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Perturbation spectra from intermediate infiation
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We investigate models of 'intermediate' inflation, where the scale factor a(t) grows ss a(t) =
exp(At~), 0 & f & 1, A constant. These solutions arise as exact analytic solutions for a given class
of potentials for the inflaton P. For a simpler class of potentials falling off as a power of P they arise
as slow-roll solutions, and in particular they include, for f = s, the class of potentials which give
the Harrison-Zel'dovich spectrum. The perturbation spectral index n can be greater than unity on
astrophysical scales. It is also possible to generate substantial gravitational waves while keeping the
scalar spectrum close to scale invariance; this latter possibility performs well when confronted with
most observational data.
PACS number(s): 98.80.Cq, 98.70.Vc

I. INTR, DDU CTION

Power-law and exponential infIationary universes are
well studied. Exact solutions exist in both cases and
they are created by exponential and constant scalar Beld
potentials respectively [1,2]. Exact solutions can also be
found for "intermediate" inflationary universes in which
the scale factor expands as [3]

a{t) = exp (Atf), 0 & f & 1, A & 0 constants. (1)

These models possess an array of interesting properties,
particularly with regard to the perturbation spectra they
generate, and we shall here present some of these prop-
erties.

The k = 0 Friedmann universe containing a scalar field

P with potential V(P) obeys the equations (8vrG = c =
5=1)

3H' = P'/2+ V(P),
P+ 3HQ = —V'

where H = a/a is the Hubble parameter, and throughout
overdots indicate derivatives with respect to time and
primes are derivatives with respect to P.

An exact solution of Eqs. (2) and (3) of the form of
Eq. (1) exists [3] with

4:SA'
V(P) = (2AP)~~

(&+ 4)' (7)

Such a potential bears qualitative similarity to the expo-
nential potentials of power-law infIation. Here we note
that the solutions for P{t) and H(P) obtained for Eq. (7)
in the slow-roll approximation are identical to those ob-
tained in the exact solution, Eqs. (5) and (6), and we
shall exploit this later.

In some ways the slow-roll solution is more interest-
ing than the exact solution. In particular it arises from
a much simpler form of the potential, requiring only its
asymptotic properties. It also possesses one rather cu-

exists anywhere on this potential for P & 0, by choice of
the appropriate initial velocity for P. In particular, to
the left of the maximum of the potential the field must
be given a rapid velocity in order to cross the maximum
and reach the far side of the potential.

Note that although the solution is valid anywhere on
the potential, it is not always infIating. In fact, the condi-
tion for inflation (a & 0) is only satisfied when P & P /2,
which guarantees that we must be in the region of the po-
tential where it is positive. For P & 1 (i.e. , f & 4/5),
inflation can only occur beyond the maximum of the
potential.

This form for a(t) also arises when one solves the equa-
tions of motion in the slow-roll approximation (see below)
with a simple power-law potential

where P = 4(f ~ —1) and

P = (2APt~)

For later use, we note that this allows one to write

H(y) = Af(2PA)«'y

(5)

The potential which gives rise to this solution is shown
in Fig. 1. It is negative for 0 & P2 & t9~/6, increases
up to a maximum at P2 = P(P + 2)/6 and then falls
asymptotically to zero as 1/P~ as P —+ oo. The solution

This raises an issue about the use of exact solutions —one
must be wary to use them only when they serve as attractors
for the system. In this sense, the inflation that one can gain
for 4/5 & f & 1 to the left of the maximum must be regarded
as only a curiosity; the initial condition which serves to fire the
scalar Beld up the potential and over the maximum is certainly
not typical and the generic behavior would be to roll down
the left hand side of the potential. Contrarily, the inflation
as the potential rolls down to the right of the maximum is
generic.
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jP/2 f'H'e—= 3 . =2i
V+ P2/2

H"

3HQ

The slow-roll approximation is the assumption that both
e and [il

~

are small, and they correspond to the ability to
neglect the first term in Eq. (8) and in its P derivative
respectively. Vr'ith these definitions, the condition for
inflation to occur, a & 0, is precisely equivalent to e & l.

I IG. 1. The potential which gives exact intermediate in-

flation, for sample parameter choices P = 2 (f = 2/3)
and A = 1. Generically, the maximum is located at g
P(P+ 2)/6

rious property, which is that no inflation occurs in the
earliest stages of the scalar rolling down the potential.
While pz ( p /2, the potential is too steep. Only when
the field reaches the asymptotic region of the potential
can inflation begin. If one assumes, following the usual
'chaotic inflation' philosophy, that'the initial scalar en-
ergy is at the Planck boundary, then inflation will always
begin when the field reaches this value.

For intermediate inflation the slow-roll conditions be-
come increasingly well satisfied with time and so, like
power-law inflation, there is no natural end to inflation
within the model. As with power-law inflation one ex-
pects this state of afFairs to be remedied by modifications
to the potential which create a minimum at a finite scalar
field value. Intermediate inflation would then arise only
in a region of the potential. Another possibility would be
that, akin to Jordan-Brans-Dicke extended inflation [4]
for power-law inflation, intermediate inflation could arise
in the conformal frame of an extended inflation model
and inflation could end via bubble nucleation. Examples
of this in scalar-tensor gravity theories have been given

by Barrow and Maeda [5] and Barrow [6].
Before progressing, we formalize what we mean by the

slow-ro}1 approximation. Noting that 2H = —Pz, and
assuming that during inflation P never passes through
zero so that we may divide by it, substitution yields more
useful forms of Eqs. (2) and (3). These are the Hamilton-
Jacobi equations [7]

(H') — H= ——V(P),—
2 2

(8)

2H'. —

In this formalism, it is possible to treat H(P) as the fun-
damental quantity to be chosen, rather than the more
usual V(P) [8].

This formalism also allows a simple expression of the
slow-roll conditions to be made, one which is more funda-
mental than the version commonly seen involving V'/V
and V"/V. Define slow-roll parameters e and q byz

II. PERTURBATION SPECTRA
FROM INTERMEDIATE INFLATION

(12)

(13)

where R is the perturbation in the spatial curvature. The
expressions on the right are to be evaluated when the co-
moving scale k leaves the horizon during inflation. These
results hold to first order in the slow-roll approximation,
and we shall assume them throughout. Useful quanti-
ties are the spectral indices, which are scale dependent in
general. They can be calculated from the above to first
order in the slow-roll parameters, as

dlnP~n—= 1+ = 1 —4e, +2g„dink
din Pg
dink

(14)

(15)

where n and n~ are the scalar and gravitational wave
spectral indices respectively, and the star indicates that
the slow-roll parameters should be evaluated when the
appropriate scale passes outside the horizon during infla-
tion (that is, at the value of the scalar field when the scale
k leaves the horizon during inflation). The flat Harrison-
Zel'dovich spectrum corresponds to n = 1.

The most important quantity concerning the gravi-

It has long been recognized that inflation typically
gives rise to a spectrum of density perturbations close to
the scale-invariant Harrison-Zel'dovich form [11]. Recent
improved observations [12] require that deviations from
this form be taken very seriously. Further, the possibility
that large-angle microwave background anisotropies may
have contributions not only from density perturbations,
but also from gravitational wave modes [13]which are ex-
cited during inflation, must be taken into consideration
[10, 14].

We shall simply quote standard results. The spectra of
scalar and transverse-traceless tensor perturbations are
given [15, 10] by the expressions

Hz H
P~ (k)= I

~2~~+~r „„

These definitions, as employed in [9], differ from those used
in [10].

Recently, the next order corrections in slow roll to these

expressions have been calculated [16],but are rather cumber-

some and will not be needed here.
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tational wave modes is the extent to which they influ-
ence large-angle microwave anisotropies [on small angu-
lar scales (& 2'), the gravitational waves would have
been. within the horizon at the time of last scattering
and their redshifting would have reduced their signif-
icanc]. Thus, we decompose the temperature fluctuation
field into spherical harmonics:

(8, 4) = ).«~&'(~ 4)
t, m

(16)

1
~ = P(1+ P/2) —,

They therefore possess a mild scale dependence, whereas
in power-law inflation from an exponential potential they
would be constant in time.

The amplitude of the scalar spectrum will depend on
the amplitude of the potential, and is to be fixed by ob-
servations such as COBE. More interesting is the scale
dependence of the scalar spectrum. This is given from
Eq. (14) by

P(/3 —2)
2 (20)

Recall that P = 2 corresponds to f = 2/3.
This spectrum overs properties which are unusual in

inflation, where the typical behavior (exhibited by poly-
nomial chaotic inflation, power-law inflation, natural in-
flation, extended inflation, etc.) is for a spectrum with
n ( 1, so that a COBE normalized spectrum has reduced
small-scale power compared to a similarly normalized

In a given inflationary model, it is simple to calculate
the contribution to the variances of the a~m, which are
m independent due to rotational invariance and can be
denoted 2&2. The general expressions are given as inte-
grals over the power spectra, but in the slow-roll approx-
imation, the relative contribution Ri of scalar and tensor
modes is well approximated [10] by the simple expression

Zi2 (tensor)
Z2i (scalar)

where e~ indicates that the slow-roll parameter is to be
evaluated at the scale corresponding to the lth multipole,
A, = tHO/2.

Details of all the above expressions can be found in
[10]. If the slow-roll conditions are well satisfied, then the
spectrum must be close to flat and the contribution from
gravitational waves to the Cosmic Background Explorer
(COBE) signal must be small.

The benefit of the H(P) behavior being the same for
both the exact solution and slow-roll solution is imme-
diately apparent —they give rise to the same density
perturbation spectra. Indeed, one need not ask what the
origin of the particular form of H(P) was. One can com-
pute the slow-roll parameters during inflation; these are
given by

scale-invariant spectrum. However, provided 0 & p & 2
(1 ) f ) 2/3), the spectrum Eq. (20) ofFers a value of n
greater than 1, albeit with a scale dependence we address
below.

As one expects, the limit of exponential expansion
(f —+ 1) gives rise to a flat Harrison-Zel'dovich spectrum,
though were one to compute the amplitude one would
find it diverging in this limit. Much more interesting is
the case f = 2/3. This too ofFers a flat spectrum, but now
with finite (in fact freely selectable) amplitude. The po-
tential therefore corresponds to that giving (in the slow-
roll approximation) an exactly flat spectrum. Although
this potential has arisen before on general grounds [17,
9], we are not aware of it having been identified as that
giving intermediate inflation before.

The gravitational spectral index is only of modest in-
terest; more significant is the relative contribution B~ of
tensors and scalars to the COBE signal. This is just

Ri 12.4ei = 6.2/2/P2 (21)

~h~re p is evaluated at the time the scale corresponding
to the tth multipole leaves the horizon. In general, the
relative amplitude is related to the scalar spectral index
by

P —2

6.2P (22)

Coinpare with the power-law inflation result n = 1—Ri/6. 2.
In that case n and R~ are both scale independent.

where n is given on the scale corresponding to the lth
multipole. 4

For typical choices of P, if we are on the part of the po-
tential where the spectrum is close to flat, there are few
gravitational waves, in keeping with the slow-roll condi-
tions. However, for the exact Harrison-Zel'dovich case
P = 2, the relative contribution depends simply on the
value of P when the relevant scales leave the horizon.
In terms of the slow-roll parameters, one is arranging
g, = 2e„without requiring that either separately be
small. As P is only constrained by the inflation condi-
tion P ) P /2, the gravitational waves can in fact be
the dominant contributor to COBE. This is also possible
for other choices of P close to 2.

We get departures from "almost" scale invariance with
negligible gravitational waves only for small values of P.
Thus, for cosmological interest, one needs to be on this
part of the potential as large-scale structure scales leave
the horizon during inflation. With standard reheating,
this will correspond to around 60 e-foldings from the end
of inflation. The number of e-foldings of intermediate
inflation between scalar field values Pi and P2 is given
by

@' H
~(&i 4'2) = —

2 ~, d4 =
2 (4~ —&i) (23)

Without knowing how inflation ends, one cannot draw
any further conclusions from this, because the number of
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TABLE I. Examples of inflationary models giving rise to diferent types of prediction for the perturbation spectra.

Nearly flat spectra
Tilted spectra

Small gravitational-wave
contribution to COBE

Polynomial chaotic inflation [18]
Natural inflation [19]

Large gravitational-wave
contribution to COBE

Intermediate inflation (f 2j3) [3]
Power-law inflation (small power) [2]

e-foldings to complete inflation is unknown.
Suppose that we assume inflation begins at the small-

est P value which permits it, so Pz ——P /2. As discussed
after Eq. (7), this seems very reasonable in the slow-roll
case. The spectral index and gravitational wave contri-
butions can now be expressed in terms of the number of
e-foldings Nb which have passed since the beginning of
inflation:

0.2 0.4 0.6 0.8

FIG. 2. The tilt n and gravitational wave contribution
R~ are indicated as functions of f, with the number of e-
foldings Nb since the start of inflation chosen as 10 (solid),
25 (dashed), and 100 (dotted). As Nqis increased, the p're-
dictions progressively approach n = 1 and Rt = 0. Note in
particular the exact Harrison-Zel'dovich f = 2/3 case, which
always gives n = 1 but can have gravitational wave contribu-
tions ranging from substantial to negligible depending upon
Nt, . The f -+ 1 limit should be treated with care, as the re-
lation between P and Nb is singular in that limit as H —+ 0
in Eq. (23).

Of course the total amount of inflation could be enormous,
in which case we are guaranteed the slow-roll limit.

=1— (24)
4Nb +

12.4P
(25)4Kb+ p

One expects that the total amount of inflation must ex-
ceed the 60 e-foldings mentioned above by a factor of at
least a fews (one often sees 70 as the minimum number
required to solve the flatness problem). This sets upper
limits on the ]n —1~ and Rt as a function of t9. For exam-
ple, for the Harrison-Zel'dovich spectrum case P = 2 this
would imply that the gravitational wave contribution to
COBE is subdominant (Rt ( 0.6) though certainly not
insignificant. Figure 2 illustrates the possibilities.

This also allows us to address the scale dependence of

the spectral index would one be able to see devia-
tions from power-law behavior across observable scales?
Potentially observable scales, those in the linear regime
at the present, stretch from about 3000h Mpc down
to 8h ~ Mpc, which corresponds to about 6 e-foldings
of scale. Putting this into the expressions above, we see
that the typical scale dependence of n is rather limited,
even in cases where the deviation from n = 1 is dramatic
(notably large P).

III DISCUSSION

We have investigated models of intermediate inflation.
Intermediate inflation arises as the slow-roll solution to
potentials which fall oK asymptotically as a power law
in P, and can be modeled by an exact cosmological solu-
tion. This model bears many qualitative similarities to
power-law inflation: like power-law inflation, there is no
natural end to inflation and a mechanism must be in-
troduced in order to bring inflation to an end. Also, as
with power-law inflation, intermediate inflation ofI'ers the
possibility of density perturbation and gravitational wave
spectra which difter significantly from the usual inflation-
ary prediction of a nearly Hat spectrum with negligible
gravitational waves.

In particular, two interesting types of behavior can be
obtained which do not arise in traditional inflationary
models: (1) It is possible for the spectral index to exceed
unity over large scale structure scales; (2) intermediate
inflation contains the class of models which generate the
exact Harrison-Zel'dovich spectrum (in the slow-roll ap-
proximation). Within this class, there exist models which
produce substantial gravitational waves despite the Hat-
ness of the spectrum.

This latter case is of particular interest, because it
completes a square of possible inflationary predictions
for the tilt of the density spectrum and the influence of
gravitational waves. This is illustrated in Table I. This
model would perform well on confrontation with large-
scale structure data in a cold dark matter model, as the
gravitational wave contribution could explain the unex-
pectedly large amplitude of the COBE result, especially
should the true result prove to lie towards the lower end
of the COBE range. The most troublesome data would
be the clustering data such as the APM survey [20]; one
would have to resort to astrophysical effects (e.g. , coop-
erative galaxy formation [21]) in order to explain this.

However, we must remark that the models which give
these deviations from the usual predictions are rather
special, in that we are relying on the minimum amount
of inflation occurring so that large-scale structure scales
cross the horizon at a time when the slow-roll condi-
tions were still not well obeyed. This corresponds to a
nontrivial constraint on when modifications to the po-
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tential entered to end inflation. However, this is still
quite a strong result because it implies that obtaining a
nearly scale-invariant spectrum with significant gravita-
tional waves, while possible in principle, is very difBcult
in practice because the scale invariance in the density per-
turbation spectrum implies that the relative contribution
from gravitational waves falls as inHation proceeds.
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