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L matrix for the massive Thirring model
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As new results for the massive Thirring model, the L matrix and the algebraic relations for its action-
angle variables are given. It is shown most directly that this model which describes self-interacting rela-
tivistic fermions in one-dimensional space is a quantum integrable system.
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I. INTRODUCTION

In this note we present the L matrix for the massive
Thirring model [1]defined by the Hamiltonian

H =f dx [P ( t'o3)t),—p+.mP o,P

—2 sin(2c)gigzgzg, ],
where o; are the Pauli matrices. The fermion fields
P(x) =(P,(x),$2(x) ) satisfy the usual equal time anticom-
mutation relation [P„(x),P (y)] =5„„6(x—y); the indices
refer to right- or left-moving particles. The constant
c ~ ~/2 gives the strength of interaction between the fer-
rnions. As a solvable and simple model the massive Thir-
ring model has attracted much interest (see Refs. [2—11]).

The L matrix corresponding originally to the Lax pair
for nonlinear partial differential equations is an operator
that determines a "canonical" transformation of the field
variables (P,P) to variables of action-angle type, which
are the matrix elements of the so-called monodromy ma-
trix. The integrability can be shown by constructing an
R matrix, which gives information about the algebraic re-
lations between these action-angle variables. Hence the L
matrix and the R matrix are crucial for the study of an
integrable system.

The Thirring model is equivalent to the quantum sine-
Gordon model [2]. For this bosonic model the L matrix
and R matrix have been given by Sklyanin, Takhtadzhy-
an, and Faddeev [4]. We think it is an interesting prob-
lem to construct these matrices also for its fermionic
counterpart especially since supermatrices are the tools
which are not so common with integrable systems.

Here we will study the L and R matrices for the Thir-

II. L MATRIX

The action-angle variables or, more specifically, the
monodromy matrix T(u)=T(x =M~u), where M is the
length of the system, are defined by the differential equa-
tion

dT(x u) =:L(xiu)T(xiu):
dx

(2)

and the boundary condition T(x =O~u)=I, the identity
matrix. The colons mean normal ordering of the Fermi
operators and u is the spectral parameter.

We found, for the L matrix after taking the continuum
limit and introducing fermion fields,

ring model. The method we used originally is to find the
L matrix by taking the continuum limit from the R ma-
trix of an inhomogeneous six-vertex model. It is known
that the six-vertex model can be used to construct the
Bethe ansatz solution of the massive Thirring model [8]
and that the Hamiltonian should be connected to a six-
vertex model with staggered weights [10]. Actually, we
used this method before to derive the L matrices for the
sine-Gordon model [13] and a bosonic system with Ham-
iltonian similar to Eq. (1) [12]. Since in the present case
the derivation is lengthy and similar to the one in [12],we
use here a different approach. Given the result, we have
to prove that we have found the L matrix of the Thirring
model. So we have to find the R matrix starting from the
L matrix in order to show the integrability. Since the L
matrix determines the monodromy matrix, we have to
check whether the latter really contains the Hamiltonian
given above as one of the simple conserved entities.

L (x~u) =i ,'m sinhu ~3—+X(x)+S(x~u). (3)
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Here we distinguish the Pauli matrices in classical space
~, and those in quantum space o.; used before. For X and
S we have
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S( xlu)=iVm sine

—P (x)(1+e ')P(x)
0 e "~ P, (x)—e" Pz(x)

—e "
P,(x)+e" Pz(x)

(4)

We have to choose the L matrix as a supermatrix with its
row or column parities p ( 1 ) =0 and p (2)= 1; consequent-
ly, T(xl u) as a solution of Eq. (2) is also a supermatrix.

The integrability of the Thirring model can be shown
by finding the Yang-Baxter equation for the monodromy
matrix T(u):

tion (6) as

K(xlu, v)=T(xlu)s T(xlv),

one can get using the last Eqs. (9) and (10) a differential
equation for this tensor product,

R (u v)—T(u)s T(v)=T(v)s T(u)R (u —v), a.&(xlu, v) =:L(xlu, v)K(xlu, v): (12)

where the tensor product indicated by the symbol s is of

the superform (AsB),"z =( —1) ' ' '"'+I'" A; kB &. The
matrix R has the same form as for the six-vertex model;
note, however, that the spectral parameter u is imaginary
in the usual six-vertex model

with a L matrix depending now on two spectral parame-
ters u and v:

L (xlu, v)=L(xlu)s 1+ ls I.(x)v)+y F„(xlu)s E,(xlv) .

(13)

sinh( ," +ic )— 0
One can show only by an explicit calculation that

R (u —v)L (xlu, v) =L (xlv, u)R (u —v) . (14)

R(u)=
sinhic sinh —"

2

sinh —" sinhic
2

0

0

sinh( —,
" +ic)

In the following let us prove the Yang-Baxter equation
(6). We can rewrite the differential equation (2) as an in-
tegral equation for 0 & x ~ M: R (u —v)K(xlu, v)=K(xlv, u)R (u —v), (15)

The equation means that R matrix can exchange u and v

in L (xlu, v) in a manner the Yang-Baxter relation postu-
lates. Equations (11)—(13) above defining the tensor
product K(xlu, v) from L (xlu, v) are of course also valid
if the spectral parameter u and v are exchanged. This im-
plies that an equation such as Eq. (14) must hold also for
K:

. mT(xlu)=exp i x sinhu~3
2

X . 772+ dz exp i (x —z)sinhu ~3
0 2

which is the Yang-Baxter relation (6) taking x =M.
Hence the transfer matrix t (u) = T(u)» —T(u)zz

which is the supertrace of the T(u) must commute for
different spectral parameters, i.e.,

X:IX(z)+S(zlu)]T(zlu):,
[t(u), t(v)]=0 . (16)

P„(x)T(xlu)=r, T(xlu)~, $,(x)+—,':E (xlu)T(xlu):,
(9)

T(xlu)P (x)=P,(x)~3T(xlu)~3+ —,':F (xlu)r3T(xlu)~3:,

with

+iv'm sine (
—1) e'

F (xlu)= —P"„(x)(1 ~3e ' )—
—i&m sine ( —1) e'

(10)

from which we can get more easily two auxiliary equa-
tions

So the definition of the L matrix (3) generates a quantum
integrable system. The main problem is now to show
that this quantum system is the massive Thirring model.

III. HAMII. TONIAN AND MOMENTUM

Here we will find the Hamiltonian of the Thirring
model (1) from the transfer matrix t(u). This shows
directly that the L matrix (3) gives the Thirring model.
Using an integral form of Eq. (2) similar to (8), however,
and expanding T with respect to S given by Eq. (5), one
has

T(xlu)=:Q:+ I dz e ':Q(z)S(zlu)T(zlu):,
0

Defining the tensor product in the Yang-Baxter equa- where
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and

T(xl u) =exp —i x~3sinhu T(xlu),

Q(z) =exp I dy X(y)
z

Q =Q(z =0) .

from

. mT(xlu+im/2. )=exp i xr3sinh(u+ivr/2):Q:+
2

m=exp + xr coshu:Q:+
2 3 (18)

In order that such an expansion makes sense one must
add an imaginary part to the spectral parameter, for ex-
ample, urdu+i~/2 to have simple expressions. Thus

we can see that the transfer matrix r (u+im/2) decreases
or increases rapidly for u —++ oo. After iterating Eq. (17)
we see that the expansions

X 1 —m (z
&

—z2 )coshu
T(el u —iver/2)11 =.Q11.+m sine dz1 dz2e ' ':N (z1)@ (z2)Q11..+. . .

0 0
(19a)

X 1
—m (z

&

—z2 )coshu
T(&l u +i rr/2)22= 'Q22:+ m sine dz, dz2e ' ':@+(zi)@+(z2)Q22:+. . .

0 0
(19b)

have nontrivial limits for u ~+~, where

C+(z)=Q(z)„[e " ' ' P, (z)

e u/2+i~/4y
( ) jg

—
1( )

(z) =Q (z), [e "/2+' /4yt( )

e u/2+in/4yt(Z. ) jg 1(Z)

By choosing the sign of the imaginary part of u we have

picked out the exponentially growing contributions.
Neglecting the decreasing part related to exp( —e ") for
u ~+~, the transfer matrix multiplied by

r . Nl ~ ~
exp +i M sinh u+i—

2 2

is simply T(u —im /2)„or T(u +i+/2)22 in this limiting
case. We combine the contributions defjning the genera-
tors

6+(u)= lim e —"ln exp —i M sinh(u —im/2) t(u im/2)—
u Woo 2

—e "ln exp i M sinh(u

+in�

/2) t (u +in/2)
2

(20)

The generators G+ can be calculated from Eqs. (19) using
partial integrations repeatedly. In this way one obtains a
series in e " for u ~+~:

G+(u)= g C+,e
s&0

(21)

The calculation is tedious but straightforward. Every
term of the expansions T& &

and Tzz has a contribution to
G+, even to the first order C+, . Fortunately, all
coefficiencies of the factor e —"can be summed up and
give us the wanted results

»n(2c) 4'1021))21))1 (23)

It can be seen that the generators 6 and 6+ give the
conserved quantities for right- and left-moving particles
respectively. The Thirring system includes both contri-
butions of right and left particles. The sum of the two
first order coefficients is just the Hamiltonian of the Thir-
ring model (1) whereas the diff'erence is the momentum

s'n( 2c )4'14z424'1 (22)
P = i I dz itit(z)d,—iti(z) . (24)

0

The other coefficients C+, (s =0,2, 3, . . . ), if they are not
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zero, should give other conserved quantities of the Thir-
ring model. These are not easy to calculate and cannot
be studied here.

IV. CONCLUSION

In this note we have described the L and R matrices
for the Thirring model which were not given before for a
fermionic relativistic theory. For quantum inverse
scattering transformations the L and R matrices are im-
portant operators, for example, for studying the algebraic
Bethe ansatz and the inverse problem of the Thirring
model in the sense of the works [4] and [14]. Also it is in-

teresting to note that the Yang-Baxter equation (6) for
the monodromy matrix has a superstructure, i.e., the di-
agonal elements of the monodromy matrix are of bosonic
type, whereas the off-diagonal ones are of fermionic type.
Hence Eq. (6) gives us also a graded and deformed alge-
bra or a graded quantum algebra (see Refs. [15,16]).
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