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A very simple wormhole geometry is considered as a model of a mode of topological fluctuation in
Planck-scale spacetime foam. The quantum dynamics of the hole reduces to quantum mechanics of one
variable, the throat radius, and admits a WKB analysis. The hole is quantum-mechanically unstable: It
has no bound states. Wormhole wave functions must eventually leak to large radii ~ This suggests that
stability considerations along these lines may place strong constraints on the nature and even the ex-
istence of spacetime foam.

PACS number(s): 04.60.+n

I. INTRODUCTION

Some 35 years ago Wheeler [l] made a remarkable sug-
gestion, based on dimensional arguments: On Planck-
length scales spacetime fluctuates quantum mechanically
so randomly and violently that it develops all kinds of mi-
croscopic topological structures, such as "wormholes, "
although on larger scales it appears smooth and simply
connected. It is distressing that after so many years our
knowledge of quantum gravity is still far from being able
to confirm or disprove the existence of this "spacetime
foam. "

Obstacles to analyzing this conjecture are apparent. It
is well known [2] that a Lorentzian manifold must be-
come singular or degenerate at points of topological
change, or admit closed timelike paths. Formulation of
field theory on such a manifold is plainly problematic.
Such di%culties might be avoided by treating Euclidean
manifolds [3]; unlike the Euclideanization of ordinary
field theory, equivalent to the Lorentzian formulation in
the sense of contour integration, Euclidean quantum
gravity is physically different from Lorentzian. Indeed,
maybe spacetime is intrinsically Euclidean on the Planck
scale, characterized by Euclidean quantum foam, and
(3+1)-dimensional Lorentzian spacetime only emerges

after a transition to a classical regime. However, Eu-
clidean quantum gravity has fundamental dif5culties of
its own [4], most notably failure of the Euclidean action
to be positive definite, the problem of interpretation, and
recovery of Lorentzian spacetime.

Both Euclidean and Lorentzian versions of quantum
foam have received much recent attention. The focus on
the Euclidean version is on its possible role in determin-
ing fundamental constants [5], while for the Lorentzian
version it has been suggested that a microscopic
wormhole might be extracted from the foam to produce a
traversable macroscopic wormhole or a time machine [6].
But though both sets of ideas are ingenious and have far-
reaching consequences for other areas of physics, neither
sheds much light on the actual existence or-structure of
the foam itself.

Here we present a simple analysis probing the stability
of spacetime foam, to examine the constraints placed on
its existence and structure by the apparent absence of to-
pological structure to spacetime on macroscopic scales.
We picture Lorentzian spacetime filled with many
different sorts of microscopic wormholes, fluctuating into
existence, living for microscopic time periods, and pinch-
ing off. At moments of birth and pinch-o6' of holes Eu-
clideanization may or may not be needed; we do not treat
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the actual points of topological change here.
Some of these structures are easily modeled classically:

Wormholes can be constructed by excising a "world
tube" from some (3+1)-dimensional spacetime and join-
ing this to another such spacetime, with a corresponding
excision [7]. These are extreme versions of situations in
which the curvature in a wormhole throat is greater than
that of the surrounding spacetime; here the curvature at
the join or throat is a 5-function distribution. This ap-
proximation is very useful for simplifying the dynamics.
The stress-energy at the throat is determined by the Ein-
stein field equations in the form of junction conditions
[8]. This necessarily violates the weak energy condition
with negative energy density (in some reference frames)
somewhere in the throat. This is not itself a fatal Aaw of
the wormholes [6,9]—while it might help account for the
absence of macroscopic holes, it does not rule out the
possibility of quantum, Planck-scale ones, nor does it
guarantee that microscopic holes would not grow in size.

To make the analysis tractable we treat the simplest
such wormhole: that obtained by excising a spherical re-
gion, with time-varying radius, from two Minkowski
spaces and joining them [7]. The quantum-gravitational
dynamics of the model reduces to quantum mechanics of
a single degree of freedom, the throat radius, yielding a
"minisuperspace model" for spacetime foam. The quan-
tum wormhole is described by a wave function depending
on that radius and time, as defined in the external Rat
spaces. If the wave function is localized about some
Planck-scale radius at some initial time, what will be its
subsequent evolution?

There is no standard approach to the quantization of a
system like this. Evolution in a time coordinate defined
by the Minkowski spaces external to the wormhole is at
issue. Hence the familiar Dirac quantization procedure,
giving rise to a time-independent wave function solving
the Wheeler-DeWitt equation [10], is not suitable. In-
stead we impose the Hamiltonian constraint classically,
using it to reduce the phase space of the system. We con-
struct an action for the dynamics in the reduced phase
space, and quantize the system by using this action in a
Feynman path integral. The resulting propagator for
wormhole wave functions is evaluated in a WKB approx-
imation.

The results indicate that these wormholes are
quantum-mechanically unstable: Though the classical
evolution of the throat radius may be bounded, the quan-
turn propagator admits no decomposition into contribu-
tions from any spectrum of bound and continuum states.
Rather its behavior is akin to that of a "leaking" system,
such as a particle confined by finite walls. This implies
that wormhole wave functions must eventually "leak" to
arbitrarily large throat-radius values. (Such quantum in-
stability of a classically stable object is familiar, as in the
particle case. So too in a gravitational context: Classical-
ly stable black holes are subject to Hawking evaporation. )
The wormholes thus suggest a possible unstable mode of
spacetime foam, microscopic topological structure grow-
ing eventually to macroscopic size. Numerical calcula-
tions of wave-function evolution show that the time scale
of this instability might be very long, in terms of the

Planck scales appropriate to the model —though perhaps
not on scales of observational significance.

This simple analysis thus points up a line of inquiry po-
tentially of great significance. If more detailed,
comprehensive analyses substantiate the existence of an
unstable mode, then that together with the observed ab-
sence of macroscopic wormholes might indicate that
spacetime does not possess microscopic topological struc-
ture, of Lorentzian signature, after all. Lorentzian space-
time foam could be inconsistent with known gravitational
and quantum theory and observation.

II. WORMHOI E QUANTUM MECHANICS

SJ = '[E' —5'K

where S' is the surface stress-energy tensor and the
right-hand side is the discontinuity in the extrinsic curva-
ture K', minus its trace K, across the boundary. (Units
with G =1, as well as fi=c =1, are used throughout. )
For this wormhole geometry the junction conditions take
the form

and

1 1S,=—
2~R (1—R 2)~/2

(2a)

S = 1 R
4~ ( 1 R 2)1/2

R R
(1 R 2)3/2

(2b)

where overdots denote derivatives with respect to
Minkowski-coordinate time t (in a frame in which the
boundary sphere expands or contracts but does not
translate), and the boundary coordinates r and 8 are
proper time, related to coordinate time via
d r = (1—R )

'/ dt, and polar angle, respectively. These
give the classical equation of motion for the wormhole,
once an equation of state relating the surface density
o.=S, and pressure p =S&/R of the matter on the
throat is specified.

The equation of state could be chosen to make the
equation of motion simple. For example, the choice
p = —o/2 would imply R =0. The quantization of the
system thus described is trivial: The wave function
evolves as that of a free particle. A wave function initial-
ly concentrated about some R value will disperse to
infinity. However, we do not expect such a wormhole,
which evolves classically with its throat radius either

A classical, spherically symmetric "Minkowski
wormhole" [7] is constructed by excising a sphere of ra-
dius r =R (t), with R some function of a Minkowski time
coordinate t, from two copies of Minkowski spacetime,
identifying the two boundary surfaces r =R (t), and in-
corporating an appropriate surface-layer stress-energy on
the boundary to satisfy the Einstein field equations. Off
the boundary both exterior spacetime regions are Aat and
empty, so the field equations are satisfied trivially. On
the boundary, now the throat of the wormhole, the Ein-
stein equations are equivalent to the junction conditions
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fixed, or expanding or collapsing linearly, to correspond
to those fluctuating into existence in spacetime foam.

Instead we choose an equation of state such that the
equation of motion describes expansion from zero radius
to some maximum value and recollapse. The classical be-
havior of the model thus accords with that, e.g. , of a
Schwarzschild wormhole, and that expected of a foamlike
fluctuation. Specifically, we use

p = —o/4,
which yields

2RR —R +1=0 .

(3)

(4)

The solutions of this equation are parabolic trajectories:

a'(t —t, )'

4R,i(t) =—1—1
(5)

where e and to are constants.
The quantum dynamics of the wormhole can be de-

scribed via a Feynman path integral. An action corre-
sponding to Eq. (4), obtained from the integral of the sca-
lar curvature of the wormhole geometry, is

r

S= RR ln
1 —R

—2R dt . (6)

Reduced to the single dynamical variable R, the system
resembles a point particle in one dimension, with a com-
plicated "kinetic term" in the action. (In this respect it is
similar to a relativistic free particle [11].) The wormhole
is described by a wave function P(R, t), the evolution of
which may be given as

f(R, t)= J G[R, t;R OOg (Ro)d0R .o (7)

The propagator is given by

G [R,t;Ro, 0]=J e' ' 2l[R (t)],
C

(8)

8 $[R,i]
G [R, t;RO, O]—

2~ aRaRo
paths

I.S[R„]
e

The classical paths in the sum include the trajectory of
form (5) between the initial and final values, plus, owing

with C denoting the class of paths included in the path
integral. All paths moving forward in t, with R (t) ~0,
are included. The latter restriction can be implemented
as for a point particle confined to a half space, i.e., as if
there were an infinite potential wall at R =0. This im-
plies the boundary condition f(0, t) =0. By imposing this
condition we exclude consideration of topology-changing
processes, wormhole creation or disappearance, at R =0.
But this will not alter the implications of the wormhole
dynamics for the stability of spacetime foam, as indicated
below.

The propagator (8), with action (6), can be evaluated
approximately. In the WKB limit the path integral is
dominated by the contributions of classical paths and
small fluctuations about those paths; it takes the form

to the restriction R ~ 0, paths between those values
which are piecewise of form (5) but which "bounce" one
or more times at R =0, the bounce times determined by
the requirement that these paths too be extrema of S.
That condition takes the form of a cubic equation for the
bounce time of a single-bounce trajectory, yielding one or
three such paths, and a quartic equation for the bounce
times of multiple-bounce trajectories, yielding four or two
paths with a given number of bounces up to a maximum
number. Hence the WKB approximation for G can be
written

G {wKB)
max 0'

n=0
y G(k)

k
(10)

1/2 [~/4R] E'2/{4n)

1/2n=i
(12)

Hence the right-hand side of Eq. (11)does not approach a
definite limit: Its real part tends to zero while its imagi-
nary part oscillates. This implies that the wormhole has
no spectrum of bound states. Such behavior is reminis-
cent of systems, e.g. , with "inverted" potentials diverging
to negative infinity, or of metastable systems such as a
particle confined by finite walls. The former case corre-
sponds to rapid growth of a wormhole to large size; the
latter to eventual "leaking" to large size, though the
wormhole might remain near its initial size for a long
time. It is the latter behavior which appears to charac-
terize our model. The evolution via the propagator (10)
of a wormhole wave function is illustrated in Fig. 1. In
this example the initial wave function $0(RO) is simply a
real Gaussian centered at Ro=10, with standard devia-
tion I/&2, all quantities in Planck units. The wave
packet collapses to R =0 and rebounds to R = 10 to begin
again, following a bouncing classical trajectory piecewise

where n is the number of bounces, k labels the n-bounce
paths, and G„' ' is the corresponding contribution. Each
of these is of the form on the right-hand side of Eq. (9);
the prefactors and classical actions are complicated func-
tions of R o, R, t, n, and the bounce times, but they can be
obtained explicitly in closed form [13]. The relative
phases of the contributions are determined by the bound-
ary condition g(O, t)=0. The propagator is nonvanishing
outside the light cone and, hence, acausal, because space-
like as well as timelike paths are included in the path in-
tegral. This is in accord with, e.g. , the suggestion of Har-
tle [14] that acausal histories should be included in path
integrals for quantum gravity. It also accords with the
case of the relativistic point particle, for which spacelike
paths must be included in the path integral to obtain
agreement with the results of canonical quantization [11].

The result reveals the quantum instability of the
wormhole. The "ground-state energy" of the hole should
follow from the Feynman-Kac [15] formula

Eo = — lim —lnG [R,—iw; R, O] .
1

g—++oo 7

But the result we obtain for the propagator (1) indicates
that the ~~ ao behavior of G is
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FKJ. 1. Evolution of a wormhole wave function g(R, t), as

effected by the propagator G' ', the squared magnitude of P
is shown. The initial wave function used is
1((R,0) =(2/vr)' exp[ —(R —10) ]. All quantities are in
Planck units.

of form (5). Its behavior over many oscillations is indi-
cated by the asymptotic behavior of the propagator [13]:
In the limit t )&R,R o, the largest contributions to
6' ' in Eq. (10) are certain of the n =n,„ terms,
which give rise to caustics at intervals corresponding to
classical bouncing. The singularities in the propagator at
these points are integrable; they yield a peak in the wave
function which follows a classical trajectory, but with
amplitude decreasing as t ' . The other terms in Eq.
(10) give a combined contribution to the wave function,
at radii near that of the initial peak, which appears to
fluctuate, without dying away, for at least some hundreds
of thousands of classical bounce times. The wormhole
behaves not unlike an a particle, which may oscillate mil-
lions of times within a nucleus before escaping to in6nity.

III. CONCLUSIONS

Spherically symmetric Minkowski wormholes [7] pro-
vide a very simple model of a mode of topological fluc-
tuation in Lorentzian spacetime foam, and suggest a
mode unstable against growth to macroscopic size. The
quantum-gravitational dynamics of these wormholes is
reduced to quantum mechanics of one variable, the
throat radius, by describing the matter at the wormhole
throat with a suitable equation of state and imposing the
Hamiltonian constraint classically to reduce the phase
space of the system. A corresponding reduced action is
used in a Feynman path integral to obtain the propagator
for wormhole wave functions; this is evaluated in the
WKB approximation. The result shows that although
the classical evolution of a wormhole may be bounded,
i.e., stable, the hole nonetheless has no stable bound
quantum states, and will eventually grow to large size by
quantum "diffusion. "

Many systems exhibit similar behavior. For a particle
with the familiar quadratic kinetic term in the action, the
form of the potential determines whether such diffusion
or spreading occurs: A potential well with walls falling off
at large distances will allow a classically bound particle to
leak out via quantum tunneling, while one which in-
creases monotonically with distance will not. For these
wormholes, with more complicated action (6), so simple
an analysis is not possible. The more detailed examina-
tion of the wormhole propagator described here is needed

to show the instability.
The existence of an unstable mode of fluctuation, such

as suggested by this minisuperspace analysis, would have
profound implications. Since a macroscopic structure of
wormholes is not observed, i.e., spacetime appears
smooth and topologically trivial on all observable scales,
it could indicate that spacetime does not possess
(Lorentzian) foamlike structure on Planck scales. What-
ever features might characterize the quantum behavior of
spacetime, topological structures such as wormholes un-
stable against growth could not appear.

The stability of spacetime foam, then, needs more
comprehensive study, to go beyond the limitations of our
present calculations. The most fundamental of these is
our restriction of the gravitational degrees of freedom to
those of the spherically symmetric Minkowski wormhole,
i.e., the use of a minisuperspace model for topological
structure. In fact our model is even more restricted than
the usual minisuperspace models [3], since the matter in
the hole is treated not as a dynamical field but via an
equation of state. Moreover, we use the particular equa-
tion of state (3) to simplify the calculations; other choices
give rise to somewhat different dynamics. ' Also we ana-
lyze the model via quantization in the reduced phase
space. In the absence of a general framework for
quantum-gravity calculations, this method seems best
suited to the problem. It does differ markedly, though,
from the Wheeler-DeWitt approach [3,10]. Here we use
the particular reduced action (6); other forms correspond-
ing to the classical equation (4) are possible, leading to
different descriptions of the wormhole's quantum behav-
ior [16]. Our calculations are carried out in the WKB ap-
proximation. This is certainly expected to be valid in the
late-time limits in which the instability is manifest. And
WKB calculations of quantum instabilities in classically
stable systems, tunneling processes, for example, are well
known. But with no exact solution for comparison it is
difficult to confirm the accuracy of the approximation.
Finally, we implement the restriction that throat radii are
non-negative as for a particle in a half space, with the
boundary condition P(0, t)=0. Other implementations
might be used, the most general condition being only that
1( entail no current in the —R direction at R =0.

This last assumption eliminates from consideration
topology-changing processes, e.g. , wormhole creation or
disconnection, at R =0. Including these would add an
entirely new dimension to the problem, entailing a
second-quantized (actually third-quantized, outside the
constraints of a minisuperspace model) treatment of
wormholes. But the possible instability of spacetime

For example, if the familiar "dust" equation of state, p =0, is
used, the classical dynamics of the wormhole is only slightly
difterent: The equation of motion is RR —R '+1=0 instead of
Eq. (4), and the classical trajectories are sine functions instead of
the parabolas (5). The quantum dynamics is amenable to a
different treatment than that described here [16].
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foam, then an equilibrium population of wormholes con-
tinually fluctuating in and out of existence, should
remain, even as the continual formation and dissolution
of a particles in a heavy nucleus does not alter its insta-
bility against eventual decay.

Even with all our assumptions the calculations are
dauntingly difficult [13]. But it is to be hoped that fur-
ther work along these lines will provide valuable insight
into the quantum dynamics of spacetime.
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