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Heavier fermions and fine-tuning problem in top-quark condensate scheme
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The analysis in the bubble approximation indicates that a heavier quark-lepton generation with the de-

generate mass m U in the range 163—353 GeV added in the top-quark condensate scheme could make the
momentum cutofF' A come down to 10 —5 X 10 GeV when m, = 160 GeV is taken. This could greatly al-

leviate the fine-tuning problem. The Higgs boson Ps will obey the mass constraint 2m, &m 0 &2mo.
S

The maximal number of the allowed heavy fermion generations is estimated and the possible composite-
ness origin of the efFective four-fermion interactions is discussed.
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In the top-quark condensate scheme [1,2], where the
electroweak gauge group SUI (2) XUr(1) is dynamically
broken through the Nambu —Jona-Lasinio (NJL) mecha-
nism [3], an accepted unsatisfactory situation is that the
coupling constant must be finely tuned when the gap
equation is resolved. Actually, the fine-tuning problem
originates from the need for a very large (much larger
than the t-quark mass m, ) momentum cutofF A of the
loop integration and this need again comes from the limi-
tation imposed by the basic relation in the scheme [2]:

4&2m' A'
=mt ln (1)

F Alt

where GR is the Fermi constant. As indicated in Ref. [2],
when m, =165 GeV, the momentum cutoff A must be
10' GeV, up to the energy scale of grand unification.
The fact that so high of a A is needed rejects the fact
that the top quark mass m, is still a little small for the
weak interaction scale GF ' . A possible way to decrease
A is by adding to the right-hand side of Eq. (1) the contri-
bution of some extra heavier fermions other than the top
quarks. However, in doing so we must keep the theory in
the minimal dynamical breaking scheme of the elec-
troweak gauge group so as to assure that the great suc-
cess of the standard model could be maintained mostly.
Therefore, it is necessary to extend the NJL mechanism
of minimal electroweak gauge symmetry breaking from
one top flavor to many fermion generations, where the
term "one generation" will be specified to the fermions in
an SUL (2)XUr(1) fiavor doublet [a left-handed SUI (2)
doublet and two right-handed SUL(2) singlets] and in a
definite representation of some colorlike group 6, .

Fortunately such extensions have been proven to be
successful in the bubble approximation first for one gen-
eration of fermions [4] and then for n generations of fer-
mions [5]. This makes it possible to put the above idea

into effect. Let us consider a model with two generations
of fermions without bare masses, i.e., the simplest many
generation extension of the NJL mechanism. These fer-
mions are denoted by

U

L D ' QaR = UaR, DaR (a=1,2),
L

(2)

with the identifications ( Ui, D, ) —= (t, b) and
(U2, D2):—(U, D); i.e., one of the two generations is
identified with the ordinary (t, b) quarks and the other
one with some exotic (U, D) fermions. The (U, D) fer-
mions could be the fourth generation of quarks and lep-
tons which is assumed not to mix in the Cabibbo-like pat-
tern with the (t, b) generation (e.g. , forbidden by some
horizontal symmetry) or they are the exotic fermions in
the SU, (3) 3-piet or 6-piet or 8-piet [6] representation or
the technifermions [7,8]. Their I' charges can be assigned
as the ones of the ordinary quarks and leptons if they are
the fourth generation of quarks and leptons, or as

(3)

2

+4F g gU U ( QpL UpR )( UaR QaL )

a,P=1

+gDpD (QpLDpR DaR QaL )

if they are the exotic fermions in the SU, (3) «apl«.
this way we will avoid the SUL (2) XUr(1) gauge anoma-

ly [8] and the complexity caused by a possible Cabibbo-
like mixture between the (t, b) and the ( U, D) generation
as well [5]. Our discussions will still be conducted in the
bubble approximation and the results will be able to
reAect the essential feature of such a kind of model.

It is known from Ref. [5] that when n =2 the low ener-

gy effective four-fermion Lagrangian corresponding to
the minimal dynamical breaking of the electroweak gauge
group may be written as
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+[gU D ( UpRQpI t'g 2)(D«QaL )+H. c. ]
'

P a

(4)
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where o.
2 is the Pauli matrix and T means the transposi-

tion of an SUI (2) spinor. The four-fermion coupling
constants satisfy the minimal Higgs condition

&ggg g='
Q

(6)

and the three independent relations between the ratios of
the masses and the coupling constants,

mg/mg. =ggg lgg g, Q, Q'=U, D (a=1,2),
where the sum of Q is always understood as that Q = U,

ggg=gggggg, Q, Q =U, D (a=1,2) .1/2 1/2 I

Hence we have only the four independent real and non-
negative coupling constants ggg I Q = U, D (a = 1,2) ]
altogether.

Suppose that X4~ will lead to the formation of the G, -

invariant vacuum condensates ( QQ ) and the generation
of the dynamical masses m&,

' we will obtain the gap equa-
tion

Ig/Ig =dg(R)mgldg. (R)mg (9)

When the minimal Higgs condition (5) and the gap
equation (6) are satisfied we will obtain that only a mas-
sive neutral Higgs scalar boson Ps, a massless neutral
pseudoscalar Goldstone boson P~ and two massless
charged Goldstone bosons g* as the real physical modes,
emerge from the theory and they are precisely the prod-
ucts of the minimal dynamical breaking of the global
group SUI (2) XUr(1). The propagators and
configurations for these bosons may be expressed as

D (a = 1,2) and Ig is expressed as

i d41
Ig=2dg(R) I (2m. ) l —mg

dg(R)A mg A +mg
1 — ln

8m A m Q

and dg(R) is the dimension of the G, representation of
the Q fermions. It is clear that we may have the relation

&s 2(p»=iG gggg&g(p )(p' —4m'} for p'=QG '"g'g'(QQ),
Q Q

y0
(p )=iG

1~ (p')=I ~ (p') for P+=(P )

where

I&ggg&g(p')p' - 4'=X G-'"(-1) 'gg'g"(Q~~, Q),
Q Q

2 2I' (p )=iG/2+ [gU U JU D (p )+gD D Jg) U (p )]p for p = g g G ' ri;( —1) "(U I,D ),
a=1 i =1,5 a=1

(10a)

(10b)

(10c)

(10d)

G=&ggg
Q

d (R) A+M
Kg(p )= — I dx ln

Q

A
W2+m2

M =m —p x(1—x),
Q

(12)

dg(R)
JU D (p')= — I dx(1 —x) ln

Q cx 8+2 O

W2+mU2 ~

MU D
2

A

A+MU D
i MU D

—(mU —p x)(1—x)+mD x, (13)

1 5& /1 2(gU U gD D )~ gg 2(gU U +gn D ) (14)

and Ig is the third component of the weak isospin of the Q fermions. It can be derived from Eq. (10a) that the mass o
the Higgs boson ps must obey the constraints

2(mg);„~m o &2(mg), „S
(15)

whe~™g);„and (mg ),„are respectively the smallest and the largest masses among the Q fermions. However m,
will be closer to 2(mg ),„ I5].

Once the electroweak gauge interactions are opened the three massless Goldstone bosons will enter the vacuum po-
larizations of the electroweak gauge bosons and lead to the generation of the masses of the p'+ and Zo bosons, i.e.,
re»»at&on of the composite Higgs mechanism. For instance, the inverse propagator for the 8'boson may be written as

w, D„(p) '=i ", —g„[p'/g, '(p') f'(p')]— (16)
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where gz is the classical SUI (2) gauge coupling constant and gz(p ) and f (p ) are defined by
P

dg (R)
2+ g f dxx(1 —x) ln

q2(p ) g2 =, 8~

A+MU D

MU D
2

A

A+MU D
(17)

A+MU Ddg (R)
f (p )= g 2 f dx[mU (1—x)+mD x] ln

16m MU D

A

A+MU D
(18)

The inverse propagator for the neutral gauge bosons will
be expressed by a 2X2 matrix; however, we will not put
it down here since it will not be used in the following dis-
cussions. From Eq. (16) one can derive the equation
determining the F-boson mass mz and then the basic re-
lation in the model [2],

gbb 0 and g UU
=

gDD (20b)

gUU

gc

mUU A
A2 m2

U

(21)

&n this case, when Eqs. (7) and (9) are used the gap equa-
tion (6) will take the form

GF g,'(0)
&2 8m~~

1

8f'(0) (19) with the denotation
4

dU(R)A
dU(R) m,'g, =8m

the mass constraints (15) will become

which will be our starting point to tackling the fine-
tuning problem.

For the sake of simplicity and without loss of essential-
ity we will assume that

(22)

mb =0 and m U
=ma

or equivalently by the relation (7) that

(20a) 2m, ~m o +2mU
S

and the basic relation (19) may be expressed as

4 2 A=2dU(R)mU ln 1+
F mU

A2 A2 A2 A2 A2
2

+3mt'. ln 1+
2

+
2 2ln 1+

A +mU m, m, m, m]
(24)

which is just a modified version of Eq. (1). Here we do
not assume that A &)mU and A &&m, so the complete
form of Eq. (24) has been maintained. Equation (24) es-
tablishes a connection among the parameters m„mU,
and A. However, m, must be subject to the constraints
imposed by experiment. Such constraints are now
m, )89 GeV [9], m, =120+zs GeV [10], m, ) 150 GeV
[11], and m, =140+35 GeV [12], and in general m,
should be greater for a greater Higgs boson mass. Con-
sidering these constraints and that in our model the
Higgs boson Pz would have a rather large mass owing to
the limitation (23), we will take m, =160 GeV. As a re-
sult Eq. (24) is left merely as a relation between mU and

1
8y —Dy ln 1+—

3'
+ ——ln(1+y) —1

1 1

P

1=x ln 1+—
x

1

1+x
=f(x) (24a)

with the denotations

x =mU/A, y=m, IA, 0(x (1, 0(y (1 (25)

l

A. It is found that when m, is fixed the allowed momen-
tum cutoF A is of a definite lower bound. To see this let
us rewrite Eq. (24) as

TABLE i. The relation between the allowed values of the momentum cutoff' A and the U fermion mass mU. Four cases with
dU(R)=3, 3+1, 6, and 8 are distinguished. The t quark mass m, is taken to be 160 GeV. At the critical value A, the relation
m U

=0.68A, is valid.

mU
(aevi

U

3
3+1

6
8

t,aeV) 10"

29
25
20
17

1010

98
85
69
59

10

133
115
93
80

10

190
163
131
113

10'

240
205
164
141

10

350
294
231
195

5X10

426
353
272
228

1295
1092
895
777
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TABLE II. The values of 1 —g, /gU~ for the acceptable values of A.

g ~gUU

QU(R)

3
3+1

6
8

A (GeV) 1O'

6. 19X10-'
4.63 X 10-'

1O'

6.95 X 10
5.20X 10-'
3.45 X 10-'

104

8.21 X 10
6. 10X 10-'
4.02 X 10
2.99X 10

5 X10'

3.58 X10-'
2.64X10-'
1.72 X 10-'
1.28 X10-'

and

B=2@'2' /dU(R)GFm, , D=3/2d U(R) . (26)

TABLE III. The values of gU sufBcient for satisfying the gap
Eq. (21) when A is at the acceptable values.

(GeV) 10 1O' 1O4 5X10

The function f (x) in the right-hand side of Eq. (24a) will
be up to its maximum 0.216 in the region 0 &x & 1 when
x =0.462. From this result one can prove that, in the re-
gion 0 (y & 1, Eq. (24a) is solvable only if y ~y, or corre-
spondingly A A, . This implies that A indeed has the
lower bound A, which may be called the critical momen-
tum cutoff. At the scale A, by the definition of x in Eq.
(25) the U fermions will have the mass mU=0. 68A, .
Then we may solve Eq. (24) and obtain the values of mU
for variant allowed values of A ~ A, . The Fermi constant
G~ is taken to be l. 166X 10 GeV [13]. In addition,
four different cases with dU(R) =3, 3+ 1, 6, and 8 are dis-
tinguished. This means that we may identify the (U, D)
fermions with the exotic fermions respectively in the
SU, (3) 3-piet, (3+ 1)-piet (the fourth generation of quark
leptons), 6-piet, and 8-piet representation. The results are
listed in Table I.

It can be seen from Table I that as mU increases the
corresponding A will decrease. Since mU & m, has been
demanded and A &&m U is just physically plausible the ac-
ceptable values of A will be 5 X 10 —10 GeV for
dU(R)=3 and 3+1, 5 X 10 —10 GeV for dU(R)=6 and
5 X 10 —10 GeV for dz(R ) =8. In any case the addition
of the heavier (U, D) fermions will inevitably lead to a
great descent of the momentum cutoff A. The corre-
sponding values of mU in the three cases have been
marked in Table I by the underlines. The above results
also indicate that the bigger is dU(R), the smaller is the
range of the acceptable values of A. In other words, the
maximal number of the allowed exotic fermion genera-
tions is limited. This number is approximately equal to
three if the exotic fermions are in the SU, (3) 3-plets, two
if in the SU, (3) (3+1)-plets (exotic quark-lepton genera-

2
gU =gUUA (27)

tions), one if in the SU, (3) (3+6)-piet and one if in the
SU, (3) 8-piet.

Because of the great descent of A the fine-tuning prob-
lem appearing in the gap equation will become no longer
so serious. This can be seen from Table II in which the
values of 1 —g, /gUU are listed for the acceptable values
of A. When the acceptable momentum cutoff A and the
corresponding mass mU are fixed, by Eq. (15) the Higgs
boson Pz will get the definite upper bound mass 2mU (of
course, it also has the lower bound mass 2m, ). For exam-
ple, when dU(R) =3+1, i.e., the (U, D) fermions are the
fourth generation of quark leptons, the Higgs boson mass
will obey the limitations 320 GeV ~ m 0

~ 588 QeV for
S

A = 10 GeV and 320 GeV m o 410 GeV for A = 10
S

GeV and m 0
——320 GeV for A=10 GeV. These predic-

&s

tions could provide a basis for the experimental test of
such a kind of model. Certainly, more accurate estimates
of m„mU, and m 0 depend on the consideration of the

S
full dynamical effects of gauge bosons and the composite
Higgs boson and this is a problem to be researched fur-
ther.

The low energy effective four-fermion interactions used
in the above models could originate from some gauge in-
teractions at the higher energy scales than the momen-
tum cutoff A. However, noting the fact that the accept-
able values of A in Table I, 5 X 10 —10 GeV have been at
or close to the conventionally assumed compositeness
scales of quarks and leptons, a natural question will arise
about whether the four-fermion interactions could have
the origin of compositeness. This implies that the t
quarks and the ( U, D) fermions would be considered as
composite particles and the four-fermion interactions
would be assumed to be the residuals on the composite
level of some new strong binding forces among the con-
stituents of these composite particles. To answer this
question we must examine if the four-fermion coupling
strength, enough for satisfying the gap equation, could be
attained by the residual interaction among the composite
particles. For convenience of comparison, this strength
will be defined by the parameter

dU(

3
3+1

6
8

10.5
7.3

12.0
8.7
5.4

13.0
9.6
6.2
4.6

13.5
10.0
6.5
4.8

where U is specified to the most heavy fermion in the
model and the momentum cutoff A will also be identified
with the compositeness scale. Hence gU/A will corre-
spond to the four-fermion coupling constant among the
composite fermions. The values of gU, enough for satis-
fying the gap equation, can be calculated from Eq. (21)
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and the results for the acceptable values of A as shown in
Table III.

As seen from Table III only if d U(R ) =6 or 8 could the
values of gU decrease to near the magnitude of order of
unity and be achieved through the effective four-fermion
interactions among the composite fermions. This implies
that only if the ( U, D) fermions are in the SU, (3) high di-

mension representations or equivalently there are two
heavy quark-lepton generations or three (U, D) fermion
flavor-doublets in the SU, (3) triplets, it is just possible
that the four-fermion Lagrangian to realize the NIL
mechanism of dynamical breaking of the electroweak

gauge group comes from composite fermion models,
though the range of the acceptable values of A will be
more confined in this case.
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