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Generalized geometrical scaling for elastic hadron-hadron scattering at high energies
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We propose generalized geometrical scaling for elastic hadron-hadron scattering which has the scaling
dimensional parameter Vo, /k(x), k(x) being a function of the elasticity x characteristic of the form of
the eikonal. This hypothesis presents a unified explanation of the features of the differential cross sec-
tions of pp and pp scattering in the energy region from the CERN Intersecting Storage Ring to the Fer-
milab Tevatron collider with the eikonal corresponding to the dipole-type form factor.
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Theoretically geometrical scaling is predicted for an
elastic hadron-hadron scattering amplitude asymptotical-
ly under some generally accepted conditions, if the total
cross section rises as In%(s) in the high-energy limit s — oo
[1]. Experimentally such behavior is observed at energies
reached at the CERN Intersecting Storage Ring (ISR) [2]
which are certainly not in the asymptotic range. This
suggests the possibility that the observed geometrical
scaling reflects an underlying general property of the had-
ron diffractive interaction not confined to the asymptotic
range. The purpose of this work is to examine a new
scaling hypothesis which is a generalization of conven-
tional geometrical scaling (GS) [3] and to show that this
generalized geometrical scaling (GGS) gives a unified ex-
planation of the behavior of pp and pp scattering in the
energy region from the ISR to the Fermilab Tevatron col-
lider.

Neglecting spin effects, the c.m. system (c.m.s.) scatter-
ing amplitude is written in the impact parameter repre-
sentation as

fis,0=ik fO”[1—e—ﬂ<va>}JO(VTtb)b db, (1)

where b is the impact parameter, k and s are the momen-
tum and the squared energy, respectively, ¢ is the squared
momentum transfer, J, the cylindrical Bessel function of
the order zero, and Q(s,b) the eikonal. Here we neglect
the real part of the scattering amplitude which will be in-
troduced later by using the prescription given by Martin
[4].

The conventional geometrical scaling requires a strong
restriction of the behavior of the total (o,) and the elastic
(0g), cross sections, i.e., stationary elasticity
x(=04/0,), and cannot cope with an arbitrary variation
of cross sections. If the geometrical scaling is a funda-
mental property of the strong interaction, we expect its
existence in a more general situation. We, therefore, as-
sume only that Q(s,b) is factorized as [5]
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Q(s,b)=w(s)g(b/r(s)), (2)

where w and r are functions depending only on s and
should reproduce both of the total and the elastic cross
sections consistently.

In the impact-parameter representation we have

Ut:47r fow b db[l_e~w(s)g(b/r(s))]

=d4mr? fowﬁdﬁ[l_e—w(s)g(ﬂ)] , (3)
og=2T fow b db[l___e—w(s)g(b/r(s))]2
=272 fowﬁdﬁ[l_e—w(s)g(ﬁ)]Z . 4)

The elasticity x is, therefore, independent of the scaling
parameter 7, and the interaction strength function w is
uniquely determined by x. In this sense w is a function of
x and we write

w(s)=h(x(s)g) . (5)

For a value of w fixed for given x, the scale parameter r
should be chosen to give o,. Hence from Eq. (3) we have
the equation

r(s)=vV'o,(s)/k(x(s);g) , (6)
where
o) = ® ___ —h(x;2)g(B)
K(x;g)=4m fo BdB[1—e 1. 7

This implies that only the scaling satisfying Eq. (6) works
consistently. The problem is, then, whether or not there
exists g(fB) such that it reproduces elastic differential
cross sections.

Of the two well-discussed extreme geometrical pic-
tures, the geometrical scaling hypothesis (GS) [3] assumes
w (s)=const, r(s)x< \/0,(5), while the factorized eikonal
(FE) model [6] is given by 7 (s)=const.

The scaling behavior of the generalized geometrical

R3 ©1993 The American Physical Society



RAPID COMMUNICATIONS

R4 M. KAWASAKI, T. MAEHARA, AND M. YONEZAWA 47

scaling (GGS) is completely specified by the functional
form of g(B). For example, k(x;g) is proportional to x
for the uniform disk; g (8)=const for 0 =3 =f3, and O for
B> B, [7].

In Fig. 1 we show the inverse of the scaling parameter
w(s)=1/r(s) of the “dipole” case [g(B)=1BK;(B),
K4(B) being the modified Bessel function of the order 3]
[8] as well as the Gaussian case [g (8) =exp(—f?)] for the
total and elastic cross-section data of pp scattering in the
ISR-Tevatron energy region. Here we have used the re-
sults of the empirical fit [9] as the experimental data and
we have neglected the contribution from the real part of
the scattering amplitude, which reduces the value of u,
for example, from 0.785 (0.778) to 0.779 (0.772) GeV at
V's =546 (1800) GeV for p=0. 14, the ratio of the real to
the imaginary part of the forward scattering amplitude.
We also show the curves for GS (u<1/1/0,) and the
uniform disk (V/x /o,) for comparison. The exact FE
model gives a horizontal straight line.

In order to test the validity of the present scaling as-
sumption, we have to determine eikonals at individual en-
ergies of experiments and examine their variation. Here
for simplicity we take the ‘“dipole” form in view of the
Chou-Yang geometrical picture [8]. The dipole will give
qualitatively correct behavior about the features of GGS
discussed below, though we may need some tuning of the
form of the eikonal around the dipole in order to attain a
better fit to the measurements of the differential cross sec-
tion [10]. In the following we discuss pp and pp scatter-
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FIG. 1. The inverse of the scaling parameter u(s)=1/r(s) is
shown for the “dipole” and the Gaussian case for the total and
elastic cross section data in the ISR-Tevatron energy region [9].
The curves corresponding to V'1/0, and V'x/o, are also
shown. All the curves are normalized to unity at s, = (30 GeV)>.
The factorized eikonal (FE) implies a horizontal straight line.
The value of u for the “dipole” is 0.815 GeV at s,.

ing at ISR and higher energies.

(1) Obviously, if the elasticity x (s) is independent of
energy, GGS becomes the conventional GS [3]. In the
ISR region we know that the elasticity is nearly constant
for pp. In fact it was shown that GS holds well for pp
scattering over the ISR region [2].

For pp, the latest empirical fit [9] gives the elasticity
weakly increasing with energy in the ISR region, which
induces some deviation of y from the curve 1/ 1/0, as
seen in Fig. 1. This suggests that GS is weakly violated.
However, there are not enough data for discussing this
problem further. The observed pp differential cross sec-
tions at V's =53 GeV would be better fitted in terms of
the pp eikonal determined at the same energy if x and/or
p of pp were somewhat larger than the reported ones.

Although it is not the purpose of this work to analyze
the energy region of the CERN Super Protron Synchro-
tron (SPS) and lower where meson-nucleon data are also
available [11], we comment on how GGS works for pp
scattering below ISR energy. We have found the
differential cross sections of pp scattering measured at
P; =30 and 50 GeV/c are not consistent with the simple
application of GGS. However, the analysis by Kroll [12]
suggests that GGS would work down to P, =50 GeV/c
(Vs =9.8 GeV), if nondiffractive components were taken
into account.

(2) Next we see what happens at CERN SppS and
Tevatron energies. The elasticity x (s) of pp scattering
starts increasing markedly above ISR energies. This
leads to slower decreasing of u(s) with increasing energy
as shown in Fig. 1. It is to be noted that the scaling with
V'x /0o, [7] holds approximately in the ISR region.
Above 200 GeV the energy variation of u becomes even
slower and we enter into a quasi-FE region and some
FE-type effects are then induced [13]: (i) The normalized
differential cross section (1/0%)do /dt is no longer a
function of o,f; instead it changes with o,t/k, but only
approximately due to the energy variation of w(s), and
(ii) the curvature structure of the forward peak or the
change of slope around —t =0.1-0.2 (GeV/c)? observed
at ISR and lower energies will become weaker [7] and the
second bump will rise as o, rises.

We have calculated the differential cross section by
GGS with the “dipole” eikonal at 546 GeV. The results
are shown in Fig. 2 together with the experimental data
[14]. If the contribution from the real part is included by
using the prescription given in Ref. [4], the predictions of
GGS are in good agreement with the experiments. Here
p is taken to be 0.14 of dispersion-relation calculation
[15]. The local slopes of the forward peak are 16.2, 14.3,
and 13.6 (GeV/c)"*at —t =0, 0.15, and 0.3 (GeV/c)?, re-
spectively, indicating still a considerable change of slope
at small momentum transfers.

(3) As the energy goes up, we will have a nearly struc-
tureless forward peak without showing the apparent
change of the slope at small momentum transfers. This
occurs at around x(s)=Y(s) where Y(s) is
(1+p*)o, /16mB, B being the forward slope [13,16]. The
results of the calculation at 1.8 TeV given in Fig. 3 fit
well the measurements of the differential cross section
[17], where we have included the real part with p=0.14
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FIG. 2. The differential cross sections calculated at 546 GeV
by GGS with the “dipole” eikonal together with the experimen-
tal data [14]. Here we have taken o,=61.4 mb and 0,=12.8
mb of the empirical fit [9], p=0.14 of the dispersion relation
(15], and p is 0.779 GeV from scaling. The solid curve is for the
full amplitude, while the dotted one is for the imaginary part.

[18]. The concave curvature structure seems to practical-
ly disappear at —t =0-0.3 (GeV/c)?, consistent with the
experimental data. Here the calculation gives
x /Y ~=1.04. If we examine the slope more closely, how-
ever, it is not really constant: the calculation gives the
slopes 17.3, 15.7, and 15.9 (GeV/c)"? at —t =0, 0.15,
and 0.3 (GeV/c)?, respectively, which may be compared
with the latest value of 16.99+0.47 (GeV/c)~? obtained
over the range 0.001 < —¢ <0.14 (GeV/c)? [18].

(4) Above this energy the forward peak will take a
grossly convex or downward curvature structure if
Y(s)>x(s). Finally, if the total cross section rises
indefinitely with increasing energy and the elasticity ap-
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FIG. 3. The differential cross sections at 1.8 TeV calculated
by GGS with the “dipole” eikonal together with the experimen-
tal data [17]. Here we have taken o,=74.8 mb and 0,=17.6
mb of the empirical fit [9], p=0. 14 of the experiment [18], and
is 0.772 GeV from scaling. The solid curve is for the full ampli-
tude, while the dotted one is for the imaginary part.

proaches a finite limit asymptotically, then the GS struc-
ture will again appear [19].

We have shown that the hypothesis of generalized
geometrical scaling (GGS) explains the features of the
measured differential cross sections in the ISR-Tevatron
energy region reasonably well. To test this hypothesis
further, we need detailed information on the eikonal,
which requires accurate experimental data covering a
wider ¢ range in SppS and Tevatron energy regions as well
as in energy regions reached at the CERN Large Hadron
Collider and Superconducting Super Collider. The
geometrical-picture analysis will give us valuable infor-
mation on hadron-hadron interactions.
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