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We derive the contributions of spin-orbit and spin-spin coupling to the gravitational radiation from
coalescing binary systems of spinning compact objects. We calculate spin efFects in the symmetric,
trace-free radiative multipoles that determine the gravitational wave form, and the rate of energy loss.
Assuming a balance between energy radiated and orbital energy lost, we determine the spin e8'ects
in the evolution of the orbital frequency and orbital radius. Assuming that a laser interferometric
gravitational observatory can track the gravitational-wave frequency (twice the orbital frequency) as
it sweeps through its sensitive bandwidth between about 10 Hz and 1 kHz, we estimate the accuracy
with which the spins of the component bodies can be determined from the gravitational-wave signal.
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I. INTRODUCTION

The ability of laser interferometric gravitational-wave
(GW) detectors such as the U.S. Laser Interferometric
Gravitational Wave Observatory (LIGO) to extract use-
ful astrophysical information about coalescing binary sys-
tems of compact objects from the observed gravitational-
wave signals depends upon highly accurate theoretical
models for the decaying orbital evolution. Detection and
study of the characteristic "chirp" wave form emitted by
such systems involves a matched Altering technique using
a theoretical template that is a function of parameters of
the source [1]. As has been pointed out by Cutler et
al. [2], matching the theoretical variation of the GW fre
quency with the data as the frequency sweeps through
the detector bandwidth between 10 and 1000 Hz may be
the most promising way to obtain estimates of the masses

and spins of the bodies. To this end, one needs a the-
oretical formula for the evolution of the GW frequency
that includes all dependence on the two masses and spins,
and that is suKciently accurate that errors in the model
lead to cumulative phase errors no larger than 2' radi-
ans over the potentially thousands of cycles observed in
the frequency bandwidth of interest (larger phase errors
substantially reduce the signal to noise of the matched
filter).

Cutler et al. [2] have suggested that a model for the
frequency evolution that is based on a post-Newtonian
approximation may be inadequate unless the approxi-
mation is carried to extremely high orders beyond the
lowest-order Newtonian and post-Newtonian corrections
that have been derived to date [3, 4]. In addition, they
point out that the efFects of spin-orbit and spin-spin cou-
pling of the bodies have not been derived, even in the
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first post-Newtonian approximation. It is the purpose of
this paper to remedy the latter situation.

We derive the spin-orbit and spin-spin contributions
to the symmetric trace-free (STF) multipoles that enter
the gravitational wave form for two-body systems, using
a multipole formalism developed by Blanchet, Damour,
and Iyer (BDI) [5, 6]. In addition to explicit spin terms,
the multipole formalism involves several time derivatives
of multipole moments that lead to expressions involving
the two-body acceleration; to evaluate these moments
consistently, we use post-Newtonian equations of motion
that also include spin terms. Using these multipoles, we
then evaluate the rate of energy loss from the binary
system. Specializing to a circular orbit, we calculate the
rate of decrease of orbital radius and the rate of change of
orbital frequency, assuming energy balance and using an
expression for energy that includes spin terms. Finally,
we estimate the size of spin-orbit and spin-spin effects for
coalescing binary systems of neutron stars and/or black
holes on the accumulation of GW phase in a LIGO-type
detector.

It is useful to note that spin-orbit and spin-spin ef-
fects are of order (R/r)vv and (R/r) U, respectively,
compared to the Newtonian acceleration, where R and
8 denote the characteristic radius and rotation velocity
of each body; these terms thus are formally of erst-post-
Newtonian order. However, for compact bodies, B is of
order of m or a few times m, and v could be of order
unity, so that in practice these terms can be considered
to be of post3/ -Newtonian and post-post-Newtonian or-
der, respectively (indeed they are so denoted in [2]).

Equations for the precession of the spins caused by
spin-orbit (geodetic precession) and spin-spin (Lense-
Thirring) couplings [7—9] can also be written down in
terms of relative coordinates. The relevant equation for
our purposes is
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where L~ —= pw x v denotes the Newtonian orbital angu-
lar momentum. Note that the precession of the spins is
one order higher than the spins themselves. Therefore we

may neglect this precession when evolving the equations
to lowest order; Eq. (3) is only needed to verify that to-
tal angular momentum is conserved for the system, apart
from that radiated away [11].

These equations of motion can be derived from a gen-
eralized Lagrangian which is a function of the relative
position, velocity, and acceleration, given by

II. EQUATIONS OF MOTION
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Here the Euler-Lagrange equations are ct2/Oz' dp, /dt =—
0, where p' = o]Z/Bv' —s', and s' = c)2/cfa'. It is under-
stood that wherever the acceleration appears in higher-
order terms in the Euler-Lagrange equation, one substi-
tutes the lower-order equation of motion (see [12] for a
discussion of acceleration-dependent Lagrangians).

The relative Lagrangian is invariant with respect to
time translations so that there exists a conserved energy,
given by E = p'v'+ s'a' —Z. Evaluating this expression
we obtain

where
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n = x/r, v = vq —vq, f,
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Equations of motion for bodies of arbitrary mass and
spin have been developed by numerous authors (for re-
views and references see [7—9]). For our purposes, only
the Newtonian, spin-orbit (SO), and spin-spin (SS) terms
will be needed; post- and post-post-Newtonian nonspin
terms have been considered elsewhere [4]. Although the
inclusion of spin implies that we are treating extended
bodies, we ignore tidal and quadrupole-coupling effects
[even though rotationally induced quadrupole effects are
proportional to (spin)~]; for binary systems containing
neutron stars or black holes, these are expected to be
small until the very latest stage of inspiral and coales-
cence, except possibly for rapidly rotating Kerr black
holes [10].

By eliminating the center of mass of the system, we
convert the two-body equations of motion to an effective
one-body equation of motion given by (G = c = 1)
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(8)

We can define the total angular momentum as L = (+
(x x p) + (v x s), with the result

L = ],'+ Liv + Lso,

line xz& of each body using a so-called "spin supplemen-
tary condition" (SSC), given by S&" u~„= 0, where uz
is the four-velocity of the center-of-mass world line, and

where ( [ ~[) ]d (12)
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where there is no spin-spin contribution to L. Using the
equations of motion and spin precession, Eqs. (1) and

(3), it is straightforward to show explicitly that, to post-
Newtonian order, E = L = 0.

III. EVALUATION OF BDI MULTIPOLES

The radiative energy loss of the system can be ex-
pressed in terms of symmetric and trace-free (STF) ra-
diative multipole moments (see [13] for a review). For
the accuracy we require the energy loss rate is given by

I (s) (s) 5 (4) (4) 16 (s) (s)
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where I,j and Ijp are the STF "mass" quadrupole
and octopole moments, and J,z is the STF "current"
quadrupole moment, and (n) over each moment denotes
time derivatives.

We evaluate the radiative multipoles using the for-
malism developed by Blanchet, Damour, and Iyer [5,
6] (BDI). We restrict ourselves to the case of two well-

separated, approximately spherically symmetric, rotat-
ing compact objects whose structure is given by that of
a perfect fluid. Following our previous post-Newtonian
approach [3, 14], we choose the following definition for
the center of mass of each body:
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where p' = p(1+ 2v + 3U) is the so-called "conserved
density" [15], with p the local mass density, v the ve-
locity, and U the Newtonian gravitational potential; II
is the specific internal energy density, 6A ——v' —vA,
v& ——dx&/dt, and UA is the Newtonian potential pro-
duced by the Ath body itself.

However, when spin eff'ects are to be included, there
is a subtle difference between the center of mass defined
above, and the center of mass used in the equations of
motion (1). The latter defines the center-of-mass world

where 7.~" denotes the stress-energy tensor of matter
plus gravitational fields, satisfying r~" „=0, and square
brackets around indices denote antisymmetrization. Note
that the spin S of each body is defined by SA: ~ jkSA .

It is then simple to show that, evaluating the BDI mul-
tipoles using the center-of-mass definition Eq. (11a), and
then making the transformation

z~ . z~+ (vA x SA),
2mA

we can convert all expressions to the center of mass de-
fined by the SSC of the equations of motion. Because
the correction is of post-Newtonian order, it needs to be
made only in the Newtonian-order multipoles.

A useful check of the consistency of our approach
comes from evaluating the mass dipole moment of the
system, given by Eq. (A16b) of Ref. [6], and mak-
ing the transformation (13). The result is I'

rneze + (vA x SA)*). The originei tsvo-body eqne-
A

tions of motion from which Eq. (1) is derived [8] then
imply that I' = 0, as expected (uniform motion of the
system's center of mass).

Evaluating the other multipoles, transforming them to
the SSC of our equations of motion using Eq. (13), and
then transforming them into relative coordinates, we ob-
tain

(13)
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Taking time derivatives of Eqs. (14), substituting the
equations of motion where appropriate, and substituting
the results into Eq. (10), we obtain the energy loss rate

)~mi -, .- STFJ"=-p!
I

x'(xxv)'
]1 m)

(14c)
~h~~~ &m = mi —m~, i) = p/m, and o = (m2/m)Si-
(mi/m)Sq. Note that, to post-Newtonian order, there
are no explicit spin-spin contributions to the multipoles.

IV. ENERGY LOSS AND INSPIRAL
OF CIRCULAR ORBITS
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We now restrict ourselves to the case of nearly circular orbits, by which we mean orbits whose inspiral time scale
due to gravitational radiation energy loss is long compared to an orbital time scale, and in which r = const+ small,
periodic perturbations due to spin couplings (when the spins are orthogonal to the orbital plane, the spin perturbations
are constant). To simplify the discussion, we then take an angular average of all quantities over an orbit. We then
have r' = r' = n v = 0, v = r 0, where 0 is the angular frequency, L~ ——p,r AL, where L is a unit vector orthogonal
to the orbital plane. The equation n a = r' —rA yields the following orbit-averaged relationship for a circular orbit:

-2/3 i/3 1 n4/' A A

r =B ' m ' 1 ———L (21+54) —— Sq Sq —5L S|,L Sq)).3m 2 p,m5/3 (16)

These conditions lead to the following results for the energy and energy loss rate for a circular orbit, averaged over
an orbit, expressed in terms of 0:
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The result for the evolution of orbital frequency is
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The energy and loss rate can also be expressed exclusively in terms of r using Eq. (16), and an equation for the
rate of inspiral obtained. The result is

64 m 3 7 (m/r)3)2- 5 (m/r)3
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V. DISCUSSION OF RESULTS

A signal template whose frequency evolution is given
by Eq. (18) can be said to match the signal if the ac-
cumulated phase in GW from the time the signal enters
the detectors' sensitive bandwidth to the time it leaves it
differs from that of the template by less than 2~ radians.
Thus one can obtain a crude estimate of the accuracy
with which a parameter characterizing the template can
be determined by finding that change in the parameter
that leads to a change of 2m in the accumulated phase [2].
Such estimates are only crude and probably optimistic,
because they do not take into account signal-to-noise is-
sues or correlations among multiple parameters.

The accumulated phase in gravitational waves is given
by

CG~ = 2' fdt =2
Af

(0 /A)dA/A, (2o)

where f = 0/m is the GW signal frequency. Integrating
the SO and SS terms in Eq. (18), and ignoring preces-
sion of the spins or of the orbital angular momentum, we
can estimate the accuracy of determination of the spin
parameters. For example, for two equal-mass neutron
stars, we find, for the spin-orbit terms,

where rNs and PNs are the neutron-star radius and ro-
tation period (suitably averaged over the two stars), and
f;„ is the GW frequency entering the detector band-
width. For a 10Mo black hole with spin Si = mian,
where ai & mq is the Kerr parameter, and a 1.4Mo
neutron star, the quantity ai/mi may be determined to
an error A(ai/mi) 0.016 for a)/m) ) 0.03, while
for ai/m) (( 0.03, the spin of the companion neu-
tron star cannot be found to better than a factor of
4, for a 10 ms rotation period. For two 10Mo black
holes, the error in the net "Kerr parameter per mass"
of the system projected orthogonal to the orbital plane,
A(ai/m) +a2/m2)„can be estimated to be about +O.l.
However, Monte Carlo studies indicate that strong corre-
lations between post-Newtonian terms (dependent on p)
and spin-orbit terms are likely to weaken these estimates
substantially [2].

Spin-spin terms, on the other hand, have negligible
effect on the accumulated phase for most systems of
interest. Only for two extreme Kerr black holes are
these terms discernable; for two 10Mo black holes with
both spins orthogonal to the orbital plane, we estimate
&(~i ~~)/l~is3l = o.4
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