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I. INTRODUCTION

With the recent observation of anisotropies in the
cosmic microwave background radiation (CMBR) [1,2] it
has become of paramount importance to work out which
CMBR distortion patterns are predicted by each theory
of structure formation. Finding what is what in the
CMBR fingerprints will ultimately decide which struc-
ture formation theories are viable and which are not.

Cosmological perturbation theory is the underlying
language in which these theories are expressed and im-
portant technical and conceptual problems arise in set-
ting up frameworks conveniently adapted to each theory
of structure formation. For instance, theories based on
quantum-produced fluctuations in inflationary scenarios
normally make use of the Bardeen gauge-invariant for-
malism ([3], also [4—7]), in which the technical aspects of
the theory take their simplest form and the gauge prob-
lem is overcome. Unfortunately, Bardeen's formalism is
nonlocal (since it makes use of the geometrical splitting)
and therefore its variables are misleading whenever the
perturbations are well localized. Generally, this happens
in theories with non-Gaussian statistics, the most blatant
case being theories based on topological defects. A
framework which is both local and gauge invariant then
becomes desirable, and it has indeed been set up [9—11,
8]. The field equations are more complicated in it, but
the work in [8], bridging the two formalisms, enables the
calculations to be done in Bardeen's theory, the more
physical local and gauge-invariant variables eventually

being derived from them.
It is naturally of extreme importance to find formulas

linking the CMBR anisotropies to the cosmological per-
turbations that generated them, in each of these formal-
isms. Such formulas were initially derived in a gauge-
dependent formalism [12], and more recently have been
derived for the Bardeen theory, in phase space for all
types of perturbations [13],and in configuration space for
scalar perturbations [14]. In this paper, we briefiy review
and complement this earlier work, and work out an
analogous formula for the local and gauge-invariant for-
malism developed in [8]. In Sec. II the gauge invariance
of several measures of the anisotropy is discussed and the
general setting of the problem presented. In Sec. III a
formula for the anisotropy using the gauge-dependent
variables is given. We spell out some of the steps in the
derivation in [12], and pay particular attention to the
problem of the perturbed photon spectrum. In Sec. IV an
original derivation for the gauge-invariant formula for
the anisotropy is given, the results of [14] being extended
to cover the case of all types of perturbations described in
configuration space. Finally in Sec. V the results of Sec.
IV are recombined so as to produce a formula for the an-
isotropy in terms of the local and gauge-invariant vari-
ables defined in [8], and we briefiy discuss the practical
and conceptual superiority of the formula obtained.

In order to keep review material to a minimum we
refer the reader to [8] for a full explanation of the nota-
tion used in Secs. III, IV, and V. Throughout this paper
units are used in which 6 =c =%=1.
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II. THE GAUGE INVARIANCE OF THE CMBR
TEMPERATURE ANISOTROPIES

III. A FORMUI. A FOR THE SACHS-WOLFE EFFECT
EN TERMS OF GAUGE-DEPENDENT VARIABLES

(2)

This example makes the point that, contrary to the state-
ments made in [14], the measurability of a quantity does
not imply its gauge invariance. In fact, one normally as-
sociates a measurable quantity with a field of observers
whose space-time indexing can change under gauge trans-
formations. It follows that 5T/T can never be written
solely in terms of gauge-invariant perturbation variables
and hence it is not a good quantity to look at in a gauge-
invariant formalism. One should rather look at quanti-
ties which are both observable and gauge invariant such
as the temperature anisotropy

(8,$, 8,$)= (8,$)— (8,$)

or any of its differential versions, such as

(z)~ 5T ~2+ 1 ~2 5T
sin 8

(4)

or

1 82 5T
sin8 BQB8 T

In this paper we will seek formulas with the structure

=wI+BIf+ f dxc,

where JK is some function of 5T/T and A, B, and C are
cosmological perturbation variables defined at the last
scattering surface (~;), at the observation event (~f ), and
on the null geodesic connecting these two events (A. being
an affine parameter on it), respectively. By making Ai,
say b5T/T(8, $, 8,$), one obtains a quantity which is in-
variant under gauge transformations applied on any
equal-time hypersurface (and not only on the observation
event hypersurface), and therefore A, B, and C can be
made gauge invariant. One will also see that by choosing
Jk to be N, one can make A, B, and C functions of the lo-
cal and gauge invariant variables introduced in [9—11]
and [8].

Finding a gauge-invariant formula for the CMBR tem-
perature fluctuation 5T/T involves addressing the issue
of the gauge-invariance of 5T/T itself. This has been the
source of considerable confusion in the literature. Both
[12] and [14] failed to recognize that even though
5T/T(x, r, 8,$) (the CMBR temperature measured by an
observer at point I and time ~ in the direction defined by
the polar angles 8 and P) is observable, it is a gauge-
dependent quantity. In fact, 5T/T(x, r, 8,$) has a time-
dependent background contribution and, consequently,
under a gauge transformation of the form

x"~x"+P
it transforms as

where c and d are small numbers of the same order of
magnitude. Then, to first order, the thermal spectrum
will be preserved, with the new parameters

T= T(1+d),

p =IM(1+d) +c .

In this section we will see that the linearized cosmologi-
cal perturbations always induce 5E with c =0. There-
fore, they do not bring about any chemical potential per-
turbation, and the temperature fluctuation has the form

5T 5E
T E

where 5E/E can be evaluated for photons with any
zeroth-order energy.

So let us consider a universe filled with matter with
four-velocity

u = [(1—A)B,+Ul '8;]/a (10)

and a radiation component which becomes collisionless
after a specific time (the "last scattering time, " denoted
by ~, ). We will follow individual photons generically
characterized by the energy-momentum four-vector

with n"=(l, n) and ~n~ =1. Parametrizing the per-
turbed metric as

ds =a (r)(il„,+h„)dx"dx

=a (r)[ —(I+23)dd+2B; dx'dr

+[(1+2HI )y; +2HT; ]dx'dx~I, (12)

we find that the energy measured by an observer (at-

We first derive an expression for 5T/T in terms of
gauge-dependent quantities. In principle what one
should do is to integrate a Liouville equation in curved
space-time and obtain the perturbed spectrum of photon
energies observed in a specific direction. However, pho-
tons are essentially collisionless and non-self-gravitating
after last scattering, and so the whole physical content of
the Liouville equation is in the geodesic equation for a
background metric fixed by the matter. Therefore we
will simply integrate the geodesic equation for a generic
photon energy.

The photon energy distribution at last scattering is as-
surned to be thermal, or more precisely, a Bose-Einstein
distribution with p=0. The zeroth-order cosmological
expansion redshifts the temperature like T= To/a, leav-
ing the spectrum undistorted, and with p=0. Now sup-
pose that the energy shift caused by the cosmological per-
turbations acting on photons traveling from the last
scattering surface to the observation event takes the form

5E(E)=c+dE
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tached to the matter) is

E = —k.u ~f
=—(1+2 +5n n —"vkM n—"Bk ) ~

Now write

d5 '
5n if =5n i;+ f dA,

I

with d 1,=n "dx„,and notice that if

(13)

(14)

with

a=cr —'n "(DkH +2Hk )

and subtracting the result for two arbitrary directions of
observation (8,$) and (8,P) [14,13]. The most linear way
of identifying the gauge-invariant expressions so obtained
consists in using the longitudinal-vector gauge
(B =HT=HT=0) for which a=0 and
O'=A, &=HI, a~=5~, V =v, V; =v;, and O' =B;,
and in which (18) becomes

dx
dA,

'
Dk"

=O, k'=O (15) (8,$, 8, $)= '5r+g
I;

n"—(ukM D—„vM)lf

then Dk"Idk=0, with k"=dx"Idk=Q k" and
g„=Q g„. Applying this theorem with Q =a and
performing an aSne transformation setting the zeroth-
order energy of the photon, we can derive the result

d5
5n ~;

= f dA, = nhI„~of —f—dAn "n h„. (16)
l l

Next note that the photons are thermalized in the free
falling rest frame of the matter at last scattering, where
the observed photon energy is given by E= —k u
An intrinsic photon energy density fiuctuation (taking
equal values in the cosmological and matter frames) may
exist, and according to the Stephan-Boltzmann equation
it is related to a temperature fiuctuation as 5T/T= ,'5~. —
Thus each photon suffers an energy shift such that
5E IE =5T/T, and so

—f dk( —3+H~+n "Bk
l

k IHT) ~8$

This leads straightforwardly to

d k( 4I+ N + n—"0'k + n "n 'Hg( ) ~
e' ~~

~ ~ ~ ~

l

(23)

which includes the scalar, vector, and tensor contribu-
tions to the anisotropies.

1
5&~. =(—g +5n —n "v M —n "Bk )~. (17) V. THE SACHS-WOLFE EFFECT IN A LOCAL AND

GAUGE-INVARIANT FORMALISM
Combining (13), (16), and (17) we finally conclude that

5E
E

5T 12+—5
~

n "u—
T 4 i k i

5p=0 .

1 dkn"n h
2 l

p~ (18)

In closing, note that the absence of a chemical potential
perturbation is a generic nonlinear feature of the Sachs-
Wolfe effect [the line integral in (18)]. It relates to the in-
variance of the geodesic equation under affine transfor-
mations, which, in turn, is related to the equivalence
principle as applied for photons. It is conceivable that
the experimental bounds on 5p may be used as a test for
the equivalence principle, if one can assume that no
chemical potential perturbation exists on the last scatter-
ing surface. We will elaborate on this comment else-
where [15].

IV. A FORMULA FOR THE SACHS-WOLFE EFFECT
IN TERMS OF BARDKKN VARIABLES

We will finally write a formula of the form (6), where
A, 8, and C are functions of local and gauge-invariant
variables. As announced before, it is convenient to take
the measure JK to be the variable R. This variable cap-
tures all the Tesseral harmonics (l&~m~, m&0) of 5T!T
and is therefore suitable for most practical purposes (note
that the dipole, for instance, is left out, but in most dis-
cussions one subtracts it off anyway). Now notice that
when the angular derivatives 8 /BP 88
=(1/sin8)B /BP B8 act on a formula of the form of (6)
they are converted into spatial derivatives transverse to n:

m 4)

Equation (18) can be used to produce a formula for
b 5T /T( 8,P, 8, P ) in terms of gauge-dependent variables.
This can be done by adding to it

0= —f dA+cxif,
l dA

(20) FIG. 1. Conventions used for the angles and tetrad indices.



R356 J. C. R. MAGUEIJO 47

a2
At =r 6, 2 ~, +r b, ,jBIf

sinO BUBO T

+ f der.(A, )b,;jC, (24)

where we have used the conventions indicated in Fig. 1

for the indexing of the orthonormal frame induced at a
point at coordinate distance r (A, ) by the angular system
(O, P) at the observation point 8. Note also that

a~= —1, aP=n, a,m=0,
a-n= —m a-m=n a-i=a

and that therefore B&~=0. Then, applying

a2
1/sinO

to oT/T as written in (23) and adding to it the expression

O=r a,j~f—f dA. r . —2ra;, (25)

a;j = D(;4'j~+H j—2D(;(n "Hj.~k
—)+n "DkH;j,

one obtains, after a rather laborious calculation,

R= r —2);')'+V,j+2D(, (n "V.
lk ) n "Dk V—;

2 1 $

(26)

(27)

Let us justify the choice of o.; employed in the derivation
of (27). The reason why nonlocality sneaks into formula
(23) lies on the integration by parts (20) required for mak-
ing A, B, and C in (18) gauge invariant. Since a is not lo-
cal the resulting gauge-invariant variables are necessarily
nonlocal. Now, since

5;ja+a;j =Kj —2D(;(n "Hjlj, )+n DkHj (28)

is local, one knows that gauge-invariance is achieved
without breaking locality in the calculation of N.

where we have used dr /dA, =2m"= —2r and where we
choose

Formula (27) casts the generation of CMBR anisotro-
pies by the cosmological perturbations in its clearest
form: only local and gauge invariant quantities are in-
volved. We find three types of contributions to 8 at the
last scattering surface: 2)';f represents the intrinsic pho-
ton energy density Auctuation, %';. represents a gravita-
tional redshift effect, and the remaining terms are a
Doppler shift effect from possible peculiar velocities of
the matter at last scattering. Whenever the peculiar
gravitational field is time dependent one has also to con-
sider the line integral containing the electric and magnet-
ic parts of the Weyl tensor (Ej and H j, respectively):
this is the so-called Sachs-Wolfe effect. In order to isolate
this effect one can set Xl';)'=4;j = Vj =0 at last scatter-
ing, a statement which now respects both gauge-
invariance and locality.

In conclusion, we stress that in addition to its practical
importance, formula (27) also makes an important point
of principle, as it casts the Sachs-Wolfe effect in a formal-
ism which circumvents the gauge problem without giving
away the essentially local nature of its underlying phys-
ics. Indeed locality and causality are somewhat hidden in
the formulas derived in [13] and [14]. Consider, for in-
stance, a cosmological perturbation confined inside a
compact domain 0 (which may be the causal future of
the birth of a seed, as is the case of compensated topolog-
ical defects studied in [16] and [17]). In general,
Bardeen's variables do not become trivial outside 0 and
consequently the various geometrical contributions to
5T/T for a photon which has always been outside Q may
be nonvanishing. Obviously these geometrical contribu-
tions add up to zero, a somewhat contorted path to a
physically sensible result which follows immediately from
a formula for 5T/T in terms of local and gauge-invariant
variables.
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