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Quantum Einstein-Maxwell fields:
A unified viewpoint from the loop representation

Rodolfo Gambini
Instituto de Fisica, Facultad de Ciencias, Tristan Narvaja 167/, Montevideo, Uruguay

Jorge Pullin
Department of Physics, University of Utah, Salt Lake City, Utah 8/112

(Received 20 October 1992)

We propose a naive unification of electromagnetism and general relativity based on enlarging the
gauge group of Ashtekar's new variables. We construct the connection and loop representations and
analyze the space of states. In the loop representation, the wave functions depend on two loops,
each of them carrying information about both gravitation and electromagnetism. We find that the
Chem-Simons form and the Jones polynomial play a role in the model.
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I. INTRODUCTION

The introduction of the Ashtekar new variables [I] for
the treatment of canonical gravity has opened new hopes
that general relativity may be nonperturbatively quan-
tized. In particular the loop representation [2] allows us
to construct for the first time physical states of quantum
gravity without recurring to minisuperspace approxima-
tions [3]. Knot theory and in particular the Jones poly-
nomial play a crucial role in the theory [4].

The main successes of this program at the quantum
level have up to the present largely referred to vacuum
general relativity. It is evident that it would be desirable
to extend some of these results to the case in which there
are matter fields present in order to make contact with
physics at energies lower than those where gravity is the
only dominant interaction.

Another point is that many authors [5] have argued
that only by taking into account the quantum properties
of the matter that form the reference frames can physical
quantum observables be defined in quantum gravity. Al-
though the construction of [5] requires very specific kinds
of matter, it is an extra motivation for studying the in-
corporation of matter to the theory as a general issue.

In this work we will suggest that the idea of a unified
theory described in terms of Ashtekar's new variables is
possible and that several appealing results of the vacuum
theory find very naturally their counterpart in the uni-
fied model. We will show, for instance, that knot theory
still plays a crucial role and that the techniques used to
find states for the theory in the vacuum case are still ap-
plicable. In summary, these ideas for quantizing gravity
can lead to interesting new insights also in the case where
matter fields are present and therefore are well suited for
understanding the physics of particles at the energies of
unification and not just pure gravity.

The idea of unifying gravity with other forces enlarging
the group of Ashtekar variables is not new [6—8]. However
the program outlined in this paper is less ambitious than
others. We do not pretend to recover the same form of

the constraints as the vacuum ones just with an enlarged
group. We will see, however, that the "kinematic" con-
straints can actually be rewritten in this way. This will be
enough to find several connections between results of the
vacuum theory and the unified theory. The Hamiltonian
constraint will be quite different and we will briefly out-
line the consequences of this. Although we will only give
details for the Einstein-Maxwell case, the same ideas can
be straightforwardly generalized to Einstein-Yang-Mills
theories for SU(N).

II. EINSTEIN-MAXWELL THEORY IN TERMS
OF A U(2) CONNECTION

We begin with a brief summary of the Einstein-
Maxwell theory in terms of Ashtekar's new variables. We
will assume a 3+1 foliation of spacetime has been per-
formed, with spatial three-surfaces E on which all vari-
ables are defined. The variables for the gravitational part
are a (densitized) triad E, , which determines the spatial

-ab
metric by q = EaEb and an SU(2) connection A' as
conjugate momentum. Throughout the paper we will
denote densities of weight +1 with an overtilde and of
weight —1 with an undertilde. For the Maxwell field the
variables are the electric field ea and the vector poten-
tial a . The dynamics of the theory is pure constraint,
and the constraints (with the inclusion of a cosmological
constant A) are [9]

Oe =0,

DE =0,

iv 2E, F~b —2e f~b = 0,

(2)

(3)

ij kEaEbFk + A det(E)2

Iidet(E) (E, E—, E~ E~ q, aefg bing [e eg + b b ]) = 0,

(4)
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where det(E) = ~g, b,e'f"E, E Ef„D is the covari-
ant derivative built with the Ashtekar connection with ac-
tion on SU(2)-valued quantities D A' = 0 A'+ e'~ "A~ A",
E'b is the field strength built from the Ashtekar connec-
tion, and f~b is the usual Maxwell field strength built from
a . b is the usual magnetic field density b = g b'fb, .
We will use bold lower case letters to distinguish quanti-
ties of the Maxwell field from similar ones in the Ashtekar
formulation of gravity.

Equation (1) is the Gauss law of the U(1) symme-
try. Equation (2) is the Gauss law of Ashtekar's for-
malism, stemming from the invariance under triad ro-
tations. Equation (3) is the diffeomorphism constraint
and Eq. (4) is the Harniltonian constraint. Notice that
this constraint can be made polynomial by multiplying
by det(E)2. Such a rescaling is potentially dangerous in
the case where det(E) = 0 and we will discuss its impli-
cations later on.

We will now show how to write these equations in terms
of a single set of variables. We introduce a U(2) connec-
tion

A, =A'o, ~ia 1,

and in a similar fashion a U(2) electric field,

8' =E'o +e 1

That is, we are taking the direct product of U(1) and
SU(2) to form a U(2) symmetry. We can similarly intro-
duce a field tensor P~b and a magnetic field 8~. From
these we can recover the original quantities by taking
traces:

E = 8 —-'Tr(E'),

e = ~iTr(E ),

and similarly for 8~. There is some arbitrariness in the
way in which we combine the two groups into U(2). Con-
cretely, we could perform a relative constant rescaling of
the electromagnetic and the gravitational quantities (as
for instance Z~ = E~'o', + const x e~l), which we arbi-
trarily fix to unity. We will see the implications of this
fact later on.

The introduction of these quantities allows us to
rewrite the constraint equations as

'V 8 = 0, (9)

Tr(E P,b) = 0, (10)

sg, abc/, edfTr(~ ~ ~ )Tr(~ ~ 8 ) + g, abc@,edfTr(~ ~ )Tr(~~8 )Tr(Z 8 )

—
q ..q. fTr[E E')Tr(EbEd)[Tr(E')Tr(Ef) —T (8')Tr(8f)]+ A ~ „g,„fTr(g g g')Tr(Ed''gf) = 0, (11)

where V is a covariant derivative built from the U(2)
connection defined by Eq. (5). Notice that again we have
rescaled the Hamiltonian constraint with a factor det(Z)2
in order to make it polynomial. This means the model
is strictly equivalent to Einstein-Maxwell theory only if
one considers nondegenerate triads. From now on we will
concentrate on nondegenerate triads only.

It is worthwhile noticing that this is just a rewriting
of the equations, that is, the theory remains exactly the
same. Therefore, for instance, the constraint algebra and
the consistency of the theory with the reality conditions
[9] are automatically preserved.

A remarkable fact of this construction is that the "kine-
matic" constraints, the Gauss law and the diffeomor-
phism constraint, look exactly the same as those of the
vacuum theory, only evaluated for a difFerent group U(2).
This will allow us to import some ideas from the vacuum
theory to the unified model.

III. CONNECTION REPRESENTATION AND
THE CHERN-SIMONS FORM

We now attempt to quantize the theory in the "con-
nection representation, " that is, we take a polarization in

which wave functions are functionals of the connection
@[A] and A 0 [A] = A %[A],E' @[A] = »' iI [A]. In
the vacuum theory two main results have been achieved
with this representation: (a) the result of Jacobson and
Smolin [10] that showed that Wilson loops constructed
with Ashtekar's connection were solutions to the Hamil-
tonian constraint, and (b) the result of Kodama [ll], later
extended in Ref. [4], that showed that the exponential
of the Chem-Simons form constructed with Ashtekar's
connection was a solution to all the constraints with a
cosmological constant,

Let us examine these two results in the context of our
unified model. Let us start with result (a). Consider
Wilson loops

W~(A) = Tr Pexp
~

dy A (y) ~

(
).

For the vacuum case these quantities solve the Hamil-
tonian constraint. For our model, however, they fail to
be solutions. This is due to two reasons (1) Since w.e
rescaled our constraint by the determinant of E, this de-
terminant should be nonvanishing for the state of inter-
est if one wants the model to be equivalent to Einstein-
Maxwell theory defined by Eqs. (1)—(4). For all the
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known solutions of the vacuum theory based on Wilson
Loops [12], the determinants always vanish and therefore
we have to exclude them. (2) Even if one considered a
loop with a generic triple intersection in order to make
the determinant nonvanishing, it is unlikely that finite
combinations of these Wilson loops will be able to solve
the constraint. This is basically due to the fact that
the Maxwellian part of the Hamiltonian constraint has a
term b~ which is purely multiplicative in this representa-
tion and therefore cannot be canceled by any of the other
terms. So there seems to be no analogue of result (a) in
our model.

We move on to result (b). Let us now consider the
state

]A] =exp] ——Tr AhdhA ——AAAAA).cs 2
A 3

(»)
Such a state is an eigenstate of the electric field, with an
eigenvalue proportional to the magnetic field:

E @ '[A] = 'il 'P @—'—[A] = ——'8 4 '[A]. (13)
With this formula, it is immediate to see that the state
(with A = 3) is annihilated by the quantum Hamiltonian
constraint of the unified model (ll). The only require-
ment is to have a factor ordering with the E''s to the right
of the 8's, to simply notice that all terms in (4) cancel
by virtue of Eq. (13).

How is this fact to be understood in terms of the origi-
nal version of Einstein-Maxwell theory? It can be readily
seen that this state can be decomposed like 4'zcs[A] =
@&cs[A]@c~s[a) in terms of the usual Ashtekar variables.
It is a remarkable fact that this state actually manages
to solve all the constraints of the theory with a cosmo-
logical constant. This is quite easy to see. Consider the
action of the Hamiltonian constraint (4) on the product
@zcs[A]@c~s[a]. The first two terms do not involve elec-
tromagnetic variables so they only act on iIic~s[A] and
they annihilate it in the same way as they did for the
vacuum theory [11]. The last term has both electro-
magnetic and gravitational variables. The gravitational
part acts on ~Ii&cs[A] and since this function is an eigen-
state of the triad with eigenvalue equal to the "magnetic-a
metric" (8, @c+s[A] = g 'F&,4'&cs[A]), it simply gives an
overall factor. The electromagnetic part vanishes since
e iIi&+s[a] = —ib iIi&+s[a] (with A = 3) and this annihi-
lates the ef eg +bf b~ portion of the Hamiltonian density
of Maxwell theory in Eq. (4).

This result is quite robust. The only requirement
needed to prove it is to assume a factor ordering in the
gravitational variables with the E's to the right of the
A' s. By the way, this factor ordering is the one that has
been used to build the loop representation [13] and is the
one in which the algebra of constraints closes (formally)
both in the connection [1] and loop representations [14].
The factor ordering between gravitational and electro-
magnetic variables can be arbitrary. As was shown, the
state 4&cs[A] is annihilated separately by the gravita-
tional and electromagnetic part of the Hamiltonian con-
straint. This state will have important consequences in

the loop representation.
The reader may be surprised by the fact that the re-

sult holds for a particular value of the cosmological con-
stant. This is really not so, since while defining the uni-
fied model we had a freedom to rescale arbitrarily the
electromagnetic variables versus the gravitational ones
by a constant. By choosing this constant appropriately
one can have a state for an arbitrary value of A. One
can consider a more general state defined by the product
iIi&cs [A]icos(a) (a different constant in the exponential of
the electromagnetic part) and this also manages to solve
the constraints, if 8 = 3 and A is arbitrary. One can
write this state in terms of the connection A but it has a
more complicated and less appealing form than the state
defined by (12).

What can one say about the physical relevance of this
state? The Chem-Simons form is not a physically rel-
evant state for Maxwell theory, since it is not normal-
izable and therefore does not belong in the Fock space.
Evidently there is the possibility that a similar situation
arises in our unified model. However, the measure in
the inner product of the unified model, which we do not
know, is potentially going to be very different from that of
Maxwell theory. This is due to the fact that the unified
model is invariant under diffeomorphisms and Maxwell
theory is not. Therefore we cannot a priori rule out this
state as a candidate to a physical state of the theory.

Ashtekar, Rovelli, and Smolin [15] have shown that
if one formulates Maxwell theory in terms of self-dual
variables the Chem-Simons form actually becomes the
vacuum of the theory. This suggests the intriguing pos-
sibility of trying to rebuild our unified model in terms
of a self-dual Maxwell connection. This would allow a
better physical interpretation of the Chem-Simons state
and would make the quantum representation more sym-
metric in the sense that the connection A would now be
constructed superposing two self-dual connections.

but there is no relation between wave functions of re-
traced loops, i.e. , @[p] g 4[p i]. In the vacuum theory
one also has the Mandelstam identity, which states

&[»,»1 = +[».»1+ &[».» '1 (15)

That is, it allows to express any wave function of n loops
as a function of n —1 loops. This can be used recursively
to reduce all wave functions to functions of only one loop.

For our case the Mandelstam identity now reads

IV. LOOP REPRESENTATION

The construction of the loop representation for this
theory follows the same steps as those for the vacuum
theory so we will only highlight some points. The reader
interested in details of the construction of loop represen-
tations is referred to [13,16,2]. The main difference with
the usual case is that the group is U(2) instead of be-
ing SU(2). This changes the form of the Mandelstam
identities and therefore the kinematics of the loop repre-
sentation is difFerent. As usual we identify
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4 [fr q 72 ) '7s] = @[fr 0 p2) '73] + 4 [72 0 '73 ) '7r] + 4 [+3 0 fr ) '72] —4 [ fr 0 '7z 0 +3] —@[pr 0 '73 0 '7z].

Where we see that it only allows us to reduce a function
of n loops to a function of n —1 and n —2 loops. Therefore
we cannot reduce all wave functions to functions of only
one loop, we need at least two loops to represent a generic
wave function. Therefore the kinematics of the theory is
different from the vacuum one, as one may expect from
the fact that gauge group is different in both theories.

An interesting point is that one could proceed in the
traditional fashion [without combining both connections
into a U(2)] and construct two loop representations: one
for the Ashtekar connection and another one for the
Maxwell one (as was done in [17] for the 2+1 case). One
would then have wave functions depending on two loops:
an "electromagnetic" and a "gravitational" one. Here we
also encounter two loops, but each of them carrying in-
formation about both gravitation and electromagnetism.
There are other important differences in the construction
of the loop representation in both cases but we will not
discuss them here. It seems more natural, from the point
of view of unification, to deal with loops that carry the
information of both gravity and electromagnetism and
that is the point of view we will adopt in this paper.

The diffeomorphism constraint still works as a genera-
tor of infinitesimal diffeomorphisms in loop space, and we
can represent it explicitly in terms of the loop derivative
as in the vacuum case [13] simply taking into account
that it is acting on two loops. The important point here
is that the space of physical states of the theory will still
be represented by functionals of loops that are invariant
under diffeomorphisms, i.e. , they will be functionals of
the link class of the loop rather than of the loop itself,
exactly as in the vacuum case.

We now turn our attention to the Hamiltonian con-
straint. Again, it could be realized in loop space in terms
of the area derivative, as one does for the vacuum theory
[13]. The calculation is lengthy and at the moment we
will not make use of a specific form so we will not exhibit
it here. In this case, the constraint is very different from
that of the vacuum theory, as expected.

One of the main achievements of the loop represen-
tation for the vacuum theory was to make possible the
construction of states that solve alt the constraints of
the theory. We will see that this is the case also for the
model of interest. First of all it is quite simple to see,
from the structure of the Hamiltonian constraint, that
wave functionals with support on smooth nonintersect-
ing loops are not solutions to the constraint (although
we have not written the constraint explicitly, the result is
obvious from its form in the connection representation).
As in the connection representation this stems from the
fact that there is present a purely multiplicative term
in the constraint that fails to annihilate these function-
als. Moreover we should remember that the constraint
was rescaled by a factor that vanishes for loops with less
than a triple intersection so we may want to exclude these
states altogether.

In spite of this we can construct a solution to all the

constraints in the loop representation following the same
reasoning that also allowed us to construct a solution
in the vacuum case: since the Chem-Simons form is a
solution in the connection representation, it should also
be a solution in the loop representation. In general, we
do not know how to compute the transform of a state
into the loop representation,

e[p„pr] = dA@[A]W~, (A)W»(A)

[remember that because our model is U(2) symmetric
we need at least two loops to define a wave function in
the loop representation], since we do not know how to
evaluate the integral on the right. It turns out how-
ever that this transform is known for a state given by
a Chem-Simons form taking advantage of the results of
Witten and others [18,19] in Chem-Simons field theo-
ries. It is equal to a well known knot polynomial (in
an arbitrary variable t related to the constant in front
of the Chem-Simons form in the wave function, for our
case A), the Kauffman bracket [18,19]. For our partic-
ular model, it is the Kauffman bracket for two loops,
K[pr, pz](A). The Kauffman bracket is a regular isotopic
polynomial; that is, it is an invariant of framed loops (see
Refs. [18,19] for a discussion of the problem of framing),
and is related to the ambient isotopic Jones polynomial
J[pi, pz] (A) (which is a true invariant of unframed loops)
[19]. Summarizing, the Kauffman bracket is a solution of
all the quantum constraints of the unified model. Notice
that usually the Kauffman bracket and Jones polynomial
are associated with SU(2) groups and with a single loop,
although their generalization to other groups and more
than one loop are known and have been discussed [19].
Here one should take the generalizations for a U(2) group
and two loops.

This solution also sheds light on the connection be-
tween our unified loop representation based on a U(2)
group and the more traditional one based on two sepa-
rate SU(2) and U(l) groups. Let us rewrite Eq. (17) to
make explicit the dependence on both connections,

9(pr, p2) = dA da@[A, a]W~, (A)W»(A)W~„»(a).

(18)

Here we see how the intermingling of electromagnetism
and gravity happens in the language of loops by notic-
ing that both the Wilson loops built with the A and
the a connection depend on both loops. If we now
take a product state as the one we considered in Sec.
III, @Acs [A]icos [a], one can again evaluate the transform.
The transform of the SU(2) portion gives the Kauffman
brackets associated with SU(2). The transform of the
U(l) portion gives the exponential of the Gauss linking
number (times a function of 0). For the particular case
of A = 0 the net result can be rewritten as the Kauffman
bracket associated with a U(2) symmetry.
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In the loop formulation of gauge theories, it is usual
to introduce charges by opening up the loops. The open
path formalism describes lines of flux with charges at
their ends. This has been studied for the Maxwell the-
ory [20]. It is interesting to note what happens if one
attempts to construct such a formalism for our unified
model. If one opens up one of the loops in question, one
not only fails to satisfy the Gauss law of the Maxwell
theory (which introduces electric charges) but also one
fails to satisfy the Gauss law of the Ashtekar formalism.
This latter fact only occurs if one couples the theory to
fermions. That is, the loop representation requires that
charged objects should be fermionic.

We end by mentioning that in the vacuum theory one
can perform an analysis order by order in the Jones poly-
nomial and retrieve physical states for the theory without
cosmological constant [21]. It would be interesting to try
to carry out a similar analysis for the model we are con-
sidering.

V. CONCLUSIONS

We have studied the Ashtekar formulation of the
Einstein-Maxwell theory. We have shown how one can
rewrite the equations in terms of a single U(2) connec-
tion. The kinematic structure of the theory is quite sirn-

ilar to that of pure general relativity and allows the gen-
eralization of several results of that case to the combined
Einstein-Maxwell theory. In particular, the loop repre-
sentation is quite natural and the Jones polynomial turns
out to be related to a physical state of the theory, as
happens in pure general relativity. Summarizing, we can
see that the Ashtekar variables and/or loop representa-
tion approach to the quantization of gravity can lead to
quite appealing results when one incorporates other in-
teractions in an unified fashion. The fact that the Jones
polynomial plays a role in both the vacuum theory and
the united model points out to a possible deep role of
this mathematical structure in gravitational physics yet
to be understood.
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