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Quantum theory of black holes
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A solvable two-dimensional conformally invariant midisuperspace model for black holes is obtained

by imposing spherical symmetry in four-dimensional conformally invariant Einstein gravity. The
Wheeler-DeWitt equation for the theory is solved exactly to obtain the unique quantum wave functional
for an isolated black hole with a fixed mass. By suitably relaxing the boundary conditions, a nonpertur-
bative ansatz is obtained for the wave functional of a black hole interacting with its surroundings.

PACS number(s): 04.60.+n, 97.60.Lf

One of the most important developments in field
theory in the last two decades was the discovery of the
quantum-mechanical instability of black holes due to
Hawking radiation [1]. This discovery provided a tantal-
izing, and still poorly understood, link between two pre-
viously distinct branches of physics, namely, gravitation
theory and thermodynamics [2]. In addition, questions
surrounding the end point of black hole radiation have
touched on the foundations of our understanding of both
quantum mechanics and thermodynamics [3].

Most calculations of black hole radiation involve
matter fields quantized on a classical curved background.
Recently the back reaction of the quantum matter fields
on the gravitational field has been studied semiclassically
in a class of two-dimensional (2D) models which exhibit
many features in common with 4D gravity [4]. Another
interesting method [5] for studying black hole thermo-
dynamics uses the Euclidean action for black holes to ap-
proximate functional integral expressions for the relevant
thermodynamic partition functions. Unfortunately, al-
though many interesting results have been obtained, nei-
ther approach has yet provided a resolution to the ques-
tion of the end point of gravitational collapse, which ap-
pears to lie outside the realm of the validity of the semi-
classical approximation.

The purpose of this Rapid Communication is to
present a completely different and inherently nonpertur-
bative approach to these issues. In particular, we study a
two-dimensional conformally invariant midis uper space
model for black holes in which the gravitational field can
be quantized exactly. The analysis of the exact quantum
theory for such a model can in principle provide informa-
tion about the validity of the semiclassical approxima-
tion, the significance of back-reaction effects, and ulti-
mately the nature of the end point of decay by Hawking
radiation. The model is obtained by imposing spherical
symmetry in conformally invariant four-dimensional Ein-
stein gravity [6]. It is important to stress that the 4D
theory is classically equivalent to Einstein gravity so that
the model in principle makes direct contact with physi-
cal, four-dimensional black holes. A semiclassical
analysis has shown that the "matter fields" in the theory
give rise to Hawking radiation with the usual tempera-

ds =g„(x)dx"dx +A, (x)dQ (2)

where the fields, including the matter field P, are now
functions only of x"= Ir, t] and dQ is the standard line
element on the two-sphere with volume 4~. The reduced
action

I' '=24rrtc J d xV —g —rg (g)+g& p rp g
1

e'&+—
3 V'2r (3)

describes a two-dimensional, conformally invariant field
theory with two "matter" fields r:= —,'A, $2 and e 3&:= A,$3

[12]. In terms of this parametrization, conforrnal trans-
formations take g„~e g~ and g~f ', cr, while r is- —
invariant. The field equations obtained by varying Eq. (3)
are equivalent to those obtained by imposing spherical
symmetry on the equations obtained from the four-
dimensional action (1) [13]. Consequently, Birkhoff's
theorem in four dimensions guarantees that the two-
dimensional theory is classically solvable. Up to
diffeomorphisms and conformal transformations, there
exists only a one-parameter family of solutions:

ture [6]. A related model has also been analyzed [7,8] us-
ing the methods of Ref. [4]. In what follows, the theory
will be quantized exactly using techniques first applied by
Henneaux [9] to Jackiw-Teitelboim 2D gravity [10].

We start from the classical action for a scalar field con-
formally coupled to gravity in four dimensions:

I' 'fP, g, t, ]=tcJ d x+—g (P R+6g' V', ttpVbg),

where Ia, b =0, 1,2, 3] and tc= I/16irG Withou. t loss of
generality, we will normalize the vacuum expectation
value of the scalar field to unity. Equation (1) is invariant
under the conformal transformations: g, b ~e g,b and
P~e P. The theory is equivalent to Einstein gravity
classically, and (perturbatively) at the quantum level as
well [11].

A midisuperspace model for black holes is obtained by
imposing exact spherical symmetry with a four-metric:
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7 =—r2

e'&=r

ds = —(1—2m/r)dt +(1—2m/r) dr

(4)

H= J dr o 9+MV+Allti . +H~DM,
1

2G

These solutions describe black holes of mass m, with
four-dimensional dilaton P = 1.

The theory based on the action (3) was first used in [6]
to derive an expression for Hawking radiation in a semi-
classical approximation by computing the trace anomaly
of the "matter" fields r and g. Here we present the re-
sults of the exact quantization of the full theory, using
the methods of Henneaux [9]. Details will be given else-
where [15].

As with all diffeomorphism invariant theories [14], the
Hamiltonian is, up to a surface term, a linear combina-
tion of constraints:

5:=—iA
5a(r)

(12)

5r(r)

These operators are formally self-adjoint with respect to
the inner product [17]:

mines the allowed classical, static solutions: they are of
the form Eq. (4) with m =C/2.

This completes the discussion of the essential classical
features of the model. The quantum theory in the func-
tional Schrodinger representation will now be construct-
ed using the so-called "Dirac approach, " in which one
first quantizes the theory in the unreduced configuration
space, and then imposes the constraints as operator con-
straints on physical states. The states in the unreduced
theory are arbitrary functionals /[a, ~] of the fields a(r)
and r(r). Conjugate momenta are defined as functional
derivatives:

where the Lagrange multipliers o. and M are related to
the lapse and shift functions, and the constraints

(/~it/i):= f + [da(r)][dr(r)]/*[a, r]/[a, r] . (13)

V=a'll +r'll, —2II' =0,
a

9=2r"—a'r' —
( 26) II II,— —=0

&2r

(6)

II = 1 2r" —a'r' e l&2r—
2G Q(a, r)

where

Q:=[(~') +(C —V'2~)e ]'~

(10)

The parameter C is a constant of integration that deter-

generate spatial diffeomorphisms, and time translations,
respectively. The Arnowitt-Deser-Misner (ADM) energy
[14) is

= 1
H&DM = dr(o w' —2o a'7)' .

2G

In the above, the primes denote differentiation with
respect to r, and we have defined the fields a:=2p+3f
and p:=2p —3g where e t'=g» represents the conformal
mode of the two-metric in our parametrization. The field
a is conformally invariant while the "pure (conformal)
gauge" component P has disappeared from the Hamil-
tonian, as required. II, II, and II& are momenta canoni-
cally conjugate to a, r, and P, respectively. In this pa-
rametrization the generator of conformal transformations
is simply II& and the conformal mode can be trivially el-
iminated without affecting the subsequent discussion.

It can easily be verified that for the solutions given in
Eq. (4), SX~DM=m/G [16]. Moreover, the generator of
time translations given above is well defined for all
configurations which approach (4) asymptotically.

As in Ref. [9] we avoid potential factor ordering prob-
lems associated with quadratic momentum constraints by
first solving the constraints classically. The result is

II = Q(a, ~),1

'@[a,r]=exp Jdr. Q+ —ln
Pl p) 2

r' —Q
r'+ Q

(15)

where mp, =&fiG is the Planck length.
This solution, which is one of the main results of this

paper, has several interesting properties: It is invariant
under spatial diffeomorphisms, and (trivially) under con-
formal transformations. In addition, /= 1 for the classi-
cal solution in Eq. (4). Moreover, classically forbidden
field configurations which have imaginary momenta
[Q &0: cf. Eq. (10)] yield wave functions whose ampli-
tudes are exponentially damped. Finally, we note that if
the fields a(r) and r(r) obey suitable boundary conditions
as r~ao, namely r(r)~ ,'r [I+O(l/r )] and-
a(r)~r+2m+O(l/r), then the state Eq. (15) is an
eigenstate of the ADM Hamiltonian with eigenvalue
m /G =C/2G. These boundary conditions eff'ectively re-
strict consideration to fields configurations with classical
ADM energy equal to m/G.

As usual in quantum gravity, physical interpretation of
the wave function Eq. (15) requires considerable care.
For one thing, since the inner product on the Hilbert
space is given by a functional integral it is not obvious
that the state is nor malizable (even after all field
configurations related by spatial diffeomorphisms are fac-
tored out). However, since it is the only state in the phys-

In the Dirac approach physical states are functionals
/[a, r] that obey the operator constraints, which now
take the form

iA g—[a,v]= Q(a, r)/[a, r],6 1

(14)
i' g—[a,r] = /[a, r] .5 1 2r" —a'r' —e /&2r

5r r ' 26 CX, 1

These equations can be functionally integrated (see Ref.
[15])to yield the unique (up to total divergences) physical
state in the theory:
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2

e lX—
r —2M '

(16}

with support only in the region r & ro, where ro «2m.
These fields correspond to black holes of mass M, ex-
pressed in Schwarzschild coordinates. For fixed C =2m,
they do not correspond to classical solutions unless
M =m. We will now evaluate the wave functional Eq.
(15) for these configurations. The quantum state is there-
fore a function of the single variable M. As one might
anticipate, by relaxing the boundary conditions so as to
allow exchange of energy with an external source, we
have abandoned the self-adjointness of the Hamiltonian:
its action takes states out of the physical Hilbert space.
Nonetheless we will see that the resulting wave function
has some interesting properties.

The physically relevant information in the wave func-
tion [18] is contained in the (unnormalized) probability
amplitude P [M]:=exp[ —(2/i')lmS[M]]. For M & m,

ical Hilbert space, we will assume that its associated
probability amplitude does in principle contain informa-
tion about relative probabilities of quantum mechanically
allowed field configurations.

Another important point is the fact that the quantum
theory as constructed contains no physical degrees of
freedom, and hence no unconstrained observables. The
solution as given above therefore cannot directly yield in-
formation about Hawking radiation, or gravitational co1-
lapse. In order to gain insight into these questions, it is
necessary to know how matter can ultimately be incor-
porated into the m.odel. In the following we will present
an ansatz that attempts to mimic the e6ect of interactions
with its surroundings by putting the black hole in a box
of radius R »m, and relaxing the boundary conditions
on the fields to include configurations that have ADM en-
ergy MAm. The wave functional Eq. (15) is still a solu-
tion of the quantum constraints Eq. (14). For simplicity
we neglect local fluctuations and restrict consideration to
fields of the form

P[M]=exp — (2M 2—m)
i V R +O(m/R)3

4m p)

and, for O~M &m,

Pl 7TP [M]=exp —4 ——arctan
mph 2

1/2
M m —M
gyes

2 M

1/2

(17)

1/2
1 M(2m —2M} m —M+-

m M

(18)

It is interesting to note that if one interprets this rela-
tive probability thermodynamically in terms of the num-
ber of (equally probable) microstates with mass m (assum-

Figure 1 contains graphs of the probability amplitude
P[M] for different values of the classical mass m. The
simplifications made above yield a probability amplitude
with remarkable properties.

(i) The amplitude is finite and well behaved in the limit
that r0~0. The classical curvature singularity has disap-
peared from the quantum amplitude.

(ii) The amplitude is continuous and smooth (with zero
slope) at m =M, as long as R A ao.

(iii) The amplitude is peaked at the classical mass, and
the width decreases rapidly with increasing m & m p, .

(iv) The relative probability of configurations with
mass M & m (compared to M =m) is exponentially
suppressed, with exponent proportional to the spatial
volume.

(v} The relative probability of configurations with mass
M=m and M=Ois

P fM/nt

0.8

0.6

p 4

FIG. 1. Plot of the (unnor-
malized) probability amplitude
P [M/m] for black holes of mass
m jmpi= [0.1,0.5, 2, 10], show-

ing the sharp decrease in width
as m increases.
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ing a unique zero mass state), then one gets an expression
for entropy for a black hole of mass m:
S =k ln(P [m ]/P [0]) =2am Im p&. This is a factor of 2
smaller than the standard value for the entropy of a black
hole.

Although Eqs. (17) and (18) and their interpretation
are highly speculative, the results outlined above seem to
suggest that 2D models may provide a nonperturbative
basis for the study of black hole radiation. In order to
answer questions concerning the end point of gravitation-
al collapse, it is of course necessary to understand how to
incorporate matter self-consistently into the model. It is
also important to establish whether other 2D models

(such as the one used in Ref. [4]) can be quantized using
these techniques. Finally, one would like to have a better
understanding of the derived probability amplitude and
its physical interpretation in the context of quantum
gravity. These questions are currently under investiga-
tion.
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