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Summing one-loop graphs at multiparticle threshold
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It is shown that the technique recently suggested by Brown for summing the tree graphs at threshold

can be extended to calculate the loop effects. An explicit result is derived for the sum of one-loop graphs

for the amplitude of threshold production of n on-mass-shell particles by one virtual particle in the un-

broken A,P theory. It is also found that the tree-level amplitude of production of n particles by two in-

coming on-mass-shell particles vanishes at the threshold for n )4.

PACS number(s): 11.10.Jj, 11.10.Ef

The problem of calculating amplitudes of processes
with many weakly interacting particles has recently at-
tracted a considerable interest, initially triggered by the
observation [1—3] that such processes in particular are
associated with a possible baryon- and lepton-number
violation in high-energy electroweak interactions.
Cornwall [4] and Goldberg [5] have pointed out that in
perturbative amplitudes with many external particles the
weak coupling may get compensated by a large number
of diagrams. This is a manifestation of the old-standing
problem of the factorial growth of the coefficients in the
perturbation theory [6]. Since the perturbative expansion
for multiparticle amplitudes starts from a high order in
the coupling constant, for a sufficiently large number n of
particles the factorial growth of the coefficients in the
series invalidates the perturbative calculation of such am-
plitudes. Given the lack of a better approach it seems
useful to quantify and study the problem within the per-
turbation theory itself. A simple model example in which
the problem arises with full strength is the amplitude A„
where a virtual particle of a real scalar field P produces a
large number n of on-mass-shell P particles in the A, P
theory. It has been recently found that the sum of all tree
graphs for this amplitude in the threshold limit, i.e.,
when all the produced particles are at rest, can be calcu-
lated exactly for arbitrary n both in the case of unbroken
symmetry [7] and in the case of theory with spontaneous
breaking of the symmetry under the reflection P~ —P
[8].

Qriginally the calculation [7] was done by directly solv-
ing a recursion relation for the tree graphs. Argyres,
Kleiss, and Papadopoulous [8] applied a regular method
of solving the recursion relations based on a generating
function for which the recursion relation for the ampli-
tudes A„ is equivalent to second-order nonlinear
differential equation. Most recently Brown [9] has shown
that the generating function is nothing else than the clas-
sical field Po(t) generated by an external source p=poe™
which field is a complex solution of the Euler-Lagrange
classical equation satisfying the condition that it has only
the positive frequency part. The equation and their solu-
tions in both approaches are related by a simple change
of variable. Thus Brown has reproduced the previous re-
sults [7,8] in a simple and elegant way.

The purpose of this paper is to show that Brown's
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where A, and m are the renormalized coupling constant
and the mass; the appropriate renormalization condition,
which specifies the finite terms, will be described below.
Equation (2) gives the exact sum of all tree and one-loop
graphs at the threshold of production of n =2k+1
particles for arbitrary k. ' The formula (2) gives the rela-
tive magnitude of the first loop correction growing as n
at large n. This behavior explicitly demonstrates invalidi-
ty of the previous arguments [10,11]of the present author
that terms containing ri A, should be absent in the loop
effects. The reason for those arguments to be faulty is re-
lated to the singularities of the underlying classical field
in the plane of complex time, where the quantum Auctua-
tions are more singular than the classical background.
However, the presence of the n A, parameter in the loop
effects does not necessarily imply that the quantum
effects completely eliminate the growth of the amplitudes
and a further study is needed. The relatively easy calcu-
lability of the threshold amplitudes at the tree and one-
loop levels and the remarkably simple form of the result

The number of n of Anal particles produced by one virtual is
necessarily odd due to the unbroken reAection symmetry.

technique can be extended to calculate the loop contribu-
tions to the amplitudes A„as well as the amplitudes of
more complicated processes, e.g. , of the scattering 2~n.
For definiteness the case of unbroken A,P theory with the
Lagrangian

X=—,'(t)P) —
—,'m P —
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will be considered and we will concentrate on the calcula-
tion of the one-loop correction to the threshold ampli-
tudes A„. The result of this calculation can be written as
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(2) gives us a hope that these amplitudes can be studied
well beyond the first terms in the perturbative expansion.

That the amplitudes in the A,P theory at the multipar-
ticle thresholds may have special properties is also hinted
at by another fact, which follows as a by-product from
the calculation in this paper. Namely, if one considers
the sum of all tree graphs for the amplitude of the pro-
cess where two incoming on-shell particles produce n on-
shell particles exactly at the threshold, it turns out that
this sum is nonzero only for n=2 and n=4 and is vanish-

ing for all n )4 (the number of final particles in this case
is necessarily even). It is in fact due to this behavior that
the one-loop term in Eq. (2) contains only the four-
particle factor.

The technique suggested by Brown [9] is based on the
standard reduction formula representation of the ampli-
tude through the response of the system to an external
source p(x), which enters the term pP added to the La-
grangian:

(n y(x)10) = g lim f d'x. e"'"(m' —p.') Bp(x, )
p=O

(3)

the tree-level amplitude being generated by the response
in the classical approximation, i.e., by the classical solu-
tion $0(x) of the field equations in the presence of the
source.

For all the spatial momenta of the final particles equal
to zero it is sufhcient to consider the response to a spa-
tially uniform time-dependent source p(t) =pa(co)e' ' and
take the on-mass-shell limit in Eq. (3) by tending co to m.
The spatial integrals in Eq. (3) then give the usual factors
with the normalization spatial volume, which as usual is
set to one, while the time dependence on one common
frequency co implies that the propagator factors and the
functional derivatives enter in the combination

(m —p, ) ~(m —co )
2 2 a 2 2 a' ap(x. ) ap(t)
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Furthermore, to find the classical solution $0(x) in this
limit one does not have to go through this limiting pro-
cedure, but rather consider directly the on-shell limit
with vanishing source. The field equation with zero
source is of course given by

a y+m y+Xy =0. (7)

For the purpose of calculating the matrix element in Eq.
(3) at the threshold one looks for a solution of this equa-
tion which depends only on time and contains only the
positive frequency part with all harmonics being multi-

coincides with the response of the field to the external
source in the limit of absence of the interaction, i.e., of
A. =O. For a finite amplitude po of the source the response
z(t) is singular in the limit co~m. The crucial observa-
tion of Brown [9] is that, since according to Eq. (4) we
need the dependence of the response of the interacting
field &P only in terms of z(t), one can take the limit
po(~)~0 simultaneously with co~m in such a way that
z(t) is finite:

ples of e™.The solution satisfying these conditions
reads as [9]

4o(t) = z(t)
1 —(A, 18m )z(t)

(8)

= (2k + I )!
8m

(9)

which reproduces the previously known result [7]. The
fact that the matrix element is nonzero only for odd n ob-
viously follows from that the expansion of Po in Eq. (8)
contains only odd powers of z.

It can be noticed that the solution (8) is in fact not
uniquely determined by the above-mentioned conditions.
Namely, z(t) can be rescaled by an arbitrary constant C.
This constant corresponds to the choice of normalization
of the field, so that the value of C= 1 is fixed by the usual
normalization condition (11$(0)10)=1, as can be seen
from the linear term in the expansion of Po in powers of z.

Another important point concerning the solution (8) is
related to the fact that this solution is essentially complex
for real time t. This is imposed by the fact that in calcu-
lating production of particles by the virtual field, rather
than both producti. on and absorption, one necessarily has
to consider only the positive frequency part of the field,
which is essentially complex.

The quantum loop corrections to the amplitudes
( n IDIO) are obtained by substituting instead of the classi-
cal field the mean value of the full field,

P(x) =go(x)+P~(x), (10)

where P (x) is the quantum part of the field. Expanding
the field equation (7) near the classical solution $0 and re-
taining only the first nonvanishing quantum correction,
one finds that the mean field P(x) to the first quantum or-
der satisfies the equation

According to Eqs. (4) and (3) the nth derivative of this
solution with respect to z gives the matrix element
(n P(0) 0) at the threshold in the tree approximation:

2k+1

(2k+11/(0)10)o= PoBz z=0
k
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8 P( )+ P( )+A/( ) +3k/ ( )(P ( )P ( ))=0,

where (P (x)Pq(x)) is the limit of the Green's function
in the classical background field Po,

G(x„xz)=(T(P (x, )P (x2))), (12)

when its arguments are at the same point x.
Therefore the steps needed to calculate the first loop

correction to the amplitudes A„are the following: (i)
Calculate the Green's function (12) as the inverse of the
operator of the second variation of the action:

8 +m +3AQO(x) (13)

(ii) find its limit in coinciding points, which enters Eq.
(11); (iii) expand the solution of thus found equation in
powers of z(t), which gives the amplitudes at the thresh-
old in the same way as in Eq. (9).

This program, however, is obscured at the very first
step by the fact that with essentially complex Po [Eq. (8)]
the operator (13) is essentially non-Hermitian. However,
one can render this operator real and thus the problem
more tractable by analytical continuation in time t, which
amounts to rotation and shift in the complex plane.
Namely, the substitution which achieves the goal reads as

1/2

structure of the field, which gives rise to the factorial
growth of the multiparticle amplitudes the study of
which may eventually be the central point in solving the
problem of multiboson processes. Here, for the purpose
of the specific calculation, we chose to stay away from
the poles to avoid explicit singularity in the equations.

To somewhat simplify the notation we set the mass m
equal to one and restore it when needed and also intro-
duce the notation u(r) =e'= i &—X/8z(t). For real
u (r) the classical field (8) is purely imaginary:

1/2 ' 1/2
8 iu 2 I

go[ u (r) ]= 1+u A Goshen
(16)

and the operator (13) is real. In a mode with spatial
momentum k the operator has the form

d 6
2

+CO
d7 (cosh')

(17)

which is the familiar operator in one of exactly solvable
potentials in quantum mechanics (see, e.g. , Ref. [12]),and
co is the energy of the mode: co =k + 1.

The regular at ~~+ ~ solution of the homogeneous
equation with the operator (17) has the form

fi[u(r)l

8m
z(t)=ie 2 —3co+co —8u +2' u +2u +3cou +co u

u (1+u )
(18)

and the variable

Xz 0~=it + ln
2m 8m

is then used as the new time variable t. The necessity of
the shift in addition to the usual rotation to the Euclidean
time is caused by existence of a pole of Po(t) on the nega-
tive imaginary axis, where the operator (13) is singular.
The poles are repeated parallel to the real axis with the
period m/m. The axis, corresponding to real ~, on which
the operator (13) is real runs parallel to the imaginary
axis of t exactly in the middle between two poles; see Fig.
1. It should be emphasized, however, that it is the pole

Rer

R.e t

FICs. 1. The structure of the classical field $0(t) [Eq. (8)] in
the complex t plane. Heavy dots indicate the poles of $0. The
vertical line going between the poles is the axis of real ~ on
which the operator (13) is real.

and the solution regular at ~~ —~ is given by

fq[u(&)] =f i [1/'u (v')]

u "(2+3ni+co —8u +2' u +2u —3cou +co u )

(1+u )

(19)
The Wronskian of these solutions is given by

&=fi(r)f2(~) —f i(r)f)(r)=2'(n~' —1)(ni' 4) . —

(20)
The convention for the sign of the Green's function used
here is specified by the explicit expression for the Green's
function in partial wave with the spatial momentum k in
terms of fi, f2, and 8': 6 (r„rz)=f, (r, )f2(rz)/Wfor
ri) rq and G ( , ri)=ref (iraq)f (2r )i/Wf rorz) ri.

Naturally, having the explicit expression for the
Green's function one can also evaluate amplitudes of
more complicated processes, say, the tree-level amplitude
of the threshold production of n particles by two incom-
ing on-mass-shell particles of high energy. However,
Eqs. (18)—(20) show that there is in fact almost nothing
to calculate for the latter amplitude: the Green's func-
tion has poles only at co =1 and co2=4 [the zeros of the
Wronskian (20)]. By the reduction formula this implies
that the on-mass-shell amplitude is nonvanishing only at
these values of the energy of each of the two incoming
particles. The case co=1 corresponds to the trivial pro-
cess 2~2 at the threshold, while the case co=2 corre-
sponds to the process 2~4. (In the rest fraine of the pro-
duced particles, which is used throughout this paper, co

corresponds to the energy of each of the two incoming
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g„(&)=G (r, r)=f, (&)f2(&)/W, (21)

which yields the average value of the square of quantum
fIuctuations after integrating over k:

particles, so that the total energy is 2co=4.) The absence
of other poles of the Careen's function at higher co means
that for n )4 the sum of tree graphs for the on-shell pro-
cess 2~n is vanishing.

After this remark we proceed with calculating the loop
correction in Eq. (2). The partial wave Green's function
at coinciding points is given by

dependence on u (r), hence the factor [I3+ I /(2n)]. .
The divergent contributions can be regularized in a

standard way, the most straightforward being the Pauli-
Villars regularization. Upon substitution into Eq. (11) for
the mean field with the quantum correction the quadrati-
cally divergent part proportional to I& gives rise to a term
linear in the classical field Po while the logarithmically
divergent part proportional to I3 results in a correction
to the term with A,PO. Therefore these terms can be
dumped into the definition of the renormalized mass m
and the coupling constant A, according to

d k
((() (r)P (r))=g(r)= J g„(r) (2~)'

f g~(T)CO~ CO ldCO .
27m

—'2= 2 3A=m + I&,

9A. 1

4 ' 2m'

(27)

g„(r)= +», +g (r),1

(1+u ) co
(23)

where the regular part g" (r) contains terms of the order
co and higher, so that its contribution to the integral in
Eq. (22) is finite in the ultraviolet. After this decomposi-
tion the result of the integration in Eq. (22) can be
presented as

The calculation of the latter integral involves problems
related to the on-shell singularities and to the ultraviolet
divergence. The on-shell singularities correspond to the
zeros of the Wronskian (20) at co = 1 and co =4. The first
of these corresponds to the translational zero mode of the
classical solution Po and in fact produces no effect in the
integral in Eq. (22) since the singularity at co =1 is in-
tegrable. (This is why in the four-dimensional theory one
does not have to consider subtraction of the contribution
of the zero mode from the Green's function. ) The pole at
co =4m (the dependence on mass is restored) is dealt
with using Feynman s ie rule, i.e., by shifting the pole to
the negative half-plane m ~m —ie. The integral then
develops imaginary part, which in the end corresponds to
the dynamical imaginary part of the one-loop graphs, dic-
tated by the unitarity.

To separate the ultraviolet divergent terms we expand
g„(w) in powers of co

' and find that the two terms,
which give the quadratic and the logarithmic divergence,
have the form

These definitions can be used to relate the quantities m
and A, to the renormalized constants in any other renor-
malization scheme. One can readily see that the diver-
gent parts are scheme independent, while the relation be-
tween the finite parts depends on the specific definition of
the regularization procedure.

The only nontrivial modification of the average field
given by Eq. (11) is related to the finite part of the aver-
age value of the square of quantum fluctuations [Eq. (22)],
proportional to the constant factor F. If one seeks the
solution of the equation (11) in the form
P( t) =$0( t; m, A )+P, (t), where the renormalization of the
constants is plugged into the functional dependence of
the classical solution, the equation for the correction
P, (~) (i.e., on the r axis) reads as

1/2
24u . 8 u'—1+ i 18k,—— F

dr (1+u ) & (1+u )

(28)

the condition on the appropriate solution to this equation
being that its expansion in u starts with the fifth power,
since only starting from final states with five particles the
threshold amplitudes develop an imaginary part, which
in this calculation originates in the imaginary part of F.
The solution satisfying this condition is

1/2

P, (r) =i — F. 3A, 8 u
(29)

4 ~ (1+u )

1 6u2 1g(~)= I, + —I2+
(1+u ) 2m

where

6 F, (24)
(1+u )

Using Eq. (14) one can readily restore from here the
response of the field in terms of z(t) with the first quan-
tum correction included,

&3 2+&3
ln ——in

2ir' 2 —&3

and Ij, I3 are the ultraviolet divergent integrals:

(25)
()=

1 —(A, /8m )z (t)

3A, F (A, /Bm ) z(t)
4 [1—(X/8m )z(t) ]

(30)

I„— J CO i/CO 1 d CO

2~2
(26)

In Eq. (24) we have also combined with the logarithmical-
ly divergent integral a part of the finite contribution from
integration of the g„"(w), which has the same functional

and by expanding in series in z(t) finally arrive at the re-
sult in Eq. (2).

The rotation (14) used here may invite the objection
that such rotation in the path integral is obstructed by
the infinite chains of poles parallel to the real axis of t,
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which may give rise to extra contributions in the quan-
tum effects. However, it can be explicitly shown that this
does not happen at least at the one-loop level. Namely, it
is a straightforward (but rather cumbersome) exercise to
verify that the recursion relations for the sum of graphs
for the propagator of the field P with emission of n on-
shell particles all being at rest are equivalent to the
differential equation for the Green's function of the
operator (17) and then that the recursion relations for the
loop graphs are equivalent to the equation (28) on the r
axis. Another simple (and in no way rigorous) check is to
verify the formula (2) for few first n by direct computa-
tion of the graphs. This also turned out to be helpful in
checking the relative coefficients and signs in the equa-
tions of this paper. The remarkably simple form of the
result (2) suggests that there may be a way to calculate
further quantum effects. In particular one can notice that
the finite term, proportional to the factor F [Eq. (25)], has
the form given by the simple scalar vacuum polarization
at q =16m . This of course is a consequence of the
eigenmode of the operator (17) at co =4, or, equivalently,
of the fact that the tree-level threshold amplitudes of the
processes 2~n are equa1 to zero for n )4. In terms of
the graphs the cancellation of the contributions to the
imaginary and the real parts of the thresholds at higher
q looks quite surprising.

In the present calculation we have avoided approach-
ing the poles of the classical solution Po, where the quan-
tum expansion in fact breaks down, since the quantum

fluctuations are more singular than the classical solution.
However, those are the singularities of the field in the
complex plane of t (or equivalently of z) which give rise to
the factorial growth of the amplitudes. The appearance
of the singularity at the imaginary axis follows from the
simple fact that on this axis the classical field equation

P=m P+kP

corresponds to the free fall in the inverted A.(t potential
which takes a finite time for a finite staring value (t (0). It
looks at least extremely unnatural that quantum effects
would slow down this fall to the extent that the time of
the fall would be infinite. For any finite time, however,
the singularity of the field there will produce the factorial
growth of the amplitudes.

As a simple final remark, it can be mentioned that
though the present calculation is done for the case of un-
broken symmetry it looks quite straightforward to apply
the same technique to the case of the spontaneously bro-
ken symmetry.
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