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Order-n, calculations of hadronic W+p and Zp production
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(—) (—)Order-o, , calculations of pp —+ R p+ X and pp ~ Zp+ X are presented. Results are given
for total cross sections and differential distributions for energies reached at the Fermilab Tevatron,
CERN Large Hadron Collider, and Superconducting Super Collider. The order-n, corrections are
modest for Zp production but are large for R'p production. The large corrections to Wp production
are a consequence of the radiation amplitude zero in the Wp Born subprocess.
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I. INTRODUCTION

Studies of W+p and Zp production at hadron collid-
ers are important for testing the structure of the elec-
troweak theory [1]. Wp production can be used to test
the gauge structure of the WWp trilinear coupling while
the Zp process can be used to test nonstandard inter-
actions such as compositeness of the gauge bosons. In
order to perform these tests it is important to have pre-
cise calculations of hadronic W+p and Zp production to
compare with the experimental measurements.

In the standard model, the W+, Z, and p are the gauge
bosons of a local SU(2) xU(l) symmetry which governs
the interactions between the gauge bosons. There are im-
portant cancellations in the standard-model amplitudes
for W+p production which rely on the gauge structure
of the WWp trilinear coupling. Anomalous couplings
at the WWp vertex will enhance the W+p cross section
at large invariant masses [2—4]. Higher-order corrections
will also enhance the cross section, thus it is imperative
to include the higher-order corrections in any test of the
WWp trilinear coupling.

The Zp process is also of interest as a test of the
standard model even though it is not sensitive to the
non-Abelian gauge couplings. Reference [5] found that
the process pp —+ Zp is sensitive to contact interactions
which appear in composite models of gauge bosons; a
composite Z boson will yield enhancements in the cross
section. Higher order corrections also enhance the cross
section, so it is again important to include the higher-
order corrections in any test of compositeness in this pro-
cess.

Wp and Zp production were first calculated in Refs. [6]
and [7], respectively. The Wp process has been the sub-
ject of much theoretical work since it can be used to
test the gauge-boson self-coupling. The zeros in the tree-
level amplitudes [8] are prominent examples of observ-
ables that are sensitive to the gauge-boson self-coupling.
The magnetic dipole moment and the electric quadrupole
moment of the W boson are also sensitive to the gauge-
boson self-coupling. Many studies have focused on the

(—)prospects of measuring the WWp coupling in pp [2—4],
ep [9], and e+e [10] collisions at present and future col-

liders. The first direct measurement of the WWp cou-
pling has recently been reported by the UA2 Collabo-
ration [11]. Bounds on the W-boson magnetic dipole
moment, based on integrated total cross sections, have
been given in Ref. [12]. The production of Wp and Zp
pairs in association. with one and two jets was calculated
in Refs. [13] and [14], respectively. The gluon fusion sub-
process gg —+ Zp, which proceeds via a quark box loop,
has been calculated in Refs. [15] and [16]. Although this
process is of order n~ it can be important at supercollider
energies due to the large gluon luminosity; it is 15-30'%%uo

as large as the qq ~ Zp Born process at supercollider
energies [16].

An order-n, calculation of hadronic Wp production
was first presented in Ref. [17] where particular attention
was paid to the effect of the order-o, , corrections on the
amplitude zero. Numerical results were given in Ref. [17]
for center-of-mass energies reached at the CERN Super
Proton Synchrotron (SppS) and the Fermilab Tevatron
pp collider. Until now Zp production has been calcu-
lated only in the leading-logarithm (LL) approximation.
Complete next-to-leading-logarithm (NLL) calculations
of hadronic W+p and Zp production are presented in
this paper. At the parton level this involves computing
the contributions from the 2 ~ 3 real emission subpro-
cesses qiq2 ~ Vpg, qig ~ Vpq~, and gq~ ~ Vpqi as
well as the one-loop corrections to the 2 ~ 2 subprocess
qiq2 ~ Vp (V = W+ or Z). The focus of the present
calculations is on the order-a, corrections and, hence,
the order-n2 gluon fusion contribution to Zp production
has not been included. However, this contribution should
eventually be included when calculating the full Zp pro-
duction cross section since it can be significant at super-
collider energies.

The NLL calculation presented here makes use of a
combination of analytic and Monte Carlo integration
methods. The same methods have been used to perform
NLL calculations for hadronic ZZ [18], W W+ [19],
W+Z [20], and pp [21] production, direct photon produc-
tion [22], photoproduction [23], symmetric dihadron pro-
duction [24], and W production [25]. The Monte Carlo
approach to NLL calculations has many advantages over
a purely analytic calculation. The Monte Carlo approach
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allows one to calculate any number of observables si-
multaneously by simply histogramming the appropriate
quantities. Furthermore, it is easy to tailor the Monte
Carlo calculation to different experimental conditions, for
example, detector acceptances, experimental cuts, and
jet definitions. Also, with the Monte Carlo approach one
can easily study the NLL corrections for difFerent observ-
ables, the variation of the NLL corrections in different
regions of phase space, and the dependence of the NLL
cross section on the choice of scale.

The procedure for the NLL Vp calculations is identi-
cal to the procedure used in Refs. [18—21] for the NLL
calculations of ZZ, W W+, W+Z, and pp production.
In fact, most of the expressions for the Vp cases can be
obtained from the corresponding expressions for the ZZ
case by simply replacing the ZZ Born cross section with
the Vp Born cross section. The only exception to this
rule is the finite virtual corrections, which must be cal-
culated anew. Thus only the final expressions for the
NLL Vp calculations will be given in this paper. Details
on the derivations of these expressions can be found in
Ref. [18].

The remainder of this paper is organized as follows.
Section II describes the techniques used in the Monte
Carlo approach to NLL calculations. The NLL calcula-
tion of Vp production is described in Sec. III. Results are
presented in Sec. IV and summary remarks are given in
Sec. V. Finally, there are three appendices containing for-
mulas for the photon bremsstrahlung cross section, loop
integrals, and the squared matrix element for the sub-
process qq —+ Zpg.

II. MONTE CARLO FORMALISM

The Monte Carlo formalism for NLL calculations has
been described in detail in Refs. [18—25] so the discus-
sion here will be brief. First of all, three-body phase
space is partitioned into singular and finite regions by
introducing soft and collinear cutofF parameters b, and
b„respectively. The soft region of phase space is de-
fined to be the region where the gluon energy in the sub-
process rest frame becomes less than b, ~siz/2 and the
collinear regions of phase space are defined to be those
regions where any invariant (s,~ or t,~) becomes smaller
in magnitude than b, srz. The invariants are defined by
s,, = (p; + p, )z and t;~ = (p; —p~)2 where the four-
vectors of the two-body and thr""-body subprocesses are
labeled by pi +p2 ~ ps +p4 and pi +pz ~ ps +p4 +ps.
Next, the squared three-body matrix element is approxi-
mated in the singular regions; the soft gluon and leading-
pole approximations are used in the soft and collinear
regions, respectively. The resulting expressions are then
integrated over the singular regions of phase space. At
this stage the integrated expressions contain finr'te two-
body contributions as well as singular pieces. Dimen-
sional regularization [26] is used to isolate the singular-
ities. The singularities from the soft region will cancel
the virtual infrared singularities while the singularities
from the collinear regions will be factorized into the par-
ton distribution or photon fragmentation functions. The

remainder of thr""-body phase space contains no singu-
larities and the subprocesses can be evaluated in four
dimensions.

The calculation now consists of finite two- and three-
body contributions; all singularities have been cancelled
or factorized. Both contributions depend on the values
chosen for the theoretical cutoff parameters b; and b, so
that each contribution by itself has no intrinsic meaning,
however, when the two- and three-body contributions are
combined to form a suitably inclusive observable, all de-
pendence on the cutofF parameters cancels. The numer-
ical results reported in this paper are insensitive to rea-
sonable variations of the cutoff parameters.

III. NEXT- TO-LEADING-LOG ARITHM
FORMALISM

A. Born process

JH =b „e p E (ps)t (p4)

x ) g~' q' V(p2) P T""U(pi), (2)

where 6,„, is the color tensor (ii, i,z are color indices
for quarks 1 and 2), e is the electromagnetic coupling
constant, p is a mass parameter introduced to keep the
couplings dimensionless, e„'(ps) and e„'(p4) are the weak-
boson and photon polarization vectors, and P denotes
the left-right-projection operator P~ = z(1 + 7.ps). The
left- and right-handed weak-boson-to-quark couplings are
denoted by g~ ~":

gei~n (ge~ivqi)~
eiq~U

~2 sirl 8gr
91~f2 gQ2 ~01 0= 9+

T'
sin 8~ cos e~

QZQ
g~+

~ = —Qqtan8g,

where Q~ and Tsq denote the electric charge (in units of
the proton charge e) and the third component of weak
isospin of quark q, 8~ is the weak mixing angle, and
Uq, q, is the Cabibbo-Kobayashi-Maskawa (CKM) quark
mixing matrix. In the Feynman gauge the tensor T~" is

Tv, v
Q PA ~4 v+Q vol A P

—,' M2'[(A Pc)g" +2p4~" —2ps—~"] (4)

where Qi and Q2 are the electric charges of quarks 1 and
2 and (Qi —Q2) is the charge of the W boson. The third

The Feynman diagrams which contribute to the Born
amplitude for the reaction

qi(pi) +qz(pz): V(ps) + V(p4)

where V = W+ or Z, are shown in Fig. 1. The Born
amplitude in N dimensions is
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term corresponds to s-channel W-boson exchange and
applies only for Wp production; this term is not present
for Zp production which has Qi —Q2 = 0. The parton
level kinematic invariants s, t, u are defined by

S = (Pi+P2) t = (p —ps) u = (pi —p4)'

(5)

i~""i'=8N " "[["v" i'+ [."v"i']

(Qit+ Q2u)2

(t+ u)2

1 —6 1 —E 2x sMv —tu+ (t+u)
tu 2

(6)

As explained in Ref. [18] (see also Refs. [17] and [27]),
the p5 matrix can be eliminated from all traces, thus
it is straightforward to evaluate the squared amplitudes
in N dimensions. The algebra for this paper was evalu-
ated with the computer algebra program FoRM [28]. The
squared amplitude summed over final-state polarizations
and initial-state spins is

for R' p. The Born subprocess cross section is

111de"'"(q, q2 ~ V~) = ———~mB""]2d"c2,

where the factors 4i and s are the spin average and color
average, respectively, and two-body phase space is

f4~&' 1 ( MV2)' "
2=

8~ (s) I'(1 —e) ( s

xv '(1 —v) 'dv.

The variable v is a dimensionless quantity and is related
to the center-of-mass scattering angle 0' by v = 2(1 +
cos 8").

It is convenient to decompose the squared Born am-
plitude into three terms corresponding to the power of e

that appears in the squared amplitude [see Eq. (6)]:

+e]JHi""~ +c [M2""]

with this decomposition the Born cross section can be
written

d&Born d&Born + & d&Born + &2d&Born

where N~ is the number of colors, the number of space-
time dimensions is N = 4 —2e, and M& is the mass of the
W or Z boson. Written in this form, the amplitude zero
for the Wp subprocess is manifest in the factor (Qit +
Q2u) which vanishes when u/t = 2 for W+p and t/u = 2

This decomposition will be useful later for writing the
virtual and soft corrections.

The Born cross section is obtained by convoluting the
Born subprocess cross section with the parton densities
and summing over the contributing partons:

~'""(sw &~) = ) J'«'""(ma &7) &„i,(», M')&;.q, (*,M')+»» 8»lf».

LL Born
~

LL+ +brem (12)

The LL bremsstrahlung cross section is given in Ap-

pendix A.

(Note that parton level cross sections are denoted with
a caret over o.) The kinematic region of interest for
the Vp production process is that where the weak bo-
son and photon have large transverse momenta and are
well isolated from the initial state collision axis. The
soft and collinear singularities associated with t and/or
u = 0 are thereby avoided. In addition to the Born
contribution, there are also leading-logarithm (LL) con-
tributions to Vp production which come from photon
bremsstrahlung processes such as qig ~ Vq2 followed

by photon bremsstrahlung from the final state quark.
Although the subprocess qig —+ Vq2 is formally of or-
der no.„the photon fragmentation functions are of order
n/a, [29]; thus the photon bremsstrahlung process is of
order a2, as is the Born process. [The photon fragmen-
tation functions in Eqs. (A3) and (A4) are proportional
to n ln(Q /A ), thus they are proportional to a/a, since
n, (Q ) = 127r/[(33 —2NF) ln(Q /A2)]. ] Thus the LL
cross section for Vp production is

B. Virtual processes

The order-n, virtual correction to qiq2 -+ Vp comes

from the interference between the Born graphs of Fig. 1

and the virtual graphs shown in Fig. 2. The interference

V

FIG. 1. Feynman dhagrams for the Born subprocess

q~qp —+ Vp. The straight, wavy, and curly lines denote
quarks, electroweak bosons, and gluons, respectively. The
diagram with virtual V exchange applies only for Wp pro-
duction.
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between these amplitudes has been evaluated in N di-
mensions using the Feynman parametrization technique.
The loop integrals which occur in this calculation can be
found in Refs. [18] and [19] and in Appendix B of this pa-

per. Details of the calculational procedure can be found
in Ref. [18].

The order-n, virtual contribution to the qIq2 ~ Vp
cross section is

d&virt f4~p2 g
r

p(1 ~) 2 d~Born 2 d~Born 3 d~Born

2vr ( a j I'(1 —2s) sz dv s dv e dv

(13)

where do'Oo'" and dcrIB '" are defined by Eq. (10) and C~ = s is the quark-gluon vertex color factor. The last term
is the order-n, finite virtual correction and the functions F (t, u) are

and

s~ s t 8 2 s s t uF (t, u) =4 2—+2—+ — K(t, u) —-~ +
tu u u ' 3 t+u t s s

+4 6 —10 —10 —11——5—+ 2 +u s s t s s
t+u u(t+u) u u t+u a+t

( s l t s s (t+s) t a I' —u l 4s+u su—4ln!, !
3—+2—+4— +2—,+41n! +

(M~9 u u u(t+u) u (t+u) (M~) a+t (a+t)

s~ s t 8 zs~ s s t s sF (t, u) =4 2—+2—+ — K(t, u) —-7r —+4 1 —5——ll ——5—+2 +
tu u u ' 3 tu tu u u t+ u s+t

+41II 2 4 + 2 —3 + 41II!
(sl s s' (a+ t)' ( —u i 4s+ u au

t,Mz~ j t+u (t+u)2 tu i Mz~ j s+t (s+t)2+

(14)

with

q

q

c
q,

q,

q
q

q,

FIG. 2. Feynman diagrams for the virtual subprocess qzq2 —+ Vp. Not shorn are the diagrams obtained by interchanging
the V and p. The diagrams vrith virtual V exchange apply only for Wp production.
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II(t u)=~' —»I M2 I
+»I

I

—»I & I

—2Li2I 1 —
& I

—214I 1—(s ) (—u') ( —ul . ( s& . ( u)
kMV) ( s ) kMVP ( MV) ( Mv)

The expression for the virtual correction to Wp production agrees with the result in Ref. [17]. Note that the Wp
virtual correction vanishes at the same point in phase space as the Wp Born amplitude. The finite correction functions
for Wp and Zp production are related by

F~(t, u)+F~(u, t) = Fz(t, u)+F'(u, t). (17)

C. Soft gluon emission

The Feynman diagrams for the real emission subprocess

e(pi) +n(p2): &(») + ~(p4) + g(ps)

are shown in Fig. 3. In the soft gluon region of three-body phase space, which is defined by Es ( b, v'si2/2, the soft
gluon contribution to the cross section is

d~soft (4~p, 'l' I'(1 —~) 2 d(TOB
'" d&Born d&Born

=GF 'I
I

— ' +-
2~ ( s p I'(1 —2e) e2 dv GV dV

d&Born d &Born d&Born
+4 in(6, ) —4 1n(6,)

' + 2
dv dv dv

(19)

where 6, is the soft cutoff parameter defined in Sec. II.

D. Hard collinear corrections

The 2 —+ 3 real emission processes have hard collinear singularities when ty5 ~ 0 or t25 —+ 0. These singularities
must be factorized and absorbed into the initial-state parton distribution functions. The collinear regions of three-
body phase space are defined to be those regions where any invariant (s,~ or t,~) becomes smaller in magnitude than
b, si2, where bo is the collinear cutoff parameter defined in Sec. II. After the factorization is performed, the contribution
from the remnants of the hard collinear singularities has the form

HC )
q1 pq2

Q~BO1 Q

(qrqg ~ Vp) dv dxi dxz
27l' dv

x Gq, yp(xg, M ) —Gq, g~ —,M ) Pqq(z) + Gqy~(zg, M )

+Gq, y„(xz, M )
dz xi 2 2

Gq gp M Pqq(z)+Gq ]„(x2 M )s ' z'

(20)

with P;, (z, e) = P,, (z) + ~P, (z), (24)

1+Z2
Pqq(z, e) = C~

1 —z

1

—e(l —z)

Pqq(z, c) = z~+ (1 —z)z —e

(22)

(23)

P,~(z) = P;~(z) ln 6, I

—P,', (z) —AFcF4, (z) .
z 'M2)

(21)

The Altarelli-Parisi splitting functions in N = 4 —2e
dimensions for 0 ( z ( 1 are

1+z~ (1 —z) 3 1
Fqq(z) = Cz

1 —z ( z ) 2 1 —z
+2z+3 )

which defines the P,' functions. The functions Fqq and
Fqz depend on the choice of factorization convention and
the parameter AFC specifies the factorization convention;
AFc = 0 for the universal [modified minimal subtraction
(MS) [30]] convention and AFc = 1 for the physical [deep-
inelastic scattering (DIS)] convention. For the physical
convention the factorization functions are

and can be written
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Fqs(z) = — (z + (1 —z) ) ln
~

1, , (1 —zl
qs

+Sz(1 —z) —1 .

The transformation between the MS and DIS schemes is
discussed in Ref. [31]. The parameter Mz is the factor-
ization scale which must be specified in the process of
factorizing the collinear singularity. Basically, it deter-
mines how much of the collinear term is absorbed into
the various parton distributions.

The upper limit on the integrals appearing in Eq. (20)
is determined by requiring that the hard collinear term
not overlap with the soft region previously discussed. If
such an overlap were to occur, then that region of three-
body phase space would be counted twice.

q

~Y
g

E. Soft collinear subtraction term
q

The Mz-dependent subtraction piece which is used to
absorb the collinear singularity into the parton distribu-
tion functions involves an integral over splitting functions
with the upper limit corresponding to z = 1, not 1 —6, .
Therefore, there is one last piece to be subtracted which,
for the tqs case, has the form

FIG. 3. Feynman diagrams for the real emission subpro-
cess qpq2 —+ Vpg. Not shown are the diagrams obtained by
interchanging the V and p. The diagrams with virtual V
exchange apply only for R'p production.

dCT15 )SC

V
dxg dx2

~ ~ ~ Gqg„(x2) M )
daB '" n, (4np, 2)' I'(1 —e)

v 2~ (M~) I 1 —2e

1 dz 1 X1 2P«(z) + A—FC—, Fqq(z) Gq~„—,M
1 b Z

(27)

Inserting P«and F~~ and integrating yields

SC
doss G )F

t'4m p, ) I'(1 —e)
2vr i s ) I'(1 —2e)

x — —+2ln 6, + -+2ln 6, ln 2 +

9 vr 3 d&Born
+Ape -+ + —ln(b, ) —ln(b, ) Gqy„(xg, M ) Gqg~(xz, M ),

dV

where terms proportional to a power of the soft cutoff 6, have been discarded. The corresponding parton level cross
section is

9 vr2 3 d~ Born
+XFC -+—+ —in(S, ) —in(~, )'

2 3 2 dv

The soft collinear singularity in the 825 —+ 0 region yields an identical result.
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F. Nex. t-ta-leading-lagarithrn crass sectian

The NLL cross section, which consists of two- and three-body contributions, can now be assembled from the pieces
described in the previous sections. The two-body contribution is

d'U dXy dX2

d~NLL
x G g„(xi, M ) G-,g„(xz, M ) (qiqg ~ Vp) + (xi ~ xz)

(30)

where the NLL bremsstrahlung cross section is defined in Appendix A, the sum is over all contributing quark flavors,
o.Hc is defined in Eq. (20), and

d~NLL g~Born

'U
(qiq2 Vp) =

dv

d&virt d&soft
+ d. + d.

d0

dv

d0

dv
(31)

The ~ and —poles cancel when the terms in Eq. (31) are summed [see Eqs. (7), (13), (19), and (29)].
The three-body contribution to the cross section is

&s body (pp ~ Vp + X) = ) .
a, b, c

do'(ab ~ Vpc) G y„(xi, M ) Gt,g„(xz, M ) + (xi ~ x2) dxi dx2, (32)

where the sum is over all partons contributing to the
three subprocesses qiq2 —+ Vpg, qig ~ Vpq2, and
gq2 —+ Vpq~. The squared matrix elements for the 2 ~ 3
Wp subprocesses were evaluated numerically via helic-
ity amplitude methods as described in Ref. [14] and the
squared matrix elements for the 2 —+ 3 Zp subprocesses
are given in Appendix C. The integration over three-body
phase space and dxi dxz is done numerically by standard
Monte Carlo techniques. The kinematic invariants s,~

and t,z are first tested for soft and collinear singularities.
If an invariant for a subprocess falls in a soft or collinear
region of phase space, the contribution from that subpro-
cess is not included in the cross section.

IV. RESULTS

Unless otherwise stated, the numerical results pre-
sented in this section have been obtained using the two-
loop expression for n, . The @CD scale AqcD is spec-
ified for four flavors of quarks by the choice of parton
distribution functions and is adjusted whenever a heavy-
quark threshold is crossed so that n, is a continuous func-
tion of Qz. The heavy-quark masses were taken to be
m~ = 5 GeV and mq = 140 GeV ([32]). The standard-
model parameters were taken to be M~ = 91.17 GeV,
M~ = 80.0 GeV, o;(Miv) = 1jl28, and sin giv
1 —(M~ jMz)2. These mass values are consistent with
recent measurements at the Tevatron [33], the SLAG Lin-
ear Collider [34], and the CERN e+e collider LEP [35].
The soft and collinear cutoff parameters were taken to be
b, = 10 2 and bc = 10 3. The parton subprocesses have
been summed over u, d, c, and s quarks and the Cabibbo
mixing angle has been chosen such that cosz Hc = 0.95.
Except where otherwise stated, a single scale Q = M&&,
where M~~ is the invariant mass of the Vp pair, has been
used for the renormalization scale p, and the factoriza-
tion scale M2.

The numerical results for the order n, calculation of
Wp production have been compared with updated results
from Ref. [17]. (The original calculation in Ref. [17] was
recently found to contain a few minor errors [36] which
will be corrected in an upcoming paper [37].) The re-
sults agree when the leading-log fragmentation functions
D

&
(z) and D"& (z) [see Eqs. (A3) and (A4)] are set to

zero. The leading-log fragmentation functions must be
set to zero because the leading-log bremsstrahlung con-
tribution was not included in Ref. [17]. Also, when com-
paring with Ref. [17] in the DIS scheme, the factorization
function F~~(z) in Eq. (26) must be replaced by

Fqg(z) = — (z + (1 —z) ) ln
~ ~

+ 6z(l —z)=1 2 t'1 —z l
Q9 z j

(33)

which is the form used in Ref. [17]. [Equations (26) and
(33) differ due to the convention used for the gluon spin
average; ~ 2 was used for the gluon spin average in

Eq. (26) whereas 2 was used in Eq. (33).]
In order to get consistent NLL results it is neces-

sary to use parton distribution functions which have
been fit to next-to-leading order. The Harriman-Martin-
Roberts-Stirling (HMRS) [38] set-B distributions with
A4 = 190 MeV will be used here since they fit the present
data the best. Note that the HMRS distributions are de-
fined in the universal (MS) scheme and thus the factoriza-
tion defining parameter AFg in Eqs. (21) and (29) should
be AFC = 0. For convenience, the HMRS set-B distri-
butions have also been used for the LL calculations al-
though, strictly speaking, one should use a leading-order
parameterization of the parton distributions for LL cal-
culations.

To leading order, Vp final states are produced via
the Born process qqq2 —+ Vp and by the photon
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) Ehea «I, E~,
AR&Rp

(35)

with AR = [(AP) + (Ag)z]~~z. The quantities AP and
Ayl are the difFerences in azimuthal angle and pseudora-
pidity between the photon and hadron. In the photon
bremsstrahlung process, the photon is emitted collinear
to the final-state parton and carries a fraction z of the
parent parton's momentum, thus the cone size is irrele-
vant and the isolation requirement reduces to a restric-
tion on the range of the splitting fraction z. The range
of the splitting fraction is reduced from 0 & z ( 1 to
&+, & z & 1. The effect of a photon isolation cut is il-
lustrated in Fig. 4 by the dotted curve which corresponds
to the photon bremsstrahlung cross section with a pho-

bremsstrahlung process which proceeds via subprocesses
such as qqg —+ Vq2 followed by photon bremsstrahlung
from the final-state quark. The Born and photon
bremsstrahlung cross sections for Vp production are com-
pared in Fig. 4. The photon and weak boson were re-
quired to satisfy

pz'(y) ) 50 GeV l~(~)l & 25 lu(&)l & 25

(34)

These values were chosen because they are typical of ex-
perimental acceptance cuts; furthermore, the cuts on the
photon transverse momentum and photon rapidity are
necessary to regulate the soft and collinear divergences
associated with the photon. For this figure, n, was
evaluated with the one-loop expression and Q = sq2
was chosen for the scale. The figure shows that the
photon bremsstrahlung process becomes more important
with increasing center-of-mass energy, and in the Wp
cases, is the dominant production mechanism at large
center-of-mass energies. For most cases of interest, for
example, in tests of the triple weak-boson vertex, the
photon bremsstrahlung process is a background to the
more interesting Born process. Fortunately, the photon
bremsstrahlung events can be suppressed by requiring the
photon to be isolated. A photon isolation cut typically
requires the sum of the hadronic energy Eyed in a cone
of size Bo about the direction of the photon to be less
than a fraction eh, of the photon energy E~, i.e. ,

) Ehed ( 0.15E~
ER(0.4

(36)

has been imposed for this figure. The figure shows that
the order-a, corrections are positive and increase with
the center-of-mass energy. For Zp production, the ratio
of NLL/LL cross sections varies from 1.3 to 1.5. These

ton isolation cut of eh = 0.15. The isolation cut reduces
the photon bremsstrahlung cross section by about an or-
der of magnitude, while the Born result is unaffected.
Therefore, to suppress the photon bremsstrahlung back-
ground, a photon isolation cut will be applied in the rest
of the results presented in this section. Note that the LL
cross section, which is the sum of the Born and photon
bremsstrahlung cross sections, depends quite strongly on
the photon isolation cut.

Two other features of Fig. 4 are worth noting. First,
note that the Wp Born cross section is smaller than the
Zp Born cross section. One would naively expect just
the opposite because the W-boson-to-quark coupling is
larger than the Z-boson-to-quark coupling; indeed, this
is the case for the photon bremsstrahlung processes. The
Born cross section for Wp production is smaller than the
Born cross section for Zp production because the Wp
subprocess is suppressed by an amplitude zero [8]. This
amplitude zero will have important consequences in the
order-n, corrections to Wp production. The other fea-
ture to note is that the W p bremsstrahlung cross sec-
tion is slightly larger than the W+p bremsstrahlung cross
section. In pp collisions the cross section for W+ produc-
tion is slightly larger than the cross section for W pro-
duction because the density of u valence quarks is greater
than the density of d valence quarks in the proton. On
the other hand, the probability of photon bremsstrahlung
is greater in the dg —+ W u subprocess than in the
ug ~ W+d subprocess due to the larger electric charge
of the u quark. In the end, the effect of the quark charge
dominates and the W p bremsstrahlung cross section is
slightly larger than the W+p bremsstrahlung cross sec-
tion.

Figure 5 shows the LL and NLL total cross sections
as functions of the center-of-mass energy; parts (a), (b),
and (c) are for Zp, W+p, and W p, respectively. In
addition to the cuts in Eq. (34), a photon isolation cut
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curve is the Born cross section,
the dashed curve is the photon
bremsstrahlung cross section,
and the dotted curve is the pho-
ton bremsstrahlung cross sec-
tion with a photon isolation cut
as described in the text.
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FIG. 5. Total cross section
for pp ~ Vp + X as a func-
tion of the center-of-mass en-
ergy; parts (a), (b), and (c)
are for Zp, W+p, and W
production, respectively. The
solid curve is the NLL result,
the dashed curve is the LL re-
sult, and the dotted curve is the
Born result.

NLL results are quantitatively similar to the NLL results
for hadronic ZZ [18], W W+ [19], and W+Z [20] pro-
duction. The size of the order-o, , corrections in the Wp
processes is a bit surprising at first sight; the ratio of
NLL/LL cross sections is 2.9 and 3.5 at energies reached
at the LHC and SSC, respectively.

To understand the size of the order-o. , corrections in
Wp production, it is instructive to examine the behavior
of the 2 —+ 2 and 2 ~ 3 tree-level cross sections for W+p
and Zp production. Figure 6(a) compares the 2 —+ 2
cross sections and shows that the W+p Born cross sec-
tion is smaller than the Zp cross section even though the
W-boson-to-quark coupling is larger than the Z-boson-
to-quark coupling. The Wp cross section is suppressed
due to destructive interference between the t-, u-, and s-
channel diagrams in Fig. 1. This destructive interference,
which is also responsible for the radiation amplitude zero,
manifests itself in Eq. (6) in the factor

and W+p production. The cross sections have been de-
composed into contributions from qq and qg + qg initial
states. The qg + qg contribution is larger for W+p than
for Zp due to the larger W-boson-to-quark coupling. In
contrast, the qq contributions are nearly equal, implying
that the qiq2 —+ Wpg subprocess is suppressed relative to
the qq —+ Zpg subprocess. This suppression is also due to
destructive interference from the s-channel diagrams. In
fact, in the soft gluon limit, the qqqq ~ Wpg subprocess
has an amplitude zero [see Eq. (19)]. (An amplitude zero
only occurs when all the charged particles in the subpro-
cess have the same sign charge, thus the qig ~ Wpq2
subprocess cannot have an amplitude zero. ) The total
2 ~ 3 cross section is larger for Wp production than
for Zp production due to the larger W-boson-to-quark
coupling. These behaviors of the tree-level cross sections
were also observed in Refs. [13] and [14].

In the present calculation, the NLL cross section is

(Qit + Qzu)
(t+ u)z (37)

101 10'

For Zp production, which does not have the s-channel
diagram, this factor reduces to Q, whereas for W+p
production this factor can be written

—
~

—+cos8'
~4q3 )

100

100

10
—1

with 8* the angle between the quark q~ and the photon in
the parton center-of-mass frame. This factor suppresses
the W+p Born cross section relative to the Zp Born cross
section for most values of cost9'. The vanishing of the
W+p Born cross section at cose' = ~s has been un-
derstood in terms of the antennae pattern for radiation
from classical charge distributions [8]. Not only is the
Wp Born cross section suppressed, but in addition, all
of the Wp two-body contributions are suppressed (with
the exception of the bremsstrahlung contribution which
is suppressed by the photon isolation cut) since they are
either proportional to the Born cross section or they con-
tain the suppression factor (Qit+Q2u) [see Eqs. (7), (13),
(19), (20), and (29)]. Thus the magnitude of the two-
body contribution is smaller for R"p production than for
Zp production.

Figure 6(b) compares the 2 —+ 3 cross sections for Zp
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FIG. 6. Tree-level cross sections as a function of the
center-of-mass energy. Part (a) is for the 2 ~ 2 processes
pp ~ Zp and pp ~ W+p. Part (b) is for the 2 -+ 3 processes
pp —+ Vp+ 1 jet; the cross sections have been decomposed
into qq and qg initial-state components. The components are
qg —+ W+p+ 1 jet (solid line), qg -+ Zp+ 1 jet (dash-dotted
line), qq —+ W+p+ 1 jet (dashed line), and qq ~ Zp + 1 jet
(dotted line). This figure was made using the one-loop expres-
sion for n, and the cuts in Eq. (34); in addition, the jet must
satisfy pT, (j) & 50 GeV, ~y(j) ~

( 2.5~, and b,R(p,j) & 0.4.
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given by the sum of a two-body contribution, vrhich is
negative for most values of the cutoE parameters 6, and
b„and a three-body contribution, which is positive def-
inite. The destructive interference in the Wp Born pro-
cess causes the magnitude of the two-body Wp contribu-
tion to be about half as large as the two-body Zp contri-
bution. On the other hand, the larger W-boson-to-quark
coupling causes the thr""-body Wp contribution to be
about twice as large as the three-body Zp contribution.
The net result is that the order-n, corrections and cross
sections are about twice as large for Wp production than
they are for Zp production.

In both Zp and Wp production, the order-n, correc-
tions increase with the center-of-mass energy. The source
of these corrections is illustrated in Fig. 7 where the NLL
results have been decomposed into the Born contribution
and the order-n, corrections from qq and qg initial states.
The order-o. , qq corrections are approximately propor-
tional to the Born cross section; however, the order-n,
qg corrections increase rapidly with the center-of-mass
energy. This rapid increase is due to the rapidly increas-
ing gluon density at large center-of-mass energies. Thus
the bulk of the order-n, corrections is due to the opening
of the qg —+ Vp+ Ã process at order n, and to the large
gluon density at large center-of-mass energies.

The large order-n, corrections to hadronic Wp pro-
duction raise questions about the size of the order-nz cor-
rections and the convergence of the perturbation series.
Tree-level calculations of TVp+ 0, 1, and 2 jets suggest
that the perturbation series is well behaved [14]. These
calculations show that the 0-jet cross section (the Born
cross section) is smaller than the 1-jet cross section due
to the amplitude-zero suppression in the 0-jet case. On
the other hand, the 2-jet cross section is smaller than the
1-jet cross section as expected, due to the extra power
of n, in the 2-jet cross section. Thus the order-n, tree
level and complete cross sections have similar behaviors.
There is no reason to expect any difference in behavior
between the order-a~ tree level and complete cross sec-
tions. Thus the large order-a, corrections to hadronic
Wp production do not seem to represent a breakdown of
the perturbation series, but instead are only an aberra-
tion due to the suppression of the Born cross section by
the radiation amplitude zero.

One of the motivations for performing NLL calcula-

tions is that the results often show a less dramatic de-
pendence on the renormalization and factorization scale
than the LL result. The scale dependence of the Zp
and W+p cross sections are illustrated in Figs. 8 and
9, respectively, where the total cross sections are plot-
ted verses the scale Q. The scale Q has been used for
both the renormalization and factorization scales. Parts
(a), (b), and (c) are for the Tevatron, LHC, and SSC
center-of-mass energies, respectively. The LHC and SSC
results include the cuts of Eqs. (34) and (36) vrhereas the
Tevatron results include the cuts

&r(~)»0 «» I&(V)l & 1.0, lu(V)l & 2 5,
(39)

) Ehed ( 0.15E~.
DR&0.7

At the LL level, the scale dependence enters through the
scale dependence of the parton distribution functions.
The qualitative differences between the results at the
Tevatron and the supercolliders are due to the diEerences
between pp versus pp scattering and the ranges of the z
values. At the Tevatron, Vp production in pp collisions
is dominated by valence-quark interactions. The valence-
quark distributions have little Q2 dependence for the x
values probed at the Tevatron. On the other hand, at the
LHC and SSC, sea-quark interactions dominate in the pp
process and smaller x values are probed. The sea-quark
distributions increase vrith Qz for the x values probed at
the LHC and SSC. Thus the LL cross sections show little
variation vrith Qz at the Tevatron but increase vrith Q at
the LHC and SSC. At the NLL level additional scale de-
pendence enters via the running n, which decreases with
Qz. The Tevatron results are examples of observables
whose scale dependence increases at the NLL level. Other
observables with this behavior have been encountered in
the higher-order calculation of direct photon production
[22]. The combination of nearly scale-independent par-
ton distributions and decreasing a, leads to NLL results
that are decreasing vrith Qz at the Tevatron. The NLL
results at the LHC and SSC exhibit the more typical be-
havior of decreased scale dependence. This is because
the parton distributions, which are increasing with Qz,
are compensated by the running n, which decreases with
Qz
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One of the major advantages of using Monte Carlo
methods for NLL calculations is that one can calculate
any number of differential distributions simultaneously
by simply histogramming the quantity of interest. Dif-
ferential distributions for Vp production at the Tevatron
and SSC center-of-mass energies are given in Figs. 10—
17; parts (a) and (b) of these figures are for Zp and
W+p production, respectively. The NLL and LL results
are shown in these figures. For clarity, the Born results
are not shown in most cases since they are just slightly
smaller than the LL results. Results for the LHC center-
of-mass energy are qualitatively similar to the SSC re-
sults, but with norrnalizations scaled down by a factor of
about 0.5. The SSC results include the cuts of Eqs. (34)
and (36) whereas the Tevatron results include the cuts of
Eq. (39).

The transverse momentum distributions of the photon
in the processes pp —+ Vp+X at the Tevatron energy are
shown in Fig. 10. The order-a, corrections are positive,
increase with pT, (p), and are larger in the W+p case.
Both the LL and NLL cross sections for W+p production
are smaller than the corresponding cross sections for Zp
production. The pT (p) distributions at the SSC energy
are shown in Fig. 11. The LL cross section for W+p
production is again smaller than the LL cross section
for Zp production, but the situation is reversed for the
NLL results. The order-n, corrections are much larger at
this energy, especially in the W+p case. This behavior
of the NLL result is attributed to the amplitude zero
in the W+p process, the opening of the qg —+ Vp+ X

production process at order o.„and to the large gluon
density.

Figure 12 is the cos8~ distribution of the photon in
the processes pp —+ Vp+ X at the Tevatron energy. The
angle 8~ is the angle in the laboratory frame between the
proton beam and the photon. The distribution is sym-
metric about cos 8~ = 0 for the Zp case, but is asymmet-
ric in the W+p case due to the amplitude zero. At the
parton level, the amplitude for qqq2 —+ W+p vanishes at
cos 8* = —3, where t9* is the angle between the quark q~
and the photon in the parton center-of-mass frame. At
the hadron level, this zero is smeared out into a dip at
cos 8~ = —s. Thus the cos 8~ distribution is asymmetric,
with the photon preferring to be emitted in the direc-
tion of the proton beam. The cos8~ distribution at the
SSC energy is shown in Fig. 13. In this case the Zp and
W+p distributions are both symmetric about cos 8~ = 0
because of the symmetry of the initial pp state.

The photon rapidity distribution in the parton center
of mass frame, ~y~~, is shown in Figs. 14 and 15. This
variable was studied in Ref. [3] for the Wp Born process
and was found to be quite sensitive to anomalous cou-
plings in the WWp vertex. The dip at ~y'~ = 0 in the
W+p Born result is due to the amplitude zero. Anoma-
lous couplings at the WWp vertex will fill in this dip
(3].

Figure 16 shows the invariant mass distribution of the
Vp pair in the processes pp -+ Vp+ X at the Tevatron
energy. The invariant mass of the Wp pair is not read-
ily measurable since the W boson must be identiFied by
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FIG, 15. Same as Fig. 14 but for the reaction pp ~ Vp+X
at the SSC energy. The solid curve is the NLL result, the
dashed curve is the LL result, and the dotted curve is the
Born result.

V. SUMMARY

Complete order-o', calculations of pp —+ W p and
(—)

pp —+ Zp have been presented. The bulk of the radia-
tive corrections in both cases is due to the opening of
the qg —+ Vp+ X production process at order o', and to
the large gluon luminosity at large center-of-mass ener-
gies. At the SSC energy, the radiative corrections for Zp
production are approximately 40% as large as the Born
cross section; however, for Wp production the radiative
corrections are about twice as large as the Born cross sec-
tion. The quantitative difFerence between the radiative
corrections to Zp and Wp production is attributed to
the destructive interference from the s-channel diagram
in the Wp Born subprocess. This is the same destructive
interference that is responsible for the radiation ampli-
tude zero in the Wp subprocess. It is imperative that
these large radiative corrections be taken into account
when measurements at hadron supercolliders are used to
test the WWp coupling or the compositeness of the Z
boson.
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APPENDIX A: PHOTON BREMSSTRAHLUNG
FIG. 16. Invariant mass distribution of the Vp pair for

the reaction pp -+ Vp+ X at the Tevatron energy; parts (a)
and (b) are for Zp and W+p production, respectively. The
solid curve is the NLL result and the dashed curve is the LL
result.

The photon bremsstrahlung contribution to Vp pro-
duction is calculated by convoluting the order-a, hard
scattering subprocess cross section for V production with
the appropriate parton distribution and fragmentation
functions:
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q2(p2) V(ps) + g(p4) is
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FIG. 17. Same as Fig, 16 but for the reaction pp —+ Vp+X
at the SSG energy. where s = (py +p2), t = (pz —ps), an« = (pl p4) i
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spin and color averages are not included. The squared
matrix elements for the subprocesses q~g —+ Vq2 and
gq2 —+ Uqq are obtained by crossing s ~ u and s +-+ t,
respectively, and introducing an overall minus sign. If e.

photon isolation cut of the type discussed in Sec. IV is
included, then the range of z is reduced from 0 & z & 1
to &, &z&1.

The LL bremsstrahlung cross section is obtained by us-
ing leading-log fragmentation functions. The numerical
work in this paper was done using the parametrizations
of Ref. [39] for the LL fragmentation functions:

DLL 2 e (2.21 —1.28z+ 1.29z )z
1 —1.63l (1 — )

which must be factorized and absorbed into fragmenta-
tion functions. This will modify the leading-log quark
fragmentation functions such that

D~j,"(z) = D,"y, (z)+
2

Pqq(z) ln(z(l —z)b ., j
—P~ (z) (A5)

(the gluon fragmentation function is unchanged). The
new term is the remnant of the collinear singularity af-
ter the factorization process has been performed. The
functions P&z(z) and P&q(z) are

(A6)

+0.0020(l —z)"z " (A3) P' (z) = -Q z. (A7)

zDLL (z, Q2) = j' (j. —z)1.0s z
0.194

(A4)

where F = (o./2vr) ln(Q /A2) and A = A4. These
fragmentation functions are proportional to o. ln(Q2/A2);
thus they are proportional to o./n, since a, (Qz)
12vr/[(33 —2N~) ln(Q /A )]. The logarithmic growth of
these fragmentation functions arises from an integration
over the transverse momentum of the photon with re-
spect to the quark. The upper limit for this integration
has been taken to be the typical hard scattering momen-
tum scale Q . The divergence associated with the lower
limit has been regulated by using the @CD scale param-
eter A as an infrared cutofF. Details on the derivation of
these fragmentation functions can be found in Refs. [29]
and [39].

At the next-to-leading-log level there are collinear
singularities associated with final-state bremsstrahlung

I

APPENDIX B:LOOP INTEGRALS

Four loop integrals which appear in the Vp calcula-
tions are given in this appendix. The other loop integrals
which appear in the calculation can be found in Refs. [18]
and [19].

The integrals were evaluated using the Feynman
parametrization technique and dimensional regulariza-
tion was used to regularize the integrals. The number
of space-time dimensions has been set to N = 4 —2e.
The integrals are written with a common factor

(4~&' r(1 —.)
( s ) I'(1 —2e) (4vr)2

'

The four integrals are

IP
2

d k 1

(2vr) ~ k2(k + Pz) 2(k + Pz —Ps)z(k —P2) 2

tl 1 (—t '
. (— s . ( t 5I+ —»1 2 +Li211 —

&
+Li211-st c t(Mw-) 2 (Mw Mw' Mw'

d k k~k

(2.)~ k (k+.) (k+~)

=q bzb ( + In~ ~+6+ ——bin +tn~, . 2 3
2a2 ez e e ( s 3 8

6" a —6 + a" —b" —+5 —2ln
2 t' —a'5

s )
1 (—az1 „a2 1 (—

anal

—(a" —6")(a"—b ) —+ 2 —ln1 1 + g""——+ 3 —ln1
s ) 2

IP—
3 = d k k&

(k+ ) (k+ ~)

. F 1 (—a'l=i —
2

a" ——2 —ln1a s

bz( z+—1 —a21 —a2& 1 —az)
ln 1+4+ ——21n 1+ —ln

s ) 6 s ) 2 s )



954 J. OHNEMUS 47

I4 =
(27r)~ k2(k+ a)2(k+ b)2 '

1 1 t' —a2& 1 (—a2)=i————ln
] I+ -1n

( I
+-

a 6 6 0 s ) 2 ( s ) 6

The function Li2(z) is the dilogarithm function

Li2(z) =— dt
ln(1 —tz) —= )t k2

k=1
(B2)

APPENDIX C: REAL EMISSION SUBPROCESSES

The Feynman diagrams which contribute to the amplitude for the real emission subprocess

q(P1) + q(P2): Z(P3) + W(P4) + g(P5) (Cl)

are shown in Fig. 3. The squared amplitude summed over final-state polarizations and initial-state spins can be
written

i=1,6
j=i,6

The M,~. are functions of the Z-boson mass M& and the Lorentz scalars 8;~ = (p, + p~)2 and t,~
= (p, —p~)2:

(C2)

s12 + t15 + t15 Mz + s45
2

+2812(t15(S]2 + t14) + t24(S12 + t25) + S12S45 —tlst24)

16
M26 =

2 t14 + t15 + S45 S12S45 —(tl4 + t15)(t24 + t25)
14t15t2

8S4511=
tq5t24

16t25
Mg2 —— Mz —tg5

tv5t23t24-
8 I

My3 —— 2S12 (t14t24 —t15t25) + 812$45(t14 —t15 + t24) + (t14 + t15 —t24) (t15t24 —t14t25)
tq3tq5t24t25

16S12
My4 = 812(MZ 845) + (t14 + t24) (t15 + t25)

t&4t&5t24t25-
8

M22 —
2 (S12 + t24)(t15 + S45) —t14t25

t)5t22, .
16sy2

23=
tysty5t23t25

8
M25 —— 2812(t14 + t25 + 812)(t14 + 't25 + 812+ S45) + (t14 + t25+ S45)(S12S45+ t14t25 t15t24)

ti3ti5t23t24-

The remaining M;z expressions are related to the above expressions by interchanging parton momenta:

M15 = M12(1 ~ 2) 4 ~ 5)) M24 = M13(1 ~ 2), M33 = M22(l ~ 2))

M16 =M]3(l ~ 2, 4 ~ 5), M34 = M12(1 ~ 2), M35 = M26(1 ~ 2),
M55 = M22(1 ~ 2, 4 ~ 5), M36 —M25(1 ~ 2), M44 = M»(l ~ 2))

M45 ™13(4~ 5) M46 ™12(4~ 5) M56 ™23(4~ 5) M66 ™22(4~ 5) ~

The squared amplitudes for the subprocesses qg —+ Zpq and gq + Zpq can be obtained from the qq —+ Zpg squared
amplitude by crossing p2 ~ —p5 and p1 ~ —ps, respectively. Furthermore, one has to correct for an overall minus

sign and change the color average from 3 x 3 to 3 x s. The subprocess cross section is

de(qq Zpg) = —A~ ~W~ d C3,
1 1 2 4
4 2Sg2

where the factors 4 and A~ are the spin and color average, respectively.
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