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We derive two new integral mass formulas for stationary black holes in Einstein-Yang-Mills theory.
From these we derive a formula for PQ —QV, from which it follows immediately that any stationary,
nonrotating, uncharged black hole is static and has a vanishing electric field on the static slices. In the
Einstein-Maxwell case, we have, in addition, the "generalized Smarr mass formula, " for which we pro-
vide a new, simple derivation. When combined with the other two formulas, we obtain a simple proof
that nonrotating Einstein-Maxwell black holes must be static and have a vanishing magnetic field on the
static slices. Our mass formulas also can be generalized to cases with other types of matter fields, and we
describe the nature of these generalizations.

PACS number(s): 04.20.Jb, 97.60.Lf

In a recent paper by the authors I 1], it was shown,
among other things, that a solution of the Einstein-
Yang-Mills (EYM) equations describing a stationary
black hole with a bifurcate Killing horizon and satisfying
VQ=PQ=O is necessarily static, and has a vanishing
electric field on the static slices. A stronger result was
obtained in the Einstein-Maxwell case: It was proven
that a solution of the Einstein-Maxwell equations describ-
ing a stationary black hole with a bifurcate Killing hor-
izon and satisfying PA=0 is necessarily static, and has a
vanishing magnetic field on the static slices. These stati-
city theorems were obtained by deriving a generalized
first law of black hole mechanics, using it to infer ex-
tremal properties of stationary black hole solutions, and
then showing that these extremal properties could be
violated unless the black hole is static. The theorems do
not require the stationary Killing field to be globally
timelike in the exterior region; i.e., "ergoregions" are per-
mitted. Thus, in particular, the Einstein-Maxwell statici-
ty theorem closed a gap in the black hole uniqueness
theorems which had been open for nearly two decades

(see [2]).
The purpose of this paper is to derive some new "mass

formulas" relating the asymptotically defined attributes
of a stationary black hole in EYM theory, and to use
them to give a simple proof of the above staticity
theorems. For definiteness, we will restrict our con-
siderations to SU(2)-EYM theory, although all of our
equations and results also apply straightforwardly to
Einstein-Maxwell theory. More generally, mass formulas
analogous to the ones we derive will exist for many other
theories, and we will explain the conditions under which
such generalizations can be obtained.

We first brieAy review the "3+1"formulation of the
EYM equations given in [1]. Initial data in EYM
theory consists of the specification of the fields
(h,b, m', A, ,E'~) on a three-dimensional manifold X.
Here h, b is a Riemannian metric on X, A, is the gauge
field component tangent to X, ~' is the canonically con-
jugate momentum to h, b, and E'A is the electric field
(viewed as a density of weight —, ), which is (up to the nu-
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merical factor of —,
'

) the momentum canonically conjugate
to 2, . Here, and throughout this paper, lower case
greek indices are used to denote spacetime tensors, and
latin indices are used to denote tensors in the hypersur-
face X. The projection of a spacetime tensor into X is
denoted by replacing the greek indices by latin indices;
e.g. , the projection of the spacetime vector t into X is
denoted as t'. Capital greek indices are used for the Lie
algebra of the Yang-Mills field.

Constraints are present in Einstein- Yang-Mills theory.
On a hypersurface X on which ~, '=0, the allowed initial
data are restricted to those that at each point x EX satis-
fy

O=v'h Xl, (E'„/V'h ) =&h D, (E'„/&h )+c~„A,"E'b,

0= A, =NE, /&h +2), (NAO )+S;A,
with

2ab — (Ea EbA l h abE AEc )Q

+2(FacF bA+ & habFcdF A)
4 A cd

+ ( R "—' h "R) +—( 2ir' vr"' -'h "—vr'~ )
1

(9)

where

O=E'A= —[V'h X)b(NFA )+NcAr Ao"E'b S—~E'A],

S;h,b
—2D(, Xb),

S W ~=XbD W ~+Ah~a. Xb

(10)

0=&hDb(m. , /&h ) 2F,b E—A, (3) vr'"=&hN'D (rr' /&h ) 2rr"D N—'+ir' D N'

where D, is the derivative operator on X compatible with
the metric h, b, 2), denotes the (metric compatible)
gauge-covariant derivative operator, and R denotes the
scalar curvature of h,b.

We shall be concerned in this paper with spacetimes
representing a stationary black hole with a bifurcate Kil-
ling horizon. As discussed in [3], this should encompass
all stationary black hole solutions in EYM theory except
for the "degenerate" solutions which have vanishing sur-
face gravity. Recall that a stationary black hole with a
bifurcate Killing horizon automatically possesses a Kil-
ling field t", which approaches a time translation in the
asymptotic region, and a Killing field y", which vanishes
on the bifurcation surface S. If y)" fails to coincide with
t", then the spacetime also possesses an axial Killing field
Pi' such that

yi'= tI'+ Qgi',

where the constant 0 is known as the angular velocity of
the horizon. It has recently been proven [4] that any sta-
tionary black hole with a bifurcate Killing horizon ad-
mits an asymptotically fiat maximal (ir, '=0) hypersur-
face which is asymptotically orthogonal to t", and whose
boundary is the bifurcation surface S of the horizon. We
choose X to be such a hypersurface.

Now, consider the evolution equations for the initial
data which are induced on X. Choose the lapse and shift
functions, N" =(N, N'), to coincide with a Killing field in
the spacetime. Then, the EYM evolution equations yield
the following relations, obtained by setting m.,'=0 in the
equations given in [1]:

(12)

,E'A &h N'D, (E—'—A/V'h ) E'„D,N—'+E'~D, N' .

(13)

We begin by deriving a simple equation satisfied by the
lapse function N= —k"n„associated with any Killing
field k", where n" denotes the unit normal to the maxi-
mal hypersurface X. Contracting (5) with h ', we find

D,D'(N)= ,'Na
b D,—(N—b)~' /—&h

From Eqs. (6) and (10) we find

D, (Nb)rr' = ¹r,bur' /—&h

(14)

Substituting in (14) and using the constraint (2) in the ex-
pression for a b we obtain

D,D'(N) =pN, (16)

where

~b 1 A (17)

so that p is non-negative. Note that the derivation of Eq.
(16) used only the "Einstein portion" of the EYM equa-
tions, and, thus, it is easily generalized to any other
Einstein-matter system (even if the full system is not
derivable from a Hamiltonian). Indeed, a generalization
of our derivation shows that in any spacetime foliated by
maximal hypersurfaces, the lapse function iY of this folia-
tion satisfies Eq. (16) with p replaced by

O=r'r'"= —I&h Na'"+&h [h'"D'D, (N) D'D (N)]— 1
p = —vr, b

n'"+ R„n"n (18)

—S,m'b],

NO=h, b
= —2rrab+Zbr, hab ~

h

(This result also could be derived from the Raychaudhuri
equation for nongeodesic timelike congruences; see Eq.
(4.26) of [2].) Thus, in particular, for a stationary black
ho1e with a bifurcate horizon in any Einstein-matter sys-
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tern, Eq. (16) holds with p given by (18). Note that p will
be non-negative provided only that the matter satisfies
the strong energy condition. When p is non-negative, the
maximum principle can be usefully applied to Eq. (16),
and solutions to Eq. (16) are uniquely determined by their
boundary value at S and their asymptotic value at
infinity.

As our first application of Eq. (16), we choose K~=/",
where P" is the axial Killing field, so X= n—„P" T. he
boundary conditions (N~, =0 and N~ =0) yield the
unique solution %=0 on X. Thus, we find that P" is
tangent to X. This result also could be proven by a gen-
eralization of known uniqueness results on maximal folia-
tions (see Theorem 5.5 of [5]), since if P" failed to be
everywhere tangent to X, we could obtain a new maximal
hypersurface asymptotic to X by applying a rotation to
X.

Next we apply Eq. (16) to the stationary Killing field
t . We write A, for the lapse function N in this case, i.e.,
we define

(19)

Since k satisfies the boundary conditions X~, =O and
= 1, the maximum principle implies that A, is strictly

positive on X outside of S. (Also A, &1 throughout X.)
Integrating Eq. (16) over X, we obtain

(23)

where T„ is the energy-momentum tensor of matter, and
JH is the "angular momentum of the black hole, " defined
by

(24)

M — —2QJH = f [A,[(1/h)F.,AE'~+ 'F,bAF~~]

+2t'E "AF,b /&h j . (25)

Equation (23) is obtained by starting with the Komar for-
mula for the mass of a stationary spacetime and convert-
ing this surface integral at infinity to a volume integral
over a hypersurface X passing through S (see, e.g. , [8]). It
holds for any stationary black hole with a bifurcate Kil-
ling horizon satisfying Einstein's equation with arbitrary
matter. Note that it is not necessary for the validity of
Eq. (23) that X be a maximal hypersurface.

We restrict attention, now, to the case where matter is
a Yang-Mills field. Then we can write Eq. (23) more ex-
plicitly as

f dS'D, k f dS'D, —
A, = f Ap, (20)

A more useful form of Eq. (25) can be obtained by relat-
ing JH to the canonical angular momentum in EYM
theory, defined by [1]

where, here and below, all volume integrals over X are
taken with respect to the natural volume element deter-
mined by h, b, and our convention on the unit normal to S
is that it point "radially outward, " i.e., into X. The sur-
face integral at infinity is simply 4'. The surface in-
tegral at S is just ~A, where ~ denotes the surface gravity
of y" on S, and 3 is the area of S. Therefore, we obtain

f (2gbvr' +4/ A„E' )/&h dS, . (26)

Converting this surface integral to a volume integral over
X and using the constraint equations as in the derivation
Eq. (53) of [1],we find

4vrM ~A= f Ap. (21) f (~"X,,h., +4m, S,, A. ')/&h +a„,16~ r
Equation (21) is our first "mass formula" for black holes.
It should be emphasized that this formula applies to an
arbitrary stationary black hole with a bifurcate Killing
horizon, with p given by Eq. (18), which takes the explicit
form (17) in the EYM case. Both p and 2 are non-
negative whenever Einstein's equation holds with matter
satisfying the strong energy condition. Hence, it follows
immediately that for all such black holes we have

4~M ~~A (22)

This inequality was recently derived by Visser [6] [using
Eq. (23) below] for the case of nonrotating black holes.
Our derivation shows that Eq. (22) remains valid for all
stationary black holes, provided only that the matter
present in the exterior region satisfies the strong energy
condition. In particular, if there exist any "colored exci-
tations" of the Kerr-Newman black holes (as we conjec-
tured in [1]),they must satisfy Eq. (22).

To derive our second mass formula, we start with the
well-known integral mass formula of Bardeen, Carter,
and Hawking [7]:

(27)

where 8H is defined by

f (2y„~ "+4y'A, 'F. ,)/&h dS. . (28)

Furthermore, using the fact that

V~y =D~y 2y,n(~X ~~—, (30)

where K )' is the extrinsic curvature of X, we see that the
first term in the formula (28) for 8H is just JH. The
second term in Eq (28) can b. e computed by noting that
on S, t' and P' coincide (up to the constant II ) as a result
of Eq. (4), and the fact that g" vanishes on S. Therefore
we can write

The integral over X in Eq. (27) vanishes because the axial
Killing field p" is equal to its tangential projection p'.
Thus, we obtain

(29)
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4mB(JH —o" )= —f dS, t Ab E'~/&h (31)
S

We now convert this surface integral into a volume integral over X, using the constraint Eq. (1). When we do so, we get
no contribution from the boundary at infinity on account of the asymptotic fallo6'behavior of A& and E ~. We obtain

4~n( J„e—„)=f [t'E' F, /&h +~, ;( A, )E' /&h ] .

We now use Eq. (8) to substitute for S;(A, ) and again use the constraint Eq. (1). We obtain

4~0(JH —8„)=—f (t'E ~F,b
IV'h +RE'~E, Ih) —f dS, XE'~AD /Vh (33)

where we used the fact that there is no surface integral contribution from S in this equation since A, =O on S. As shown
in [1], for SU(2)-Yang-Mills theory (or Maxwell theory) the surface integral at infinity in this equation yields simply
4m. VQ, where V is the asymptotic magnitude of Ao and Q is the Yang-Mills electric charge at infinity. Therefore, we
obtain,

4 [VQ —Q(8„—J )]=—f (t'E" F., /&A +A,E' E, /h) . (34)

= f XPF.,'F (1/h)E —'E', ] . (35)

Note that Eq. (35) holds for an arbitrary hypersurface X
which is asymptotically orthogonal to t" and has S as its
inner boundary; i.e., in this formula it is not necessary
that X be a maximal hypersurface.

As previously mentioned, our starting point, Eq. (23),
in the derivation of Eq. (35) holds for an arbitrary
Einstein-matter system. Furthermore, the notion of d„
is well defined for any Einstein-matter system derivable
from a Hamiltonian. However, considerable use was
made of the explicit form of the Yang-Mills field equa-
tions in deriving Eq. (34). Thus, it is not clear that Eq.
(35) would have a close analogue for other Einstein-
matter systems derivable from a Hamiltonian.

We now subtract Eq. (35) from Eq. (21), using Eq. (17).
We obtain

8~(Qd„—VQ)= f k(~,b~' +2E'~E, )/h .

By inspection of Eqs. (36), (21), and (17), we see that any
stationary black hole with a bifurcate Killing horizon in
EYM theory satisfies

M — ~ Q cf„—VQ ~ 0 .~A
4~

(37)

Furthermore, we obtain directly from Eq. (36) the follow-
ing theorem, which corresponds to Theorem 3.4 of [1].

Theorem l. A solution of the EYM equations describ-
ing a stationary black hole with a bifurcate Killing hor-
izon that has Qg —VQ =0 is static and has a vanishing
electric field on the static slices.

Proof. Since the strong energy condition is satisfied by
the Yang-Mills field, Theorem 4.2 of [4] establishes that
the exterior region of the black hole can be foliated by
maximal hypersurfaces with a boundary S, which are
asymptotically orthogonal to the timelike Killing field t".

Our desired second mass formula is obtained by using
this equation to eliminate JH from Eq. (25). We obtain

4n.M aA + 8m—.( VQ —Qcf „)

I

Applying Eq. (36) to these hypersurfaces, we obtain
m'"=0 and E~ =0. It then follows directly that A,n" is a
Killing field (see [1]),and, indeed, that t~ =An". ,

In our discussion thus far, we have not made use of the
first law of black hole mechanics for EYM black holes
(see Theorem 2.2 of [1]),which states that the changes in
M, Q, cf, and A induced by an arbitrary asymptotically
Aat perturbation satisfying the linearized EYM equations
are related by

5M+ V5Q —058„= ~5A .= 1
(38)

8~
As emphasized in [9], a formula of this type will exist in
any Einstein-matter theory having a Hamiltonian formu-
lation. For EYM theory, it does not appear possible to
derive an integral mass formula directly from Eq. (38).
However, in Einstein-Maxwell theory with a trivial U(1)
bundle (i.e., with a vanishing magnetic charge), an in-
tegral formula can be derived from the first law using the
additional fact that the theory is invariant under the scal-
ing transformation g„—+a g„, 3„—+a 3„,where o. is a
constant. Under this transformation, a solution of the
Einstein-Maxwell equations is taken into a new solution,
with M~aM, V~V, Q~aQ, A~a '0, cF„~a 8„,
~—+a '~, and 3 ~a A. Substituting the linearized per-
turbation associated with this scale transformation into
Eq. (38) we obtain the mass formula

M+ VQ —2Qd„= «A,= 1
(39)

which is valid in the Einstein-Maxwell case with vanish-
ing magnetic charge. (Note that a similar formula, valid
for the case of nonvanishing magnetic charge, can be de-
rived from Eq. (39) by using the fact that the magnetic
charge always can be set to zero by a duality transforma-
tion. ) Equation (39) is equivalent to the "generalized
Smarr formula" derived by Carter (see Eq. (6.323) of [10]
and note that Carter's @H corresponds to —V). This
mass formula is characterized by the fact that it involves
only "surface terms. " As our derivation makes clear, a
similar formula can be obtained for any scale-invariant
Einstein-matter system which has a Hamiltonian formu-
lation.
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(40)

and

VQ= — J A,(E'E, /h —,'F' F—,b) .
1

(41)

The latter equation also can be derived using only
Maxwell's equations.

By inspection of Eq. (40), we see that any stationary
black hole with a bifurcate Killing horizon in Einstein-
Maxwell theory satisfies

By combining Eqs. (35), (21), and (39), we can solve for
Q/„and VQ separately in Einstein-Maxwell theory. We
obtain

08„~0 . (42)

This research was supported in part by NSF Grant No.
PHY-9220644 to the University of Chicago.

By the same proof as in Theorem 1 above, we obtain the
following theorem (previously proven in the discussion
following Theorem 3.4 of [1]).

Theorem 2. A solution of the Einstein-Maxwell equa-
tions (with vanishing magnetic charge) describing a sta-
tionary black hole with a bifurcate Killing horizon that
has QP„=O is static and has a vanishing magnetic field
on the static slices.

Thus, our mass formulas have enabled us to give an
elementary proof of the staticity theorems of [1].
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