 & +1))+g~t(s(~1) +2)).

a+ r(n)
(5.11)

The angular integration region is

d cos 'l9y
~

where p and 6~ are the azimuthal and polar angle of the
scattered fermion. The region I'(0) is shown in Fig. 2.
At present, the angular integration is performed over a
symmetric angular setup, but the generalization to an
arbitrary region is straightforward. With respect to the
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formulation given in Ref. [9], the region of the initial-state
radiation phase space allowed by cuts is analytically de-
limited and the description of the final-state radiation
is improved by the results derived in [ll, 18] and sum-
marized in Sec. IV. The meaning of the terms entering
Eq. (5.11) is the following. D(xil21, s) is the structure
function of the incoming lepton (antilepton), represent-
ing the probability that the electron (positron) retains
a &action xi~2~ of its original momentum. Its expres-
sion includes soft-photon resummation and hard-photon
effects up to O(n ), and reads [5]

E.+.t„(s) = E.+.t,.(s) —E.'.t(s) (5.16)

the leading-term resummation can be implemented as fol-
lows:

E.'.t(s) = exp[E.'.~(s)1 1+ E.'.t„(s)
—E.'.t„(s)E.'.t(s) (5.17)

Renormalization-group arguments lead to state that such
a leading term should be exponentiated, which is of no
practical importance at low thresholds, but could give
sizable effects at high thresholds. By defining

A"=1+6+8 + —P',
24

(5.12)

D(x, s) = A' —p(1 —x) 2~ ' ——p(1+ x)
2 4

+—p —4(1 + x) ln(1 —x) + 3(1 + x) ln x
1 2

32
lnx—4

1 —x

where spurious terms E,„t(s)E,+„i,(s) are confined at
least at O(n ). Indeed, several prescriptions for treat-
ing the final-state correction are possible, all equivalent
at O(o.). One reasonable recipe, difFerent from the one
we follow, could be defining the leading term in a differ-
ent way. For instance, in the presence of an acollinearity
cut the in&ared logarithm could be defined as

l = ln(1 —x), (5.18)

with h, 8z, and P given in Sec. IV. doo/dO is the kernel
cross section. As stated above, weak and QCD correc-
tions together with final fermion-mass effects have to be
included in the kernel cross section for a reliable and com-
pletely realistic description of the physical observables. s
and t are the radiatively reduced Mandelstam variables
depending on the longitudinal-momentum fractions xi,
x2 and on the fermion-scattering angle 8i. J(xi, x2, 8i)
is the Jacobian of the transformation from the center of
mass to the laboratory &arne, i.e. ,

d cos 6i
dcos6, d

d cos ISED d cos 6~ ~
(5.13)

In the ultrarelativistic approximation its expression reads

J(xi, x2, 8i) = X1X2
2

(x, sin' ~~ + x, cos' ~~)
(5.14)

t'mP
E,'„,(s) = —2 —Q~ ln(l —so/s) ln + 1 (5.15)

E,+„t(s) is the final-state QED correction for the E 6 B
cross section in the presence of experimental cuts. It is
worth noting that the final-state correction is not exactly
implemented, since the correction is not exactly factor-
ized over the lowest-order cross section. However, the
nonfactorized terms are numerically small by themselves,
and moreover they exactly cancel when the cross section
is integrated over a symmetric angular setup. In order
to take into account the final-state radiation exactly at
O(n), we should set E,+„t(s) = 1+b&+&, where b&+& is
the correction factor taking into account the acollinear-
ity and/or energy-threshold cut derived in Ref. [11].But
in a realistic setup higher-order final-state QED correc-
tions could become important, and so it is necessary to
introduce a procedure of resummation of higher-order ef-
fect such as the exponentiation. As already discussed in
Ref. [1], from Eqs. (4.1) and (4.2) it can be seen that a
leading term can be defined as

where x is given by

x = max(so/s, yT ),

yT being

1 —sin((/2)
1+ (4/2)

(5.19)

(5.20)

and ( the maximum acollinearity allowed. Another possi-
bility could be exponentiating the full O(n) contribution
E,+„~;albeit, there is no guarantee that the experimental
cut-dependent terms do exponentiate; in this case spu-
rious terms appear already at O(n ). Alternatively, one
could choose to factorize only a leading O(n) term and
simply add the O(n) correction due to the acollinear-
ity cut (this simulates the choice of the authors of [12]).
This choice seems to us less natural than the first ones,
because, apart &om very small terms, the final-state cor-
rection factorizes over the Born cross section, but it is
equivalent to them at O(n). It must be noted that at
the Z peak all these choices are compatible at the per
mill level, but a few GeV away &om the peak and in pres-
ence of severe experimental cuts they can differ by several
per mill [1]. The difFerences can become more marked in
the case of large-angle Bhabha scattering because of the
presence of t-channel contributions. However, in view of
the present level of experimental accuracy, this can be
considered as a matter of principle with no phenomeno-
logical relevance, because the theoretical error ascribed
to the higher-order QED final-state uncertainty is one
order of magnitude smaller than the experimental error.

The initial —final-state interference is not taken into ac-
count in the master formula (5.11). In order to esti-
mate its contribution the following procedure has been
adopted. Since the largest contribution comes &om the
interference of soft photons, the soft-approximation for-
mulas quoted in [19] have been used. Moreover, only the
leading terms have been taken into account. In the ap-
proximation stated above the interference contribution
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to the corrected cross sections reads

do-~'~

o,.„I' (s) = dO t,.„'q, (A, P, Py, P;„t)
a+

—c,~„'I,.(~, o, o, p,„,), (5.21)

VI. REDUCTION
TO "GEOMETRICAL" INTEGRALS

The master formula (5.11) proposed in the previous
section has to be manipulated a lot in order to extract
stable and fast numerical predictions. Actually, the for-
mula as it stands exhibits several computational prob-
lems. First of all, it is in the form of a triple integration.
Second, the electron structure function has an in&ared
singularity in x = 1 which is integrable but not square

I

where 4 = max(l —s()/s, yT), P is given in Sec. IV,
Py = 2o./a[in(s/m&) —1], my being the mass of the
final-state fermion, and P;„t ——4o./vr ln(tan i)/2). Since
the interference contribution is not universal, it has been
needed to split the cross section into its separate contri-
butions according to [19], where also the expressions for

Cj~fg ~ can be foun d . Som e nu m er ical ch ecks in seve ral
realistic situations have shown that the interference con-
tribution is of order 1 per mill at the resonance, raising
to a few per mill far &om it. Also, the correction to the
asymmetry, which could be in principle more sizable, has
revealed to be contained in few units times 10, always
far &om the peak. In view of the present experimental
accuracy and the Anal-state theoretical uncertainty dis-
cussed above, we concluded that it can be safely neglected
in the software implementation.

As a last feature of the approach, we recall [1, 2] that
for Btting realistic observables a lot of CPU time can be
saved by molding the following expression for the running
of o. with the scale 8:

a(s) = a() + ai ln(p /s) + a2
t

ao ——0.743635313782749 x 10

ai ———0.410825034114194 x 10

p = 3.15676857855315GeV,
a2 ——0.325766572488072 x 10, (5.22)

which reproduces the exact [7] expression, including
the parametrization for the hadronic contributions as in
Ref. [25], to high accuracy in the range 1 GeV ( Eb,
50GeV and 10GeV & mt ( 350GeV. As will be seen,
this procedure of molding some simple expression for o. is
crucial for the application of the approach to large-angle
Bhabha scattering.

integrable, a fact which renders the numerical integration
cumbersome. Last, the kernel cross section exhibits the
Coulombic singularity for 8 ~ 0; this feature is not a se-
vere problem for an 8-channel annihilation, but becomes
a serious difBculty in the presence of t-channel processes.

In order to solve these computational problems the fol-
lowing strategy has been adopted. The corrections due to
kinematical effects and to an acollinearity and/or accep-
tance cut, which &om now on will be called "geometric"
corrections, albeit important, are a small contribution as
compared to the @ED correction due to an invariant-
mass cut alone. Let us define o,„t as

o.+.t(s) = dO 8 1, 1 ) t 1) 1) 6i (6 1)

xE,+„t 1 —x 8 (6 2)

where H(x, s) is the radiator introduced in the previous
section and linked to the electron structure function by
the relation

H(x, s) =
1

D(z, s)D(—, s) . (6.3)

The cross section (7„+(s) has some good features. The
first one is that it provides the bulk of the corrected
cross section. It is a one-dimensional integral which can
be reduced to a large analytical term plus a correction
whose numerical computation is very fast and accurate.
Namely, we can rewrite Eq. (6.2) as [1]

1

oP(s) =X dx [f(x's) —f(s)] H(1 —x', s)
0

1

+ x' dx [f(x"s) —f(e.s)] H(1 —x",s)
0

+ f (s) PH (X, s) + f (es) [PH (x, s) —PH (x, s)],
(6.4)

where

f (*)= o..t(x)P.+.t(x)
xM 1 —E') x = 1 —xx)
x =1 —x —E'

)

P~(x, s) is the primitive of the radiator H(z, s) defined
as

where s(l, 1) and t(1, 1, i)i) are the lowest-order Mandel-
stam variables, s = E2, and t = —

2 (1 —cos i)i). Then
a regulating cross section can be conveniently defined as

1—so //s

szs(s) = CkEI(z, s)s.+, ((1 —z)s)
0

P~(x, s) = dz H(z, s)
0

=(~+~u)x —-p
l

x —-x'
l2 ( 2

+ —p ——x + —x —61n(1 —x) + 6x ln(1 —x) ——x ln(1 —x) + —ln(1 —x) + 8x lnx + 2x lnx + 4Li2 (x)
1 2 5 1 32 3 2

8 2 4 2 2

(6.5)
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In Eq. (6.4) we have splitted the integration and per-
formed the relative subtractions in order to increase the
accuracy in the one-dimensional numerical integration.
The erst subtraction is needed because of the behavior
of H(x, s) for x 0; the second is required to regularize
the behavior of the integrand at the thresholds. If we re-
quire s ) so, then s = so/s. The parameter x is used for
splitting the integration, and in our calculation we used
x = 0.98 —e.

For a pure s-channel annihilation o,„t(s) is analytically
integrated in a straightforward way, which is of some im-
portance for the E-B cross section near the Z peak,
where it becomes very small due to a fine cancellation of
the F and B contributions.

In order to take advantage of the definition of fT+(s),
the corrected cross section can be written as

~.+ 8 = ~„+ 8 — 0„+ 8 —m.
+ (6.6)

where now the difference between fr+(s) and op(s) ex-
hibits a structure of singularity much more simple that
f7,+(s) itself. This feature can be exploited if such a dif-
ference is worked out as much as possible analytically.
Taking into account that in the language of structure
functions fT„+(s) can be written as.;(.) = f dn f dxidx2D(xi, s)D(x2, s)

d~p
X x&+28, X&X2t (6.7)

where I'(0) is the radiation phase space with no experi-
mental cuts but an invariant-mass one, after some simple
algebra the corrected cross section can be written as

fT,+(s) = fr„+(s) — dO dxidx2D(xi, s)D(x2, s) (xi, x2, ~i)+.+„t(xix2&)
R+ r(n) dO

d(7p+ dxldx2D(xi i &)D(x21 s) xix2st xlx2t +t.ttt(xlx2s)
c(r(n))

(6.8)

where

GO~ dop dOp

dQ ' ' dO ' dO
(zl xs l) dzlzes zlzsi J(xl zs dl) s(zl zs) t(zl xs dl))

The integration region in the (xi, x2) plane in the last integral, C(I'(0)), is defined by the relation I'(0) = I'(0) U
C(I'(0)) (see Fig. 2).

By definition der /dO is zero for xi ——x2. This allows to split the space I'(0) into two regions where only one
singularity appears. Analogously, C(I'(0)) is by definition split into a region (x2 ) xi) where only the singularity
x2 ——1 is present and a region (xi & x2) where only the other singularity xi ——1 appears. Over each of these regions
the singularity due to the structure function has been regularized by means of the pole subtraction procedure. For
instance, in the part of the region I'+(0), where xi ( x2, we have

GH~
dzrdzsD(zl, s)D(zs, s) zl, zs, dl)

+ (0)

do~ 80~dx, dxsD(z, , s)D(z, , s) xr, xs, dr — xr, 1, dr)
r+(n)

d+y PD G Xy) F 8 PD 6 Xz D +1 +1, 1,8g, 6.9

where fs = z', u+(xr e(s)) = mex (xr,
* '

), (t)x=rmiu(1 K+xr). P ( )is theopsrimitive of the structure
function deGned as

Pii(z) = dxD(x)

1 f 3 z')= E'(1 —z)) ~ + —P
~

——+ z+ —
~4 q 2 2)

+—P ——+ —7r —4Li2(z) + 2z+ + 2 (z + 2z —3) ln(l —z) —41nzln(l —z) —3
~

—+ z
~

lnz
1 2 9 4 Z'

2 f z2

32 4 6 4 )
(6.10)

Analogously, in the part of the region C+(I'(0)), where xi ( x2, we have
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dOp
dxrdxsD(xr, s)D(xs, s) sixes, x,xrt)

e+(r(n)) dO

+(r(&))
i/a+

do p dipxl t rxD( lxs)D(xr, s) xl, xs, itl xl 1 rtl)dO

dx]PD c xi)8 8 D xy x]) 1)'l9i (6.ii)

where cs(xr, s(s)) = roar (EC+xr, ' ' ). For the sake

of simplicity we understand the final-state radiation cor-
rection to be included in the kernel cross sections. Anal-
ogously, similar decompositions can be carried out for
the regions I' (0) and C (I'(0)), where xi & xq. In
so doing, the original three-dimensional integrals (6.8)
are reduced to two double and two triple integrations for
both I'+' (0) and C+' (I'(0)), characterized by the fact
that the resulting three-dimensional integrals are free of
singularities and numerically small as compared to the
two-dimensional ones.

The double integrations coming from the complemen-
tary spaces C+(I (0)) and C (I'(0)) have been further

I

regularized, since, albeit shielded, they are again sensi-
tive to the infrared singularity for x near 1 and exhibit
the Coulombic pole close to the invariant-mass bound-
ary. Take, for instance, the region C+ (I'(0) ) previ-
ously considered. First of all, we have split the inter-
val s, ~+ in the two intervals min (s, 2 },min (~+, 2 }
and max (s, —},max (~+, 2} . Introducing the nota-
tions a = min (s, 2}, 6 = min (~+, 2}, c = max (s', 2},
d = max ( ~+, 2 }, and considering the photonic contri-
bution d(To~/dO to the cross section (which is sensitive to
the Coulombic pole), we regularize it in the first interval
as follows:

dxgPD c+ xg)c 8 D xg xg)1)8g

'2 dO
dx~ PD c+ x~) e 8 D x~ —D min c) — x~) 1) 8~( . Z ) d~,'

( ] ) d(TO~ min(~+, z)+D
~

min s, —
~

' i, l. , V, ln'2
p dO IIlln E) 2

In the second interval the singularity due to the structure function can be regularized as

d
dO

dxyPD c xy) E' 8 D xy xy) 1 ) 6]

d d0
CxrD(xr) Po (c+(xi, e(s))) (xi, 1, 'itr)— d) 1 ) 6i + d) 1 ) 6] PD c PD d

(6.13)

This procedure allows to represent the largest part of
the two-dimensional integrals over the complementary
space as one-dimensional angular integrations. In order
to obtain numerical stability, in the interval [a, 6] we have
also performed the following integration-variable substi-
tufloil: dpi / Xi = Ct1J

To summarize the procedure described in this section,
the corrected cross section is finally written as the sum of
an analytical term plus a one-dimensional integral (which
is the numerical residual of o+) plus one-, two-, and
three-dimensional integrals coming from the geometric
corrections. The relevant feature of the regularization

procedure adopted is that a hierarchy of contributions is
clearly pointed out, the higher the dimensionality of the
integral the smaller being the contribution itself. This
has as a first advantage that the prediction is numerically
stable, and as a second advantage that when loosening
the experimental cuts the geometric corrections become
smaller and smaller, recovering in a natural way the in-
clusive limit previously discussed. As a non-negligible
by-product, the third advantage is that, being the geo-
metric corrections small, the geometric integrals reach an
acceptable level of numerical stability without the need
of requiring high numerical precision, thus allowing very
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fast numerical computations.
The evaluation of QED corrections for s-channel ob-

servables as described in Secs. V and. VI, properly in-
terfaced with a library for weak [6, 7], QCD [20], and
recently derived higher-order corrections [21], is imple-
mented in the semianalytical program TOPAZO [1,2]. In
Ref. [1] numerical results of TOPAZO were compared with
those obtained by ZFITTER [14] and ALIBABA [12] in sev-
eral s-channel annihilations, for both extrapolated and
realistic setup, showing a fully satisfactory agreement.

VII. LARGE-ANGLE BHABHA SCATTERING

This section is devoted to briefly showing how the for-
malism described in the previous sections can be applied
to obtain a description for large-angle Bhabha scattering
suitable for fitting purposes. Actually, as discussed in
Ref. [1], if fast and high-precision numerical predictions
for large-angle Bhabha scattering become available, di-
rect fits to full Bhabha observables as measured by the
LEP/SLC Collaborations can be performed without the
need of performing the so called t-channel subtraction
procedure usually employed by the experiments. Several
authors tackled the Bhabha problem up to now and sev-
eral codes (semianalytical and Monte Carlo codes) are
available, both for large and small scattering arigles [26].
The main difFiculty in treating Bhabha scattering is that,
in principle, due to the presence of t-channel processes, it
is a two-scale problem. Some physical considerations can,
however, help in solving the problem for the case of large-
angle Bhabha scattering. Actually, one-photon t-channel
exchange dominates the cross section at small angles
(8i 1 ), whereas in the large-angle regime (8i ) 10 )
the cross section is dominated by s-channel processes and
one-photon t-channel exchange and its interference with
Z annihilation can become sizable, but only a few GeV
under the peak. Moreover, at large scattering angles the
scale t becomes of the same order of magnitude as s, so
that Bhabha scattering at large angles can be approx-
imated by considering it as a one-scale problem. This
can be achieved by putting as dap/dA(s, t) in the mas-
ter formula the kernel cross section of Bhabha scatter-
ing, comprehensive of t-channel processes. In so doing
the initial-final interference effect and the O(n) constants
which come from the QED correction to t and s tcontri--
butions are not correctly reproduced, but the error com-
mitted has to be rescaled to the percentage contribution
of t and s-t terms to the cross section. In order to es-
timate their magnitude the initial-final interference con-
tribution to the cross section, for t and s-t subprocesses,
has been defined as

+(') (s)

(7.1)

where the factors C&, which can be found in Ref. [19],
take into account the difference between the constant
terms implemented in the master formula and the right

constant terms for these processes which, in the soft-
photon approximation, come only &om the electron form
factor. Again, as for the s-channel case, this effect has
been found to be small and hence neglected.

At this point the same regularization procedure as de-
scribed above for pure s processes has been followed. An
additional problem is due to the nontrivial running of
the coupling constant o. with the scale t. Actually, the
exact expression for n(t) is rather complicated, thus pre-
venting from integrating do'p/dO(s, t) over the scattering
angle in order to define the regulating cross section o„+(s).
Again, the problem has been solved by molding the exact
result [7] for o.(t) by the much simpler expression [1, 2]

p t
A('t) = Gp —oi lil + Q2—t m't

ap ——0.74595047 x 10

ai ——0.43344392 x 10

p = 7.3526544 GeV,
a2 ———0.81220219 x 10 (7.2)

where, albeit small, a dependence on mq has been taken
into account. The coeKcients have been fitted for t and
mq in the range —8000 GeV & t & —500 GeV and
20 GeV & mz & 250 GeV, which, at the resonance, nearly
corresponds to the angular setup 30 & 6y & 150, but
some numerical checks have shown that the same fitting
coeKcients work also for the angular setup 10
170 at a very high accuracy.

The molded formula is crucial for the application of
the approach to Bhabha scattering since it allows for the
analytic integration of the kernel cross section over the
scattering angle also for t and s-t contributions. Actually,
the terms including n(t) involve the following kinds of in-
tegrands: n/t, n(t), o.(t)t, n(t)y(t)/t, n(t)y(t), n(t)y(t)t,
n (t)/t, n (t)/t, n (t), where y(t) stands for (t—M&2)
The analytic integration is much more lengthy then in
the pure s case and it has been performed by using
SCHOONSCHIP [27]. The result for the FEB cross section
can be written down in terms of elementary functions,
logarithms, and Spence functions as shown in details in
Appendix B. This is of some relevance because again nu-
merical accuracy is guaranteed, and moreover the eval-
uation of large-angle Bhabha cross section is essentially
on the same ground as the evaluation of a pure s-channel
cross section, the slightly larger CPU time required being
due only to the more complex form of the integrand and
not to higher dimensionality integrals as in [14].

A last comment on the final-state QED correction is
in order for Bhabha scattering. As already discussed in
a previous section, difFerent recipes in treating higher-
order effects can lead to results differing by some per
mills in the tails below and above the resonance, the
uncertainty arising from this effect dominating the un-
certainties due to the other approximations assumed. In
the case of Bhabha scattering due to the presence of t-
channel contributions this effect has been shown to be
more marked [1] and therefore should be carefully taken
into account when comparing different approaches.

The above formulation for the computation of QED
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corrections to large-angle Bhabha scattering is imple-
mented in the FORTRAN code TOPAZO. Comparisons for
the full Bhabha cross section and asymmetry between
TOPAZO, ALIBABA, and the Bhabha package of ZFITTER
(BHANG) can be found in [1]. These comparisons show a
very good agreement with ALIBABA, a slightly less sat-
isfactory one with BHANG (see [1] for the interpretation
of the discrepancies), but point out that the theoretical
uncertainty in the computation of Bhabha observables is
at least one order smaller than the present experimental
error.

VIII. CONCLUSIONS

In this paper we have shown how to handle with the
problem of including realistic experimental cuts within a
SF approach to e+e collisions around the Z peak. The
eKect of cuts on the energies or invariant mass, scatter-
ing angles, and maximum acollinearity of the outgoing
fermions has been included in the treatment of @ED ra-
diative corrections both for the initial- and final-state
radiation. Based on a realistic description of the kine-
matics of the scattering process in the laboratory kame,
analytical formulas for the boundaries of the allowed por-
tion of the initial-state radiation phase space have been
derived, thus allowing a semianalytical treatment of the
corrected observables in the framework of the electron
structure functions. Also, for the final-state @ED correc-
tions realistic cuts can be kept under control by means of
completely analytic formulas with particular care to the
inclusion of higher-order e8'ects. Both 8-channel annihila-
tion and large-angle Bhabha scattering can be described
by virtue of the general features of the formalism. Con-
trary to some recent statements in the literature [16], the
SF approach can be employed to obtain accurate results
for many realistic distributions of high-energy processes.

The actual motivation for this work was, as already
stated in the Introduction, to build the tools necessary
to carry out the program of directly analyzing I EP cross
section and asymmetry data to extract information on
the unknown parameters of the MSM. The above for-
mulation for @ED corrections at LEP and/or SLC en-
ergies, properly interfaced with a library for weak [6, 7],
@CD [20], and heavy-top corrections [21], is implemented
in the FGRTRAN code TOPAZO [2], which is a program
designed for computing observables and fitting cross sec-
tions and forward-backward asymmetries around the Z
peak, both for extrapolated and exclusive setup. Several
physical results, comparisons with independent formula-
tions, and limits on the unknown parameters of the MSM
&om various 6ts to I EP data as obtained by TOPAZO can
be found in Ref. [1].
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APPENDIX A: GENERAL FORMULA
FOR CALORIMETRIC MEASUREMENT

9 5 1 + 2Re [f(p, e)],4 2 4
(Al)

where f(g, e') is defined as

f (g, e) = —ln (1 + z) ln
~ql —e+ zp pl+ z)I

+ Li21

r'1 —e+ zl
&1+ )

and z, Lo, and e are given by

Z

Z
Lo

6E Mg Eo

Eo is the value of the calorimetric threshold, E the energy
of the emitting leg. It is worth stressing that Eq. (Al)
holds for any value of g (compatible with h « 1) and
e, thus allowing for the evaluation of the hard collinear
photon correction in the emission process by any lepton
and without any hmitation on the calorimetric threshold.

In the limit e « 1 and for arbitrary g, Eq. (Al) reduces
to the photon spectrum given in the second and third
paper of Ref. [18]. If g )) 1 is assumed, which holds true
for electrons in the energy regime of LEP/SLC, almost
independently of the value of 8, Eq. (Al) takes on the
simpler form reported in Sec. IV.

APPENDIX B: INTEGRALS
FOR BHABHA SCATTERING

In this appendix we report the relevant integrals which
appear when integrating analytically the t-channel con-
tributions of the Bhabha cross section over the angular
acceptance with the molded formula for the running of
o.(t) as quoted in the text. We introduce the following no-

tation: f& dt stands for f " dt, f& dt stands for f ' dt,
where t;„=——'(1+cos6;„),t „=——'(1 —cos6;„),
to ———2, and dt = zdcos6. The P + B contributions
are obtained in a straightforward way by addition or sub-
traction:

We list here the formula for the hard collinear photon
correction derived in the first paper of Ref. [18]:

2

C = —inc ln 1+ g (1 —E) 1+to

(1 + g')' —2 f 1 )
4g'(1+ g') q 2 )

2 12+Lox ln 1+ g (1 —e) —— arctan [g(1 —e)]@1+g2
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dtln/
)
=to —t „—toln/ /+t „ln(

t—i (—t ) (—t .„l
&~') E~') E ~' )

(—t;„) (—to &
dt ln

I q I

= tmin —to —t;„ln
I

q"
/
+ toln

i, p,') '"
&

s' )

dttln/,
/

= — t', —t' „—2toln (, /+2t' „»
/

( —to 1
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dttln
/ f

= — t;„—to —2t;„ln
/ f

+ 2t »
(
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&~') 2 & ~')

dt ln
/
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+ —ln
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dt —ln/
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dt —ln
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min) O
ln/

'" /+1 ——ln/ /+I
tmin 0 P ) tO ( P

, ( tb 1, ( t) , (—t ) 2
1

(—to&

&~')
max

tmax ( & )
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