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A method is developed for determining the NN —+ AN transition amplitudes. The quadratic
relations existing between all the spin observables of the transition are presented. The study is
performed in the optimal formalism, and applied to the cases of transversity and helicity frames.
For each case, a methodology is given for selecting a set of 31 observables, which determines the 16
magnitudes of the amplitudes and 15 independent relative phases between them.
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I. INTRODUCTION

In view of the role of the isobaric resonance in in-
termediate energy physics [1—4], a more precise knowl-
edge of the NN -+ AN transition is of importance.
Experimentally, information can be extracted from the
NN ~ NNm reactions [5]. A set of spin observables
of the b, production on a wide energy range has been
provided by the Argonne data [6]. In recent years, the
spin structure of this transition has been investigated [2,
7, 8] in order to interpret the data already obtained and
to prepare the framework of experimental and theoreti-
cal programs in view of a better knowledge of the reac-
tion. More particularly, the complete determination of
the transition amplitudes is an aim to be kept in mind.

A systematic formalism for the spin observables has
been developed in Refs. [2, 7, 8], according to the po-
larization states of the four particles involved in the re-
action. It uses a spin-space decomposition of the tran-
sition matrix analogous to the Wolfenstein representa-
tion in NN elastic scattering. The 16 complex spin
amplitudes f,(8~) and g, (8~) are somewhat similar to
the spin-nonflip and spin-flip amplitudes of pion-nucleon
scattering. This decomposition is convenient for studying
nuclear reactions in intermediate-energy physics. Use is
made of this spin-space decomposition for tackling prob-
lems such as nucleon-nucleus scattering [4] and nuclear
b, production [3], by eikonal models. At a difFerent level,
still along this line, the iterated pion-exchange model of
Kloet and Silbar [9] has been used to generate theoreti-
cal f, (8~) and g;(8~) spin amplitudes. They have been
tested [10] against Argonne experimental data.

Any formalism describing the transition matrix and
observables presents observables in terms of bilinear com-
binations of amplitudes ("bicoms"), on the one hand, and
yields linear and nonlinear relationships among observ-
ables, on the other hand. In general, however, the matrix
connecting observables and bicoms is far from diagonal,

and thus a given observable depends on many bicoms and
vice versa.

In the absence of constraints, 32 amplitudes are needed
to describe the studied reaction. Parity conservation re-
duces the number of independent complex amplitudes to
16 and consequently we are facing 16 = 256 linearly
independent bicoms, which is also the number of observ-
ables. Therefore, these observables are not independent
but are related to each other in a nonlinear way. Taking
into account quadratic relations between linearly inde-
pendent observables yields a number of 31 independent
observables only. The amplitude analysis requires the
determination of the 16 magnitudes and 15 independent
relative phases. Whereas a single set of observables deter-
mines the magnitudes, the 15 independent relative phases
can be obtained by many difFerent sets of 15 observables.
The selection of such sets is closely linked with the anal-
ysis of the quadratic relations.

In a previous paper [8], the optimal formalism of Gold-
stein, Moravcsik, and Arash [11—14], has been applied to
the study of the NN ~ AN transition. It optimally di-
agonalizes the matrix connecting observables and bicoms
and consequently is well adapted to the phenomenologi-
cal determination of amplitudes.

In optimal formalism, as far as "primary observables"
are concerned, in which the spin projection of each parti-
cle state is specified, polarization structure analysis yields
bicorn-observable relations in a particularly simple form.
Yet, it is much simpler to perform experiments in which
some particles are unpolarized, which correspond to av-
eraged spin states and leads to a redeflnition of the ob-
servables in terms of "secondary observables. " Unfortu-
nately, for these "secondary observables, " the complex-
ity of the relations with bicoms increases. Among all
the possibilities for quantization directions, helicity and
transversity frames play an important role and are par-
ticularly studied in the framework of optimal formalism.

The purpose of the present paper is to investigate the
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II. QUADRATIC RELATIONS IN OPTIMAL
FORMALISM

Optimal formalism, developed by Goldstein, Moravc-
sik and Arash [11—14], is applied to the transition
NqN2 —+ AqNz. Here, a brief recall of notations and
basic formulas is given. More details can be found in [8].
The transition matrix is written

M = ) D(A t A L)6'"'g b'

AL,AL

(2.1)

where the D(A, t; A, L)'s are the amplitudes and the 6"~

and 6+~ the spin-momentum tensors referring to parti-
cles Aq and Nz, N2, and Nq, , respectively. The indices
A, t, A, and L are the magnetic projections along the z
quantization axis of each particle, Aq, Nq, N2, and N2,

quadratic relations existing between all the spin observ-
ables of the NN ~ EN transition, and to propose an
eKcient method for an amplitude analysis. Our study is
performed in the optimal formalism, and applied to the
case of transversity and helicity frames. Taking account
of parity invariance reduces the number of independent
amplitudes in a quite different way for transversity and
helicity frames. For each case, a methodology is devel-
oped for selecting a set of 31 observables which deter-
mines the 16 magnitudes of the amplitudes and 15 inde-
pendent relative phases between them, the overall phase
being irrelevant, in the present case.

The paper is organized as follows. Section II is de-
voted to a brief summary of the optimal formalism for
the NN t AN transition and to the nonlinear relation-
ships between observables. Sections III and IV present
a method for determining the magnitudes and the inde-
pendent relative phases of the transition amplitudes, in
the transversity and helicity frames, respectively.

respectively. The reaction is completely described by a
set of 32 amplitudes D(A, t; A, I ), each of which being a
function of energy and scattering angle.

The spin observables are defined by

Z(uvH„, UVHI, (urHq, "OHg)

Tr(Q( JtHtq
~ AHEM~

tvtH ppUVH JMst
) (2 2)

where u and v characterize the spin-space matrix of parti-
cle Nq, U, and V that of N2, (, and cu being for Aq, =, and
0 for N2. Each of the two indices, for a given particle of
spin s, takes (2s+ 1) values from 1 to (2s+ 1), which are
related to magnetic projections along the quantization
axis. The H's can be either "real" (R) or "imaginary" (I),
for off-diagonal elements of the density matri~. For diag-
onal elements, H is only "real" and the label (R) may be
omitted for sake of simplicity. The indices p, P, q, Q are
equal to +1 or —1, Hq standing for R and H ~ for I. The
p and Q operators, describing initial polarizations and
measured final polarizations, denote all the spin-space
operators required to generate spin observables of the re-
action. As usual, putting Eq. (2.1) into Eq. (2.2), it
is easy to see that spin observables are given by bilinear
combinations of amplitudes, called "bicoms. "

In the optimal formalism, the choice of observables and
amplitudes provides observable-bicorn relations as simple
as possible. For this, the b's in Eq. (2.1) are chosen to
have only one nonzero element and the p and Q operators
to be "minimally Hermitian, " so that the corresponding
matrices have minimal number of nonzero elements com-
patible with the Hermiticity requirement. All spin-space
matrices corresponding to the NqN2 —+ AqNz transition
are given in the Appendix.

Then, the relationship between spin observables of Eq.
(2.2) and bicoms may be written

Z(uvH„, UVHp, (uHq, :-AH@) = 2pPSH„I qq [ D(((), (u); (:-),(U))D'((cu), (v); (0), (V))
+pD((() (v) (=-) (U))D'((~) (u) (~) (V))
+PD((() (u) (=-) (Vj)D*((~) (v) (~~) (U))
+pPD((() (v) (=-) (V))D'((~) (u) (~) (U))
+QD((() ( ) (~j (U))D'(( ) ( ) (=-) (V))
+pQD((() (v) (~) (U))D"(( ) ( ) (=-) (VH
+PQD((() (u) Ã) (Vj)D'((~) (v) (=-) (U))
+pPQD(((j (v). (~) (V))D'((~) (u);(=-) (U))] (2.3)

I

12R and 12I. For spin-2 particle, the (uHq argument
takes four diagonal states 11, 22, 33, and 44 and twelve
off-diagonal ones 12R, 13R, 14', 23B, 24', and 34B and
six analogous ones with I replacing B.

Without parity constraints, the number of bicoms is
322 = 1024, which is also the number of observables.
The 1024x1024 matrix connecting observables and bi-
coms may be reduced as a string of small submatrices
along the diagonal, all other matrix elements vanishing.
These small submatrices are 1xl, 2x2, 4x4, and 8x8 ma-
trices. It is easy to describe the characteristics of the

where S = +1 for ZI = 0, 3, 4 and S = —1 for EI = 1, 2,
ZI being number of I indices among H„, H~, H~, Hg or
also number of —1 among p, q, P, Q. The symbol H„J qg
is equal to "real" or "imaginary, " if the product pPqQ
is +1 or —1, respectively. The symbol (u) = z~, —

z~ for
e = 1, 2, respectively, aad similarly for (v$, (ET)lv), ,

(:-), and (0). The symbol (() = z, z, —z, —s2for ( =
1, 2, 3, 4, respectively, and similarly for (cu).

For spin-2 particle, the uvH„argument (and also,
UVHJ and:-AHg arguments) may be written as two
diagonal arguments ll and 22 and two off-diagonal ones
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submatrices.
The 32 observables referring to diagonal arguments

only are simply related to one bicorn and more partic-
ularly to the magnitude of one amplitude by

(2.4)&(«U»(( =-=-) = 16[D((() (u) (=-) (U)) I
.

The 192 observables referring to three diagonal argu-
ments are also related to one bicorn. For instance, we
have

&(&~H U»&& =-=-) = 16H [D((&) (&) (=-) (U))D*(B) (&) (=-) (U))]. (2 5)

Eqs. (2.4) and (2.5) correspond to 1 x 1 submatrices.
The 384 observables referring to two diagonal arguments are related to two bicoms and correspond to 2x2 subma-

trices. For instance, we have

~(u'UH UVH»(( =-=-) = 8pP~H I'[ D((&) (~) (=-) (U))D'(4) (~) (=-) (V))
+PD(((), (~);(=-) (U))D'(B) (&) (=-) (V))]. (2.6)

The 320 observables referring to one diagonal argument are related to four bicoms and correspond to 4x4 submatrices.
For instance, we have

Z(uvH„, UVH; ((uH, :-:-)= 4pPSH„[ D(((), (u); (:-),(U))D'((w), (v); (:-),(V))
+»(4) (~) (=-) (U))D'((~) (u);(=-), (V))
+PD((&) (u) (=-) (VHD" ((~) (~) (=-) (U))
+ PD((() ( ) (=-) (V))D'(( ) ( ) (=-) (U))]. (2 7)

Finally, the 96 observables without diagonal argument
are related to eight bicoms [Eq. (2.3)] and correspond
to 8x8 submatrices. All these submatrices, except these
corresponding to Eq. (2.4), connect observables either
with the real part of the bicoms or with the imaginary
part.

In terms of these so-called "primary observables, " the
systematic determination of the amplitudes D(A, t; A, L)
is very simple. In Ref. [12], Moravcsik gives the following
theorem: "The amplitudes of any arbitrary reaction can
be determined completely, except for a set of discrete am-
biguities, through the one-by-one bicorn-observable sub-
matrices alone, and hence by exactly 2n —1 measurements
where n is the number of amplitudes. "

Indeed, each observable with diagonal arguments only
[Eq. (2.4)] directly gives the magnitude of the corre-
sponding amplitude. Each observable with only one oK-

diagonal argument [Eq. (2.5)] gives the relative phase
between the corresponding amplitudes. If only one set of
observables leads to the determination of the magnitudes,
it is clear that the determination of n —1 independent

I

relative phases can be obtained by many sets.
The determination of the amplitudes is performed in

two stages [15]. First, the magnitudes are determined,
and second, step by step, independent relative phases
are obtained. The first stage consists of measuring the
n observables with diagonal arguments, only [Eq. (2.4)].
The magnitudes being determined, the second stage con-
sists of finding a set of, at least, n —1 experiments for
the determination of independent relative phases. The
selection of such a set is closely linked with the analysis
of the quadratic relationships [16], which occur between
observables.

For a reaction described by n amplitudes, there are
n~ linearly independent observables, each being a lin-
ear combination of some of the n~ bicoms [Eq. (2.3)].
Therefore, the n~ observables (or bicoms) are dependent
on each other in a nonlinear way, and consequently, the
selection of n —1 observables needs attention for leading
to phases which are independent.

Quadratic relationships may be derived from the fol-
lowing complex identity

(D(A, t; A, L)D'(A', I', A', I')) (D(A', l', A', L') D'(A", t";A", L"))

= iD(A', l', A', L')
i (D(A, t; h, L)D'(A", l";A", I")). (2.8)

From this equation, n(n —1)/2 independent relations are written

[Re(D(A, t; A, L)D'(A', t', A', L'))] + [Im(D(A, t; 6, L)D'(A', /'; A', L'))] = ~D(A, t; A, L)
~

~D(A', t'; A', L')
~

. (2.9)

The magnitudes being known, the real and imaginary parts of a bicorn are related by Eq. (2.9). Consequently, the
determination of a relative phase is performed either by the real part or by the imaginary part of the corresponding
bicorn, with an ambiguity of sign. The total knowledge of the phases, without ambiguities, needs more than n —1
observables.

From Eq. (2.8), a second type of relations between bicoms may be derived
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Re(D(A, l; A, L)D'(A', l'; A', L') )Re(D(A', l', A', L')D'(A", l";A", L"))

—Im(D(A, l; 4, L)D"(A', l', 4', L'))Im(D(A', l', 4', L') D'(A", l";4",L"))

alld

= ~D(A', l', A', L')
~

Re(D(A, l; A, L)D'(A", l";A", L")), (2.10a)

R (D(A, l; A, L)D'(A', l'; 4', L')) Im(D(A', l', 4', I,')D'(A", l";4",L"))

+I (D(A, l; A, L)D" (A', l', A', L'))Re(D(A', l', A', L') D'(A", l"; A", L"))

= ]D(A') l') A') L')~ Im(D(A, l) A) L)D'(A", l"; A", L")). (2.10b)

Using Eq. (2.9) into Eq. (2.10a) yields

iD(A', l'; 6', I,')i'Re(D(A, l; A, L,)D*(A", l";4",L"))

= Re(D(A, l; A, L)D*(A', l', A', I,'))Re(D(A', l', A', I')D'(A", l"; A", I"))

+(~D(A, l; A, L)
~

[D(A', l', A', L')
~

—[Re(D(A, l; A, L)D"(A', l', A', L'))]~)I~s

x (~ D(A', l'; A') L')
~ ~

D(A", l";A", L")
]

—[Re(D(A', l', A', L')D" (A", l";A", I"))]2)I~s. (2.11)

In terms of phases, the magnitudes being known, Eq. (2.11) expresses the fact that the knowledge of the relative
phases (y —y') and (&p' —y") determines (&p

—y") with some ambiguities. There are n(n —1)(n —2)/2 such pair of Eqs.
(2.10), but only (n —1)(n —2)/2 are independent. Taking into account quadratic relations between the n linearly
independent observables, the number of independent observables is given by n~ —n(n —1)/2 —(n —1)(n —2)/2 = 2n l. —

Equations (2.9) and (2.10), expressed in terms of bicoms, may be translated in terms of observables. In general,
quadratic relationships between observables are lengthy. For performing this translation, the inversion of Eq. (2.3) is
needed. One obtains

16H p Q[D(H) (u) ( ) (U))D ((~k (v) (A) (V))]
pPqQ fixed

pPSC(uvH„, UVHp. , (~Hq) =AHA). (2.12)

The summation runs over the four indices p, P, q, Q, each taking the values +1 for off-diagonal argument, but only
the value +1 for diagonal argument, the product pPqQ being fixed to +1 for the real part of the bicorn and to —1 for
the imaginary part. Consequently, for observables referring to three diagonal arguments [Eq. (2.5)], the summation
gives one term, only. For observables referring to two, one, or zero diagonal arguments [Eqs. (2.6), (2.7), and (2.3)],
the summation gives two, four, or eight terms, respectively.

From Eq. (2.12), the quadratic relation of Eq. (2.9) is expressed in terms of observables as

C(uu, UU; Q', :-:-)C(vv, VV;uu, AA) = ) pPSC(uvH„, UVHp, (~Hq, "AHg)
kpPqQ=+I

+ ) pPSC(uvH„, UVHp, (~Hq, =AHq)
g=-

The exchange properties of C(uvH„, UVHp, (uHq, -AHg), obtained from Eq. (2.3), are written

C(vuH„, UVHp, (tuHq, :-AHg) = pC(uvH„, UVHp, (wHq, :-AHg),

C(uvH„, VUHp, (cuHq):-AHg) = PC(uvH„, UVHp, (uHq) =AH@))

C(uvH„, UVHp, ~gHq, :-AHg) = qC(uvH„, UVHp', (wHq):-AH@))

C(uvHI) UVHp'(uHq) A Hg) QC(uvHI) UVHp'(uHq AHq)

(2.13)

(2.14)

Taking account of these exchange properties into Eq. (2.12) gives the expression of the seven other bicoms appearing
in Eq. (2.3); furthermore, it generalizes Eq. (2.13) and yields all the possible cases of quadratic relations of this type.

Similarly, Eqs. (2.10) may be expressed in terms of observables as
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g(u'u', O'U';('(', :-':-') ) ppSZ(uu"H„, UU"Hp, (("H, :-:-"Hq)
u&qQ=+&

p'P'S'g(uu'H„. , UU'Hp, (('Hq, ="'Hq )
p/+/q/Ql +]

@II Q// qll Q/I +]
p P S Z(u u"H U'U"Hp, (( H, Hq )

p/ Q/q/ QI

p'P'S'Z(uu'H„, UU'Hp, (('Hq, -=='Hq )

and

pl / +/I q I I Q /I ]

p"P"S"E.(u'u"H U'U" Hp, ('("H, , :-'""Hq ) (2 15a)

Q(u'u', U'U', ('(', :-':"') ) ppSC(uu"H„, UU"H;(("H, :":-"Hq)
pPqQ= —1

p/ Q/q/Ql +$

p'P'S'l:(uu'H„, UU'Hp, (('H, :":-'Hq )

p/ I Q// ql I Q// ]

p"P"S"Z(u'u"H„. , U'U"Hp ', ('("H;, =-'=-"Hq-)

p/+/q/QI ]

p'P'S'Z(uu'H„, .UU'Hp, (('H ~, :-:-'Hq )

pl/ Q/I qll Q/I +$

„P S g(uu H„„,UU Hp„, (E H,„, ="H~-) (215b)

A = -[(11)+ (22)1 @ = —,'[(11)—(22)], (2.16)

for nucleon. For A-particle, we choose

The use of the exchange properties [Eqs. (2.14)] of
Z(uvH„, UVHp, (uH~, :-AHq) generalizes Eqs. (2.15)
and yields all the possible cases of quadratic relations of
this type.

So far, primary observables are considered, in which
the polarizations of the four particles are specified. For
experimental reasons, instead of primary observables de-
fined by Eq. (2.3), linear combinations of them are pre-
ferred, which correspond to averaged polarization state of
one or several particles involved into the NiN2 ~ AiN&
reaction. In these so-called "secondary observables" [14],
the polarization state of each particle is either averaged
(i.e. , the particle is unpolarized or its polarization is
not measured) or satisfies "null-sum" criterion, which re-
quires that the sum of the coeKcients of primary argu-
ments vanishes. Secondary observables are labeled with
secondary diagonal arguments A and @ for nucleons and
with A, @i, @z, @s for 4, the off-diagonal arguments
being unchanged.

The definition of secondary arguments in terms of pri-
mary ones is chosen as

A = —,'K») + (»)+ (33)+ (44)],

@i = —,
' [(11)—(22) —(33) + (44) l

~. = —,
' [-(») + (») —(») + (44)1,

@s = -[—(11)—(22) + (33) + (44)].

(2.17)

The argument A, standing for averaged, is obtained by
summing over all diagonal states of the particle. For spin-

&
particle, the argument 4 corresponds to the polariza-

tion along the quantization direction. For spin-2 particle,
the choice of the three 4, arguments is not unique, since
the "null-sum" criterion is not sufficient to fix coefiicients.
The choice proposed in Eq. (2.17) is adapted for taking
into account Bohr's rules, and more details concerning
this choice can be found in Ref. [8]. Unfortunately, the
choice of secondary observables, more adapted to experi-
ments, increases the complexity of their relations with bi-
coms. The size of the submatrices connecting secondary
observables and bicoms is diferent of the size of primary
observable-bicorn submatrices. The averaged observables
(partially or completely) are related to more bicoms than
the unaveraged ones. In particular, the determination of
each magnitude ]D(A, t; 6, I ) ~

requires the knowledge of
the 32 secondary observables in which the three nucleon
arguments take the two possibilities A and 4 and the 6
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III. TRANSVERSITY AMPLITUDE
DETERMINATION

The transversity formalism presented by Kotanski [17]
is obtained with directions for each particle as in Fig.
1, where the quantization direction for all particles is the
normal to the reaction plane. The transversity amplitude
determination presented in this section, applied to the
frame of Fig. 1, may be also applied to any frame where
the quantization direction for all particles is the normal
to the reaction plane. This is the case for the formalism
defined with a same fixed basis for all particles, more
precisely with the fixed unit vectors (1, m, n) of the right-
handed orthonormal basis defined by [2, 7, 8]

1=k, kxk~n= m=n x 1,
ik x k~i' (3.1)

where k and k~ are the initial-beam-nucleon and final-
center-of-mass three-momenta, respectively. The

transversity frame of Eq. (3.1) may be convenient to
determine the amplitudes f, (e~) and g, (8~) of the spin-
space decomposition [2, 7, 8] of the 4 production matrix

argument the four possibilities A, 4'i C2 43.
In terms of secondary observables, the systematic de-

termination of the amplitudes is not so easy than in
terms of primary ones. The number of one-by-one bicom-
observable submatrices is not sufBcient and the theorem
given before cannot be applied directly.

Parity invariance reduces the number of independent
amplitudes by a factor 2 and limits the choices for the
quantization direction of each particle. The transversity
formalism is obtained for the quantization direction for
all particles along the normal to the reaction plane, and
the helicity formalism for the quantization direction of
each particle along its own momentum. Invariance un-
der reHection with respect to the scattering plane leads
to the Bohr's rules, which are extensively discussed in
Ref. [8]. Taking into account parity conservation with
Bohr's rules, the number of linearly independent observ-
ables is 256, and the whole matrix connecting the ob-
servables and the bicoms is a 256x256 matrix, instead of
1024x1024 one. Note that this reduction of size appears
in a quite different way for transversity or helicity frames;
that leads to studying each case separately.

FIG. 1. Transversity frame.

analogous to the Wolfenstein representation in NN elas-
tic scattering.

Parity invariance gives for transversity amplitudes

D'(A, l; A, L) = ( )'+'+ +—iD'(A l A L,) (3.2)

and set equal to zero half of these. In some cases, for
which explicit notation is not necessary, the 16 remaining
nonzero amplitudes are denoted T, for i = 1, . . . , 16, the
correspondence being given in Table I.

Parity conservation gives, for primary observables the
relation

l (uvH~, UVHp, (uHq, :-AHg)

= (—)
e S'l: (uvH„, UVHp, (cuHq. , :-AHq ), (3.4)

with Wg = v+ V+ (+=+ 1), and with p' = (—)"+"p,
P' = (—)~+ & Q' = (—)=+~Q and q' = (—)~+ q, the
product p'P'q'Q' being equal to p&qQ.

The classification of the linearly independent transver-

= (—) 2'(uvH„, UVHp) ((uHq, "AHg)) (3.3)

with W = (u+v+U+V+(+m+=+0), which set equal to
zero half, or 512, of these observables. In addition, among
the remaining 512 observables, 256 simple relations exist
which may be written as

Sl (uvH„, UVHp, (cuHq, "AHg)

TABLE I. Abbreviated notation for transversity amplitudes D'(A, l; A, L).

A = +3/2, A = +1/2
A = +3/2, A = —1/2
A = +1/2, A = +1/2
A =+1/2, A = —1/2
A = —1/2, A = +1/2
A = —1/2, A = —1/2
A = —3/2, A = +1/2
A = —3/2, A = —1/2

l =+1/2
L =+1/2

0
T3
T5
0
0

T11
T13
0

l =+1/2
L = —1/2

T1
0
0

T7
T9
0
0

T15

l = —1/2
L =+1/2

T2
0
0

Ts
T10
0
0

T16

l = -1/2
L = —1/2

0
T4
T6
0
0

T12
T14

0
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TABLE II. n, (d x d): number n of linearly independent transversity observables, connected with
bicoms by (d x d) submatrices.

Number of
diag onaI

arguments
4(3N + E)
3(3N)
3(2N+ E)
2(2N)
2(1N+ A)
1(1N)
1(b,)
0

Primary
without
parity

32(1x 1)
96(1x 1)
96(1x1)
288(2x 2)
96(2x 2)
288(4x4)
32(4x4)
96(8x8)

Primary
with

parity
16(1x1)
16(1x 1)
0
96(1x1)
48(1x1)
48(2x 2)
0
32(4x4)

Secondary
without
parity

32(32x 32)
96(8x8)
96(16x 16)
288(8x 8)
96(16x 16)
288(8x 8)
32(16x 16)
96(8x8)

Secondary
with

parity
16(16x16)
16(4x4)
0
96(4x 4)
48(8 x 8)
48(4x 4)
0
32(4x 4)

sity observables with respect to the number of diagonal
arguments is given in Table II. In the second column, the
parity conservation is not taken into account and the re-
sult is not specific of the transversity frame; the number
of primary observables and the size of the submatrices,
which are reported in this column, reQect exactly Eqs.
(2.3) to (2.7). Under parity conservation, the classifica-
tion of the 256 remaining linearly independent primary
observables [Eqs. (3.3) and (3.4)] is given in the third
column. Note that the parity constraints reduce the di-
rnension of the submatrices. It is easy to see that, by
inserting Eq. (3.2) in Eqs. (2.3), (2.6), and (2.7), we are
left with 1x1, 2x2, and 4x4 submatrices, only.

Tables III and IV permit one to visualize from which
primary observables the real and imaginary parts of a
bicorn may be extracted. For simplifying the notation,

1xl, 2x2, and 4x4 submatrices are denoted 1, , 2,.
and 4t, respectively, where the i index is simply a se-
rial number designing on which subspaces of observables
the submatrices act. Note that the subspaces of observ-
ables are different for calculating real or imaginary parts
of the bicorn (see Table IV). The manner of using the
Tables III and IV is the following: as an example, on
the crossing lines of the bicorn T&"T2, in Table III, we
read ls~~ which means that this bicorn is related by a
1xl submatrix to observable. From Table IV, we know
that Re(T&'T2) is related to one observable of the type
Z~(12R, 12R; 11,:-:-).For more precisions, i.e. , the value
of:" and the proportionality coefficient, the return to the
explicit notation for Tq and Tq is useful and the calcula-
tion of Eq. (2.12) can be performed. As another example,
Re(Tf Tqs) is a combination of the four following observ-

TABLE III. Dimension and type of matrices M,. connecting bicoms and primary transversity observables.

T2

T4

T7

T12

T13

T15

T16

Tl T2 T3 T4

111 111 111 111
5 7 6

111 111 111
6 7

111 111
5

T5 T6 T7 Ts

112 112 112 412
3 4 2

112 112 412 112

112 412 112 112
2 3 4

412 112 112 112
2 4 3

122 122 122 122
5 7 6

122 122 122
6 7

122 122
5

122

T9 T10 Tll T12

] 321 3 1 2

3 1 2 1

213 gl3 113 gl3
1 2 1 3

2 1 3 1

123 ]23 ]23 423
3 4 2

123 123 423 ]23
4 3 2

123 423 ]23 ]23
2 3 4

423 123 ]23 123
2 4 3

133 133 133 1335 7 6

133 133 133
6 7

1 15

133

T13 T14 T15 T16

114 114 114 414
3 4 2

114 114 414 114
4 3 2

1'4 4'4 114 114
2 3 4

414 114 114 114
2 4 3

]24 224 224 224
1 3 1 2

2 4 124 2 4 224
3 1 2 1

224 224 124 224
1 2 1 3

2422 1 4
2 1 3 1

134 134 134 434
3 4 2

134 134 434 134
4 3 2

134 434 ]34 134
2 3 4

434 134 134 134
2 4 3

144 144 144 144
5 7 6

144 144 144
6 7

144 144
5
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TABLE IV. Primary transversity observables on which act the matrices de6ned in Table III.

Diagonal

arguments

(SN + b, )

(3N)

(2N)

(1N + b, )

Matrices

(Table III)
1H

1

1C
2

1C

144

1H5
1CC'

1CC

1

2C
2

2C3

Re(T,'T~ )

8'(uu, UU; Q', :-:-)
8'(uu, UU; ((uR, :-:-)

E.'(uu, UU; (cuR, 12R)

l (uu, 12R; (urR, :-:-)
2'(12R, UU; (cu R, :-:-)
2 (12R, 12R; ((, :-:-)
8'(12R, UU; ((, 12R)

l (uu, 12R; $(, 12R)

l (uu, 12H~, (coHq, 12R)

for Pq =+1
(12' UU'(~Hq 12R)

for pq =+1
8'(12H„,12', ((uR, :-:-)

for yP =+1
8'(12H„, 12HJ, (u)R, 12')
for pPQ = +1

Im(T,'T~ )

l (uu, UU; (cuI, :-:-)

8 (uu, UU;((uR, 12I)

8'(uu, 12I; (ur R, :-:-)

8'(12I, UU; (u)R, :-:-)
l (12I, 12R;Q, :-:-)
8'(12I, UU; ((,12R)

j (uu, 12I;Q', 12R)

2'(uu, 12HJ; (cuH„12R)

for Pq = —1

i (12' UU'f(uHq 12R)

for pq = —1

2'(12H„) 12Hp; ((uR, :-:")
for pP = —1

8'(12H„) 12Hp; (u)R, 12H'g)

for pPQ = —1

ables: Z~(12R, 12R; 14R, 12R), 8'(12I, 12I; 14R, 12R),
L~(12R, 12I; 14R, 12I), and Z~(12I, 12R; 14R, 12I). The
set of Tables III and IV does not give the coefficients of
the combinations of bicoms, but it is not necessary for the
purpose of this paper, which is to present a methodology
for determining the NqNz —+ b, qN& reaction amplitudes.

By application of the theorem given in Sec. II, the
question of how to design a set of 31 observables which
determine the 16 complex amplitudes is very easy, a suf-
ficient number of 1xl submatrices being at our disposal.

First, each of the 16 magnitudes is obtained from each
of the 16 nonzero observables 8'(uu, UU;((, :-:-). Sec-
ond, through the 80 submatrices of the type 1, in Table
III, i.e. , among the 160 corresponding observables given
in Table IV, a set of 15 observables is chosen, step by step,
which determine 15 independent relative phases between
the 16 complex amplitudes. If the set of 16 experiments
giving the magnitudes is unique, many sets of 15 experi-
ments lead to the determination of the phases. As said in
Sec. II, all the combinations taking 15 observables among
160 do not have to be retained; because of quadratic rela-
tions between observables, they lead to phases which are
not independent. In particular, the choice of an observ-
able giving the real part of a bicorn excludes the choice
of the observable corresponding to the imaginary part of
the same bicorn; evidently, an ambiguity on the sign of
the phase appears. For releasing these ambiguities, more
than 31 observables are needed. General criteria for re-
solving the ambiguities can be found in Refs. [18, 19].

Concerning the transversity secondary observables, the

constraints of parity conservation give

~'(, p;~, ~) = ( )~'~'(, p-;~, ~),

where W' = [a]+ [P]+ [p]+ [b'] with

0 ifa=A, @,
1 if a = 12R, 12I,

(3 5)

0 if p = A, 4&, 4&, 4&,
if q = (~R, g~I, (3.7)

Equation (3.5) sets equal to zero half of secondary ob-
servables.

The choice of secondary arguments in terms of primary
ones, advocated in Eqs. (2.16) and (2.17), is adapted
for taking into account Bohr's rules, which lead to the
relation

SZ'(a, p;p, 6) = (—) &'&'(a', p', 7', &'), (3.8)

where a, p, 6 and a', p', 6' nucleon secondary arguments
are interchanged as follows

A~%, 12K ~ 12I, (3 9)

and where p and p' secondary 4 arguments are inter-
changed as

and similarly for [P] and [b] nucleon arguments and for
the 4-argument
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A~%» C& ~43,
24R(I) ~ 24R(I),13R(I) ~ 13R(I),

(3.10)
12B +-+ 12I,
23R +-+ 23I,

14B~ 14I,
34B +-+ 34I.

The sign in Eq. (3.8) is obtained with Wz ——[n]+ [p]+ [g]
where

0 if p = &, @i)@2,@s,
( if p = (cuR, (u)I. (3.11)

We recall that the sign S, defined in Eq. (2.3), depends
on the number of I indices among n, P, p, and b, and,
similarly, S' on the number of I indices among n', P', p',
and 6'. Combining Eqs. (3.5) and (3.8), we are left with
256 linearly independent observables.

In Table II, the number of linearly independent sec-
ondary observables is given without parity constraints in
the 4th column, and with the constraints [Eqs. (3.5) and
(3.8)] in the 5th column. Finally, the submatrices which
connect the bicoms and the secondary observables are of
size 4x4, 8x8, and 16xl6. The 16xl6 submatrix con-
nects secondary observables with the magnitude squares
of the amplitudes.

Tables V and VI permit one to determine from which
secondary observables the real and imaginary parts of a
bicorn may be extracted. The use of the set of Tables V
and VI, concerning secondary observables, is exactly the
same as the use of the set of Tables III and IV, which
concerns primary observables. Here, for simplifying the

notation, 4x4, 8x8, and 16x16 submatrices are denoted
4, , 8, , and 16, respectively, where the i index is simply a
serial number designing on which subspaces of secondary
observables the submatrices act. As an example, from
Table IV, the bicorn Tz T2 is related by a Sx8 submatrix,
denoted 8i, to secondary observables. From Table VI, the
real part of Ti*Tq is related to eight secondary observables
of the type 8'(12R, 12R; p, b), the value of the secondary
6 argument p being A, 4'i, 4~, and 4's, and the value
of the secondary nucleon argument 6 being A and 4.

The question of how to design a set of 31 secondary
observables for determining the 16 complex amplitudes
is not so easy than in the case of the primary observables,
because no 1x1 submatrix is at our disposal.

As said earlier, the determination of the amplitudes
is performed in two stages. The first stage consists
of measuring the 16 independent secondary observables
2 (ci, p;p, 6) with a, p, and 6 equal to A or @ and p
equal to A, @i, @2 and 4s, the magnitude squares of the
amplitudes being given in terms of linear combinations of
these observables. Table VII shows that the magnitudes
can be determined from experiments which involve, at
most, two polarized particles at a time.

The magnitudes being determined, the second stage
consists of ending a set of, at least, 15 experiments for the
determination of independent relative phases. Moravcsik,
Sinky, and Goldstein claim [15] that the easiest way to
ensure that a set determines completely the amplitudes is
to measure all the observables appearing in the subspace
on which acts a submatrix. The submatrices at disposal
being of size 4 x4 and Sx8, it is clear that the Moravcsik's
claim leads to a total of more than 15 experiments. A

TABLE V. Dimension and type of matrices M~ connecting bicoms and secondary transversity observables.

T2*

T3

T5

T6

T7*

T8

Tlo

T12

T13

T15

T16

Tl T2 T3 T4

16 81 83 82

16 82 83

16 81

T5 T6 T7 T8

412 412 412 412
3 4 2 8

412 412 412 412
4 3 8 2

412 412 412 412
2 8 3 4

412 412 412 412
8 2 4 3

16 81 83 82

16 82 83

16 81

T9 T10 Tll T12

413 413 413 413
1 7 5 6

413 413 413 413
7 1 6 5

413 413 413 413
5 6 1 7

413 413 413 413
6 5 7 1

423 423 423 423
3 4 2 8

423 423 423 423
4 3 8 2

423 423 423 423
2 8 3 4

423 423 423 423
8 2 4 3

16 81 83 82

16 82 83

16 81

16

T13 T14 T15 T16

414 414 414 414
3 4 2 8

414 414 414 414
4 3 8 2

414 414 414 414
2 8 3 4

414 414 414 414
8 2 4 3

424 424 424 424
1 7 5 6

424 424 424 424
7 1 6 5

424 424 424 424
5 6 1 7

424 424 424 424
6 5 7 1

434 434 434 434
3 4 2 8

434 434 434 434
4 3 8 2

434 434 434 434
2 8 3 4

434 434 434 434
8 2 4 3

16 81 83 82

16 82 83

16 81
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TABLE VI. Secondary transversity observables on which act the matrices defined in Table V.
Here n, P, and 6' are equal to A or 4 for the nucleons and p equal to A, 4i, 42, or 43 for the b, .

Diagonal
arguments

(3N+ b, )
(3N)
(2N)

(1N+ 6)

(1N)

Matrices
(Table V)

16
4$4P

4$4P
2

4$4J
3

4/cd
4

8y

82
83
4(4J

5

4$4P
6

4$4J
7

4$4J
8

Re(T T, )

C'(n P ~ 6)
C'(n, P; (urR, 6')

C'(n, P; (cu R, 12R)
C'(n, 12R; fur R, 6)
C'(12R, P; (cuR, 6)
l (12R, 12R; p, 6)
C'(12R, P; p, 12R)
C'(n, 12R;p, 12R)
C'(n, 12Hp, (cuH~, 12R)
for Pq =+1
C (12H„,P; (~H~, 12R)
for pq =+1
C (12Hp 12R'(u)Hq 6)
for pq =+1
l: (12H„,12Hp; (cuR, 12')
for pPQ = +1

Im(T T~)

C'(n, P; ((uI, 6)
l (n, P; (~R, 12I)
C'(n, 12I; (~R, 6)
C'(12I, P; (cuR, 6)
C'(12I, 12R; p, 6)
C'(12I, p; p, 12R)
C'(n, 12I;p, 12R)
C'(n, 12Hp, (~H~, 12R)
for Pq = —1
C (12Hp P'((uHq 12R)
for pq = —1

(12H& 12R'(~Hq 6)
for pq = —1
C (12H„, 12Hp, ((uR, 12')
for pPQ = —1

total of 16 experiments can be obtained from two 8x8
matrices, or from four 4x4 ones, or from one 8x8 and
two 4x4 ones. A check of these possibilities show that
they cannot determine completely the phases. With a
total of 20 experiments, possibilities obtained from five
4x4 matrices, only, lead to a complete determination of
the phases.

Yet, relaxing the preceeding claim, the problem can
be solved completely with 15 experiments only, from five
4x4 submatrices. The method is to measure all the ob-
servables appearing in three subspaces, two observables
appearing in a 4th subspace and one observable appear-
ing in a 5th subspace. The inconvenient of such a method
lies in the increasing of the number of ambiguities.

The choice of the five 4x4 submatrices obey to precise
rules. The three subspaces of observables entirely deter-
mined must necessarily correspond to three different val-
ues of the 4 argument among (cu = 12, 13, 14, 23, 24, 34.
In addition, if these three different 6 arguments are de-
noted (u, ('u', and ("u", it is necessary that the indices
1,2,3,4 appear, once at least, among the six indices (, (',
(", u, ur', and cu". These three chosen submatrices be-

long to a set of six matrices, called "first exclusion set,"
which is written

(412 414 423 434 413 424) (3.12)

with i, j, k, l = 2, 3, 4, 8 and rn, n = 1, 5, 6, 7. In the triad
of indices (i, j,n), the n serial index is given with respect
toiand jby

i+j ifig j andi, j=2, 3, 4,
~i

—j~ + 1 otherwise, (3.13)

(3.14)

and similarly, for the triads (i, k, rn), (j, l, rn), and
(k, l, n). The relation between the indices of a triad
(ii, i2, is) is explicitly given in Table VIII. The 4th sub-
matrix is chosen without constraint among the 18 avail-
able submatrices obtained after subtracting the Brst ex-
ciusion set from the 24 initial matrices. The 4th sub-
matrix belongs to a set of six matrices, called "second
exclusion set, " which is written

TABLE VII. A set of 31 secondary observables determining the 16 complex transversity ampli-
tudes D'(A, l; A, L).

l (A, A;A, A)
C'(A, A;4 i, A)
C'(A, A; 4'2, A)
C'(A, A; 4'3, A)

C'(A, A; 13R, A)
C'(A, A; 24R, A)
C'(A, A; 12R, 12R)
C'(A, 12R; 12R, A)

C'(4, A; A, A)
C'(C, A;Ci, A)
C'(C, A; 02, A)
C'(@,A; 4'3, A)

Phases
C'(4, A; 13R, A)
C'(@,A; 24R, A)
C'(@,A; 12R, 12R)
C' (A, 12I; 12I, A)

C'(A, @;13R, A)
C'(A, @;24R, A)
C'(A, 4; 12R, 12R)
C'(12R, A; 12R, A)

Magnitudes
C'(A, 4;A, A)
C'(A, @;4'i, A)
C'(A, 4; 4'2, A)
C'(A, @;43, A)

C'(A, A; A, @)
C'(A, A; @i,4)
C'(A, A; e&, @)
C'(A, A; @&,4')

C'(A, A; 13R, 4)
l (A, A;24R, C)
C'(A, A; 12I, 12I)
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TABLE VIII. The is serial index of the triad (iq, i2, is).

i2 =2
i2 =3
i2 ——4
i2 ——8

i1=2
1
5
6
7

2y =3
5
1
7
6

ig ——4
6
7
1
5

iy ——8
7
6
5
1 y (-.4

with i', j', k', l' = 2, 3, 4, 8 and m', n' = 1, 5, 6, 7, and
i' P i, j' g j, k' g k, t' g t, m' g m, n' g n, . The
triads of indices (i',j ', n), (i', j,n'), (i ', k', m), (i', k, m'),
(j ', l', m), (j, l', m'), (k', l', n), and (k, t', n') obey the rule
of Table VIII. The 5th submatrix is chosen without con-
straint among the 12 available submatrices obtained after
subtracting the first and second exclusion sets from the
24 initial matrices.

For giving an explicit example, we can choose to mea-
sure experiments with as much as possible diagonal nu-
cleon arguments (i.e. , A and @ arguments), the b, argu-
ment being necessarily nondiagonal (( g u). This can
be done from 4~ and 4~ submatrices, plus one subma-
trix 4~ chosen among the twelve submatrices 4~2 s 4 for
(cu = 12, 14, 23, 34. To these twelve experiments, two can
be added, which correspond to a 4~ chosen among the

eight submatrices 4~2 s 4 for j g i and (u = 12, 14, 23, 34.
The 15th experiment appears in the subspace of a 4~&

submatrix chosen among four submatrices 4~2 s 4 for k gj, k g i and (cu = 12, 14, 23, 34. Finally, a set of 31 sec-
ondary observables which determine completely (up to a
global phase and a discrete number of ambiguities) the
16 complex transversity amplitudes is given in Table VII,
as an explicit example, by taking the sequence 4z, 4z,
4~~2, 4&~s, 4P submatrices to determine the phases.

IV. HELICITY' AMPLITUDE DETERMINATION

The helicity formalism developed by Jacob and Wick
[20] is obtained with directions for each particle as in Fig.
2, where the quantization direction of each particle is its
own momentum. For invariance under parity, helicity
amplitudes satisfy

FIG. 2. Helicity frame.

Dh(g t. P L) ( )A+l+A+L+1Dh( P t. A L)

(4.1)

In some cases, for which explicit notation is not neces-
sary, the 16 linearly independent remaining amplitudes
are denoted F, and t, for i = 1, . . . , 8, the correspon-
dence being given in Table IX.

Parity conservation leads to the following relation be-
tween primary observables

l:"(uvH„, UVHp, guHq, :"AHq)

= pPqQ( )8"(8uH—„,VUHp, u(Hq, 0:-Hq), (4.2)

with ~ = (u+ v+ U+ V+(+~+=+A), and where the
"mirror" index 6 is related to the index u by 6 = 2, 1 for
u = 1, 2, respectively, and similarly for the nucleon in-
dices v, U, V, :",and A. For the 4, the "mirror" index (
is related to the index ( by ( = 4, 3, 2, 1 for ( = 1, 2, 3, 4,
respectively, and similarly for the index a. Remark that
equality between 8u and uv for 12 and between cu( and
(cu for 14 and 23 yields 16 vanishing primary observables.
Equation (4.2) leads to 512 linearly independent observ-
ables. In addition, 256 more complicated linear relations
exist, which are given by

pPSZ" (uvH„, UVHp, (~Hq, =-&Hq)

p'P 'q'Q '=pPqQ

p~P~S~ [( )
+++~+ l' (u8Hp UVHp '(wHq AH@ )

+p( )"+++&+=Zh(vuH—„,UVHp, (cuHq, :-&Hq )

+P( )
"+ +~+=X"(u8—Hp. , VUHp. , ((DHq, =-AH@ )

+pP( )'+ +~+=C—"(vuH„, VUHp, (2 Hq. , =AH@ )

+Q( )"+~+~+"Zh(u8 H.—..UV Hp', g~H, . , n=-H~ )

+pQ( )+ +~+ l:"(vuH„—~, UVHp, (~Hq, 0:-Hq )

+PQ( )
+ +~+ 2 (u8Hp VUHp 'g)Hq 0 Hq )

+pPQ( )"+++~++Eh(vuH—p, VUHp, g)Hq, 0:-Hq )]. (4.3)
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TABLE IX. Abbreviated notation for helicity amplitudes D (A, i; A, L).

A =+3/2, A =+1/2
A =+3/2, A = —1/2
A = +1/2, A = +1/2
g = +1/2, A = —1/2
A = —1/2, A = +1/2
A = —1/2, A = —1/2
A = —3/2, A = +1/2
A = —3/2, A = —1/2

l =+1/2
I. = +1/2

Gy
F3

GT
Gs
F6

—F4
Gg

1 = +1/2
L = —1/2

G3
G5

—Fs
G6
G4

L = —1/2
L =+1/2

F2
G4
G6
Fs
F7

G5
G3

l = —1/2
L = —1/2

Gg
F4

Gs
G7
F5

Gg

The summation runs over the four indices p', P', q', Q',
each taking the values +1 for oK-diagonal arguments, but
only the value +1 for diagonal arguments, the product
p'P'q'Q' being equal to pPqQ.

The classification of the linearly independent helicity
observables with respect to the number of diagonal ar-
guments is given in Table X. In the second column, the
parity conservation is not taken into account and the re-
sult, being not specific of the helicity frame, is the same
as in Table II. Under parity conservation, the classifica-
tion of a set of 256 remaining linearly independent pri-
mary observables is given in the third column. Equation
(4.2) links observables which have the same number of
diagonal arguments for the nucleons and for the 4, and
simply divides by a factor 2 the number of observables of
the second column. Equation (4.3) links five or nine ob-
servables with different numbers of diagonal arguments
for the nucleons and the A.

From Eq. (4.3), there are 16 relations which link
an observable, with zero diagonal argument and with
(ur = 14, 23, as li.near combination of eight observables,
with (3N + 4) diagonal arguments. There are 32 re-
lations which link an observable, with zero diagonal ar-
gument and with (w = 12, 13, as linear combination of
eight observables, with (3N) diagonal arguments. There
are also 16 relations which link an observable, with the
(4) diagonal argument, as linear combination of four ob-
servables, with (3N) diagonal arguments. There are 48
relations which link an observable, with (1N) diagonal

argument and with (u = 14, 23, as linear combination
of four observables, with (2N + 4) diagonal arguments.
There are 96 relations which link an observable, with
(1N) diagonal argument and with (u = 12, 13, as linear
combination of eight observables, with (2N) diagonal ar-
guments. Finally, there are 48 relations which link an
observable, with (1N + 4) diagonal arguments, as lin-
ear combination of four observables, with (2N) diagonal
arguments.

Among observables linked by Eq. (4.3), we choose to
retain in the third column of the Table X a set of 256
linearly independent primary observables related to the
bicoms by 1x1 submatrices, at most as possible. Con-
trary to the transversity case, the parity constraints do
not reduce the dimension of the submatrices. In the
third column of Table X, the retained set corresponds
to (3N + 4), (3N), (2N + E), and (2N) diagonal ar-
guments; the item 144(2x2) for (2N) diagonal argument
line may be replaced, partially or completely, by 48(2x2)
for (1N + 4) one and by 96(4x4) for (1N) one.

Tables XI and XII permi. t one to determine from which
primary observables the real and imaginary parts of a
bicorn may be extracted. For simplifying the notation,
1x1 and 2x2 submatrices are denoted l~ and 2~, re-
spectively, where the i index is simply a serial number
designing on which subspace of observables the subma-
trices act. The manner of using the set of Tables XI and
XII is the same as that for the set of Tables III and IV.

As for the transversity case, by application of the the-

TABLE X. n(d x d): number n of linearly independent helicity observables, connected with
bicoms by (d x d) submatrices.

Number of
diagonal
arguments
4(3N + A)
3(3N)
3(2N+ b)
2(2N)
2(1N + A)
1(1N)
1(&)
0

Primary
without
parity
32(1x1)
96(1x 1)
96(l x 1)
288(2x 2)
96(2x 2)
288(4x4)
32(4x4)
96(8x 8)

Primary
with
parity
16(1x 1)
48(1x 1)
48(1x 1)
144(2x 2)
0
0
0
0

Secondary
without
parity
32(32x 32)
96(8x 8)
96(16x16)
288(8x 8)
96(16x 16)
288(8x8)
32(16x16)
96(8x 8)

Secondary
with
parity
16(16x 16)
32(8x8)+16(4x4)
48(8x8)
96(8x8)+48(4x 4)
0
0
0
0



906 J. P. AUGER AND C. LAZARD 47

TABLE XI. Dimension and type of matrices M,. connecting bicoms and primary helicity observables.

G4

G1G2 G3 G4

111 214 214 214
1 3 2

111 214 214
2 3

111 214
1

Fl F2 F3 F4

111 111 111 114
3 4 2 1

111 111 114 111
4 3 1 2

111 114 111 111
2 1 3 4

114 111 111 111
1 2 4 3

111 214 214 214
1 3 2

111 214 214
2 3

111 214
1

G5 G6 G7 Gs

212 212 212 113
2 3 1 1

212 212 113 212
3 2 1 1

212 113 212 212
1 1 2 3

113 212 212 212
1 1 3 2

] 12 213 213 213
1 1 3 2

213 112 213 213
1 1 2 3

213 213 ]12 2133 2 1 1

213 213 213 112
2 3 1 1

122 223 223 223
1 3 2

] 22 223 223
2 3

122 223
1

]22

F5 F6 F7 Fs

]12 213 213 213
1 1 3 2

1 1 2 3

213 213 ] 12 213
3 2 1 1

2 3 1

212 212 212 113
2 3 1 1

212 212 113 212
3 2 1 1

212 113 212 212
1 1 2 3

113 212 212 212
1 1 3 2

122 122 122 1233 4 2 1

122 122 123 1224 3 1 2

] 1» ]34 1»2 1 3 4

123 1'22 134 122
1 2 4 3

122 223 223 223
1 3 2

122 223 223
2 3

122 223
1

122

orem given in Sec. II, the question of how to design a set
of 31 observables which determine the 16 complex ampli-
tudes is very easy, a sufficient number of 1 x 1 submatrices
being at our disposal.

First, each of the 16 magnitudes is obtained from each
of the 16 independent observables l'-"(uu, UU;((, :":-).
Second, through the 48 submatrices of the type 1, in
Table XI, i.e. , among the 96 corresponding observables

given in Table XII, a set of 15 observables is chosen,
step by step, which determines 15 independent relative
phases between the 16 complex amplitudes. For in-
stance, we can choose to measure observables with as
much as possible diagonal nucleon arguments. This can
be done from twelve submatrices of the type 1~~ for

12, 13, 14, 23, plus three submatrices 1P chosen

TABLE XII. Primary helicity observables on which act the matrices defined in Table XI.

Diagonal

arguments

(3N+ A)

(3N)

(2N + A)

(2N)

Matrices

(Table XI)

1(ur

1((

1((

1

2

2(3

Real part

of bicorn

l:"(uu, UU;((, :-:")
l:"(uu, UU; (~R, :-:-)
l'."(uu, UU; ((, 12R)

l:"(uu, 12R; ((, :-:-)
l:"(12R,UU; ((, :-:")
l:"(uu, UU; (~Hq, 12Hg)

for qQ = +1
l (uu 12H~'(wHq )

for Pq =+1
l:"(12H„,UU; (ur Hq, :-:-)
for pq =+1

Imaginary part

of bicorn

l:"(uu, UU; (~I, :-:-)
l:"(uu, UU; ((, 12I)

l:"(uu, 12I;((, :-:-)
l:"(12I,UU; ((,:":-)
l:"(uu, UU; (u)Hq, 12')
for qQ = —1

l:"(uu, 12', (ur H„:-:-)
for Pq =- —1

l:"(12',UU; (u)Hq, =-)
for pq = —1
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among 1~2~s 4 for (( = 11,22.
When secondary observables are concerned, parity con-

servation for helicity observables yields to

r' 0 iffy=A, @i,
1 if p = C&, C3,[']=' (+- f.=(-R,

'

, (+ u + 1 if p = (cuI.

(4.6)

(4.4)

where W' is equal to [o.) + [P] + [p] + [6] but with, for the
nucleon argument

0 if' =A, 12I,
1 if o. = 4, 12A, (4.5)

and similarly for [P] and [6] nucleon arguments and for
the b, argument

Secondary 4 arguments p and p are equal for A, 4i,
0 3 14R, 14I, 23R, 23I or are related as p = 34R,

34I, 24B, 24I for p = 12R, 12I, 13B, 13I, respectively.
Equation (4.4) makes secondary observables vanish for
which p is equal to p and W' is odd.

The choice of secondary arguments in terms of primary
ones, advocated in Eqs. (2.16) and (2.17), is adapted
for taking into account Bohr's rules, which lead to the
relations

SZ"(o:,p; A, 6) = (—) & S'(l:"(n', p'; 14I, 6') —I'."(n', p'; 23I, b') ),
Sl:"(n,P; 4i, 6) = (—) &S'(l:"(n', P';14I, b') + l'"(n', P', 23I, 6')),

Sl:"(n P 42 6) = (—) &+ S'(l:"(n' P' 14R 6') + l:"(n', P'; 23R, 6')),

Sl:"(n,P; 4s, 6) = (—)
~+ S'(l:"(a', P', 14R, b') —l:"(a',P', 23R, 6')),

(4.7)

Sl:"(n,P;12Hq, b') = (—) ~+ S'l:"(a.', P';13Hq, b'),

with qq' = (—) ~ ~+~i'j+~'~+', (4.8)

where n, P, b and n', P', 6' interchange as follows

A ~12I, 0 ~12', (4 9)

and where [o,], [P], [6] are given by Eq. (4.5). The sign
in Eqs. (4.7) and (4.8) is obtained with Wz equal to
[&B] + [pa] + [&~] + [&], where

0 if n = A, 12R,
1 if o. = 4, 12I, (4.10)

and similarly for [P~] and [bii] nucleon arguments.
Then, we are left with 256 linearly independent sec-

ondary helicity observables.
In Table X, the number of linearly independent sec-

ondary observables is given without parity constraints in
the 4th column (which is the same as in Table II), and
with the constraints in the 5th column. Equation (4.4)
links observables which have the same number of diag-
onal arguments for the nucleons and for the A. Equa-
tions (4.7) and (4.8) link observables with different num-
bers of diagonal arguments for the nucleons and the E.
More precisely, Eq. (4.7) connects (3N) to (A), (2N) to
(1N+4), (lN) to (2N+4), and (0) to (3N+E). Equa-
tion (4.8) connects (3N) to (0) and (2N) to (1N). In the
5th column of Table X, the retained set of linearly inde-
pendent secondary observables corresponds to (3N+ 4),
(3N), (2N + 4), and (2N) diagonal arguments. Finally,
the submatrices which connect the bicoms and the sec-
ondary observables are of size 4x 4, 8 x 8, and 16x 16. The
16x16 submatrix connects secondary observables with
the magnitude squares of the amplitudes.

Tables XIII and XIV permit one to determine from
which secondary observables the real and imaginary parts
of a bicorn may be extracted. The use of the set of Ta-
bles XIII and XIV, concerning secondary observables, is
exactly the same as the use of the set of Tables XI and
XII, which concerns primary observables. Here, for sim-
plifying the notation, 4x4, 8x8, and 16x16 submatri-
ces are denoted 4, , 8~ or simply 8; and 16, respec-
tively, where the i index is a serial number designing on
which subspace of secondary observables the submatri-
ces act. Note that the superindex (cu appears when the
4 argument is nondiagonal. The 8234 and 16 subma-
trices correspond to diagonal 4 arguments A, @i, @2,
and 4s. As an example, combining Tables XIII and
XIV, the real part of the bicorn GiGq is related to the
four following secondary observables l:"(A, A; 14R, 12R),
l:"(0,4; 14R, 12R), l:"(A,A; 14I, 12I), and
l:"(4',4; 14I, 12I), the imaginary part of the same bicorn
being related to l:"(A,4', 14R, 12I), l:"(@,A; 14R, 12I),
l:"(A, @;14I, 12R), and l:"(O', A; 14I, 12R).

As for the transversity frame, the determination of the
helicity amplitudes is performed in two stages, The first
stage consists of measuring the 16 independent secondary
observables lP(a, P; p, 6) with n, P, and b equal to A or
4 and p equal to A, 4'i, C~, and 43, the magnitude
squares of the amplitudes being given in terms of linear
combinations of these observables. Table XV shows, in
contrast to the transversity case, that the determination
of the magnitudes needs experiments which involve four
polarized particles at a time.

The magnitudes being determined, the second stage
consists of finding a set of, at least, 15 experiments for
the determination of independent relative phases. The
submatrices at disposal being of size 4x4 and 8x8, a
total of more than 15 experiments is needed, if all the
observables appearing in the subspaces on which act the
matrices are measured, following the Moravcsik's claim.
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TABLE XIII. Dimension and type of matrices M~ connecting bicoms and secondary helicity observables.

G4

F1'

G5

Gs

F6

G1 G2 G3 G4

414 414 414

414 414

16 4,'4

F4

83 84 82 41

84 83 41 82

82 41 83 84

41 82 84 83

16 414 414 414

16 414 414

16 4

G5 G6 G7 G8

6 7 5 1

812 812 813 812
7 6 1 5

812 813 812 812
5 1 6 7

1 5 7 6

1 5 7 6

5 1 6 7

7 6 1 5

6 7 5 1

]6 423 423 423

]6 423 423

16 4

16

F5 F6 F7 F8

812 813 813 813
1 5 7 6

5 1 6 7

7 6 1 5

6 7 5 1

6 7 5 1

7 6 1 5

5 1 6 7

813 812 812 812
1 5 7 6

83 84 82 41

84 83 41 82

82 41 83 84

41 82 84 83

]6 423 423 423

423 423

16 4

16

With a total of 16 experiments, obtained from two 8x8,
or from one 8x8 and two 4x4, or from four 4x4 submatri-
ces, the phases cannot be completely determined. With
a total of 20 experiments, the phases can be completely
determined from one 8x8 plus three 4x4 submatrices,
only.

For solving the problem completely with 15 experi-

ments, use must be made of one of the 8x8 submatrices
among the 8~ ones for i = 1, 5, 6, 7 and (w = 12, 13.
The method must necessary measure all the eight ob-
servables appearing in the corresponding subspaee. In
addition, the method is to measure the four observables
appearing in a subspace on which acts a 4x4 submatrix,
two observables corresponding to a second 4x4 subma-

TABLE XIV. Secondary helicity observables on which act the matrices defined in Table XIII.
Here n, P, and b are equal to A or 4' for the nucleons and p equal to A, @q, 4'2, or 43 for the b, .

Diagonal

arguments

(3N+ b, )

(3N)

(2N+ E)

(2N)

Matrices

(Table XIII)

82

83

84

4$4P 8$4P
2 ~ 5

44~
3 ~ 6

44 8C4 1 7

Real part

of bicorn

8"(n, P; p, 6)

8"(n, P; (~R, 6)
2"(n, P; p, 12R)

l'."(n, 12R; p, 6)
2"(12R, P; p, b)

8"(n, P; (~Hq, 12')
for qQ = +1
2"(n) 12Hp, (uHq, 6)

for Pq =+1
C"(12H„,P; (uHq, 6)

for pq = +1

Imaginary part

of bicorn

l:"(n,P;(uI, 6)

l:"(n,P; p, 12I)
8"(n, 12I;p, 6)
2"(12I, P; p, 6)
8"(n, P; (u)Hq, 12')
for qQ = —1

2"(n, 12Hp, ((uHq, 6)

for Pq = —1

(12Hp P'((uHq 6)

for pq = —1
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TABLE XV. A set of 31 secondary observables determining the 16 complex helicity amplitudes
D"(A, l; A, L).

2"(A, A A, A)
2"(A, A; 4'g, A)
2"(4, A; 0 2, A)
8"(4, A; @3,A)

8"(4 O'A A)
8"(0, 4; 0 &, A)
8"(A, @;@2,A)
8"(A, 0; @3,A)

Phases

Magnitudes
8"(4 A A @)
C"(4,A;C~, 4)
2"(A, A; 4~, 0 )
8"(A, A; C3, 4)

2"(A, A; 12R, A)
8"(@A 12R, A)
2"(4, A 14R A)
2"(12R, A 14R, A)

8"(@ @ 12R, A)
j:"(A 4'12R, A)
2"(A, 4 14R, A)
8"(12I, A 14I, A)

2"(4,A;12R, C)
8"(A, A 12R, @)
8"(A, A 14R, C)
l:"(A, 12R; 14R, A)

8"(A, 4' 12R, 0')
l:"(0 0 12R, C)
2"(4,@;14R,C)

trix and finally, one observable corresponding to a third
4x4 one. The rule of choice for the three 4x4 submatri-
ces is to retain one 4f submatrix for (u = 14 or 23, plus
one 4~ and one 4~ for i, j = 2, 3, 4 and i P j, and for
(~ = 14, 23.

For giving an explicit example, we can choose to mea-
sure experiments with as much as possible diagonal nu-
cleon arguments (i.e. , A and 4 arguments), the 6 argu-
ment being necessarily nondiagonal (( g cu). This can
be done using the sequence of submatrices 8~&2 or 8P,
4&~4 or 4~~s, plus two submatrices 4~ and 4~ with i P j,
among 4z s 4. In Table XV, the corresponding set of 31
secondary observables which determine completely (up
to a global phase and a discrete number of ambiguities)
the 16 complex helicity amplitudes can be found, as an
explicit example, by taking the sequence 8&, 4z, 44,
434, for the determination of the phases.

V. CONCLUSION

The present work is devoted to the presentation of an
amplitude analysis method, for the NN —+ AN tran-
sition. The study is performed in the optimal formal-
ism, which optimally diagonalizes the matrix connecting
observables and bilinear combinations of amplitudes (bi-
coms), and, consequently, is well adapted to phenomeno-
logical amplitude determination. The quadratic relations
existing between the spin observables of the NN ~ AN
transition are discussed.

In optimal formalism, as far as "primary observables"
are concerned, the systematic determination of the am-
plitudes is very simple, a sufFicient number of lxl sub-
matrices connecting observables and bicoms being at our
disposal.

However, it is much simpler to perform experiments
in which some particles are unpolarized, which leads us
to redefine observables in terms of "secondary observ-
ables. " Unfortunately, the choice of secondary observ-
ables, more adapted to experiments, increases the com-
plexity of their relations with bicoms. The determination
of the amplitudes is performed in two stages. First, the
magnitudes are determined by means of a specific set of
16 observables. Second, taking account of the quadratic
relations, a methodology is developed to find all the sets
of 15 observables giving the relative phases, with the least

possible ambiguities. Transversity and helicity cases are
specifically examined.

An explicit application of the method to the experi-
mental data, for which it is convenient to use the density
matrix formalism, will be presented in a following paper.

Turning back to the spin-space decomposition of the
transition matrix [2,7,8], the knowledge of the 16 complex
spin amplitudes f, (e~) and g;(8~) may be obtained by
inverting the amplitude transformation given in Ref. [8],
from optimal transversity or helicity amplitudes. Note,
however, that the amplitude transformation can only be
made once the optimal amplitudes are fully determined,
the problem of ambiguities being solved. It could be
interesting to study the conditions for realizing a partial
phenomenological analysis.
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APPENDIX

(p""" )~ ~
= z[(1+&)+i(1—p)l

X (~(u)l~(v)l' + p~(u)l' ~(v) l ) ~ (A1)

where, for a spin s particle, l and l' correspond to
+s, , —s magnetic components along its quantization
axis. The symbol ju) is related to the index u by

(u} = s(2u —1) modulo (2s + 1). (A2)

For spin- ~ particles, one obtains two p"" diagonal matri-
ces

The p and Q operators of Eq. (2.2), describing initial
polarizations and measured final polarizations, denote all
the spin-space operators required to generate spin observ-
ables of the reaction. In the optimal formalism, the p and
Q operators are chosen to be "minimally Hermitian, " so
that the corresponding matrices have minimal number
of nonzero elements compatible with the Hermiticity re-
quirement. For each particle, p and Q associated matrix
elements are defined by
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0&=I0 0~
» (0 0'r

i0 2y '

and two pa"H~ off-diagonal matrices

"R= l(0
il 0) ' (A4)

For spin-z particle, one obtains four Q~& diagonal matri-
ces

(2 0 0 0)
0 0 0 0
0 0 0 0

&0 0 0 0)

(0 0
0 2
0 0

&0 0

(0 0 0 0)
0 0 0 0
0 0 2 0

&0 0 0 0)

(0 0

Q44
0 0

(0 0

six Q& + off-diagonal matrices

0 0)
0 0
0 0

(A5)

0 0
0 0)'

(0 1 0 0) (0 0 1 0) (0 0 0 Ii
1 0 0 0 Q13R 0 0 0 0 14R 0 0 0 0
0 0 0 0 ' 1 0 0 0 ' 0 0 0 0

(0 0 0 0) (0 0 0 0) kl 0 0 0)

0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 Qz4& 0 0 0 1 34+ 0 0 0 0
0 1 0 0 ' 0 0 0 0 ' 0 0 0 1

(0 0 0 0) (0 1 0 OJ (0 0 1 OJ

and six Qt~ off-diagonal matrices

( 6)

(0
Q12I

—i 0 0)
Q

13I
0 0 0)

(0 0 —i 0) (0 0 0 i)—
0 0 0 0 y41 0 0 0 0
i 0 0 0 ' 0 0 0 0

k0 0 0 0) (i 0 0 0 )
(A7)

(0 0 0 0) (0 0 0 0
0 0 -i 0 g4I 0 0 0
0 i 0 0 'Q = 000 0

&0 0 0 0) (0 i 0 0 )

(0
Q34I

&o

0 0 oi
0 0
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