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Can e+e peaks be explained as resonances in Bhabha scattering?
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We study the behavior of two-body continuum states in QED, with special emphasis on the
possible appearance of resonances. The starting point is an approximate two-body equation obtained
through use of a single-time truncation in the one-photon approximation. A derivation of the relevant
equation for scalar QED (the Wick-Cutkosky model) is given to illustrate our method, which has
previously been applied to the case of the full QED theory. We then investigate scattering resonances
in the J = 0 channels for both scalar QED and the standard QED, and show that within the current
approximation no resonances are found that can explain the long-lived states observed in heavy-ion
scattering at the GSI. We comment on other calculations that have reported positive results for the
same problem.

PACS number(s): 12.20.DS, 11.10.Qr, 13.10.+q

I. INTRODUCTION

In recent years the problem of the theoretical descrip-
tion of the e+e system in quantum electrodynamics
(@ED) has received renewed attention [1—3]. This is
mainly due to the surprising discovery at GSI of very
narrow positron peaks in the scattering of heavy ions [4],
that seem to be (almost) independent of the target and
projectile mass. Some seem to decay by back-to-back
emission of an electron-positron pair [5, 6]. Since the nu-
clear properties do not seem to play a role, these narrow
resonances at center-of-mass energies in the range of 3—4
times the electron rest mass have thus led to numerous
hypotheses (that we do not review, see Miiller's review

[7] and his contribution in [8]) concerning the existence
of new states that decay into an e+e pair. Among the
suggestions, none of which has been substantiated by ex-
periment, the most conservative is the occurrence of a
resonance in e+e scattering. An interesting alternative
suggestion for the mechanism that causes these peaks has
recently been given by Balantekin and Fricke [9]. They
show that for a special form of the time-dependent elec-
tromagnetic field, they can get sharp peaks on a scale
very different from the natural scale of the em Beld. It
is not at all clear how Belds of the required form might
play a role in heavy-ion reactions.

Finally, before addressing the theory, it should be
added that some doubt remains about the interpreta-
tion of the experimental results. The detailed analysis
of the most recent results from the EPOS group at GSI
[6] does not seem to agree with the back-to-back decay
suggested by earlier research. For some of the peaks it
appears to be necessary to make unphysical cuts in the
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data to make them stand out from the background. We
also note that there is only limited agreement on the posi-
tion of the resonances among the two groups (ORANGE
and EPOS) that have performed the experiments, even
though they were performed at the same accelerator. In
Table I we have given a short summary of the experimen-
tal data, where we have lined up peaks about which the
experiments might agree.

In direct experimental searches using Bhabha (e+, e )
scattering these resonances have not been observed (see
Ref. [10] for recent measurements by one of the GSI
groups; a more general discussion is presented in Ref.
[8]). This puts a bound on the width of some of these
resonances of about 10 ~ eV. We are thus looking for
states about 1 MeV in the continuum, with a width of
at most 10 times that energy. It seems rather unlikely
that "ordinary" @ED physics is responsible for such un-
usual behavior, but the small size associated which such
a resonance may mean that the short-distance proper-
ties of @ED play an important role. For this reason a
number of authors have applied approximate two-body
equations. Surprisingly enough there appear claims in

E (keV)

ORANGE EPOS

518 + 20

642 + 12

792+ 10
811+10

608+8
625+8
748+ 8
760 + 20
807+ 8

TABLE I. A tabulation of the observed peaks in heavy-ion
scattering. We compare the energies seen by the ORANGE
group to those of the EPOS group.
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the literature that resonances really exist in calculations
based on a two-body truncation, either in full QED [1,
3] or in the simplified Wick-Cutkosky model of spinless
QED [2]. These results seem to contradict the "proof"
in Ref. [11] that the appearance of high-energy narrow
resonances is not easily reconciled with the scaling be-
havior of QED. We have shown earlier that there do not
appear to be resonances in scalar QED [12], contradict-
ing Ref. [2]. The equation used by Wong and Becker [1]
to describe resonances is known to be ill conditioned, and
thus makes that result untrustworthy. Finally the posi-
tive results by Spence and Vary [3] have been disputed by
Horbatsch [13]using a similar numerical method (a spline
technique), with a difFerent choice of collocation points
that includes the A: value corresponding to the scatter-
ing energy. Unfortunately, one still needs a finite pho-
ton mass in these calculations, and it is not completely
clear whether one can extrapolate to zero photon mass.
Anyway we feel that the study of a related, but difFerent,
equation using a completely different numerical technique
might shed some new light on these questions.

A serious problem with studies based on an approx-
imate relativistic two-body equation is that there are
many routes to such an equation (see, e.g. , Ref. [14]),
each giving a different, but related, result. An exam-
ple of some importance to the current paper is a proce-
dure, introduced by Gross [15],where the Bethe-Salpeter
equation in the one-photon approximation is reduced to a
single-time equation by putting one of the particles on the
mass shell. This produces an equation with a Hermitian,
energy-independent, nonlocal interaction, in contrast to
some of the recent work that uses an energy-dependent
non-Hermitean interaction, the non-Hermiticity arising
from the possibility of real photon production.

Because of the interest in the results obtained in the
procedures sketched above, it is clear that it is necessary
both to check the published results and to try one or
more additional equations to see whether similar results
are obtained. The equation we chose to study emerges
directly from the field theory, after making some physical
approximations. The derivation was recently given by
two of us [17] (A.K. and R.M.D.) for the case of QED.
In the derivation we put one of the particles on the mass
shell from the beginning. It is therefore not surprising
that the result agrees with the corresponding equation
derived by Gross.

This paper presents, mainly for didactic purposes, a
more detailed discussion of the Wick-Cutkosky model,
thus extending the discussion in our letter [12]. After the
derivation of the basic two-body wave equation in Sec. II,
we give the partial-wave decomposition of the equation
(Sec. III), and study the numerical solution of this equa-
tion in Sec. IV and Appendix A. We examine, in some
detail, our de6nition of resonances, as well as the tech-
nique we employ to locate resonances. This technique,
complex coordinate rotation, is commonly used in non-
relativistic quantum mechanics, but has to our knowledge
never been used in the current context. We then come
to the main problem and study the calculation of reso-
nances in full QED. We shall give only an outline of these
calculations, as many steps parallel those in scalar QED.

The detailed partial-wave decomposition of the integral
kernel is given in Appendix C. In Sec. VI we discuss the
relation of our work to other approaches found in the
literature.

II. A TWO-BODY EQUATION FOR THE
WICK-CUTKOSKY MODEL

(—kl@( )IPA) =CPA(kl t)
= exp( —i [Pp —Ei,]t

+i(P + k) r)@pA(k), (5)

/~A(k)—:(—k~@(0)~PA).

The matrix element of the equation of motion (3) be-
tween the same states is, in the center-of-mass system
where P = 0,

(-[&o —&.]'+ &~) @~(k) = g(—k[x(0)@(0)IA) (7)

or, slightly simplified,

-&p(pp —2&~)A(k) = g(-klx(0) 4(0) IA). (8)

The right-hand side of this equation is now evaluated in
the on-shell no-pair-creation approximation, i.e. , we as-
sume that insertion of only one-body intermediate states
between X and Q in (8) is sufficient. In consequence, we
now need the matrix elements of x between one-body
states. From the "Maxwell equation" (2) we derive

Again, using translational invariance, the 2: dependence
of the matrix elements can be expressed by the exponen-
tial factor

exp( —i(EA,. —E&)t + i(k —k') r) (10)

To show the techniques underlying the derivation of a
two-body equation by Klein and Dreizler [17], we apply
similar techniques to the study of the Wick-Cutkosky
model [16]. This is a model of QED without spin, which
is specified by the Lagrange density

~ = @'(&—m')4 + ,'x&x+—gW'0x, (1)
where the coupling constant g is identified with 2em,
twice the (dimensionless) unit of charge times the "elec-
tron" mass. The equations of motion derived from this
equation are (note that X and @ commute)

&x(*)= gM'(~) @(~) (2)
(&+m')@(~) = ~4(*)x(~) (3)

(&+ m')0'(~) =~4'(*)x(~). (4)

Following the lead of Klein and Dreizler [17] we con-
sider the asymmetric matrix element of a field operator
between a single-particle state with positive charge and
momentum —k,

~

—k), and a two-particle state with mo-
mentum P and intrinsic quantum number A (A includes
the rest mass of the state), ~PA). We have thus chosen
the arbitrary convention that @ annihilates a negative
charge. We now And, using translational invariance,
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multiplying the matrix element at x = 0. Thus we have

(k —k')' —(Ei —Ei )' (—klx(o) I

—k')

= g(-klqt(0) 4(0)I-k')

III. PARTIAL-WAVE DECOMPOSITION

Let us now study the partial-wave decomposition of
Eq. (18), taking into account the rotational invariance
of the original Lagrangian. To that purpose we need to
decompose the kernel 1/Q, where

With the usual definition

Q = q —(Ei, —Ei, ) = (k —k') —(Ei, —Ei, )z, (12)

Q = (k —k')2 —(EI, —EI, )
=k + k' —2kk'cos8 —(1+k )

—(1 + k' ) + 2',Ei,
= —2+ 2EI,Ei,i —2kk'cos8, (19)

and explicit evaluation of the matrix element on the
right-hand side, again using the same no-pair approxi-
mation,

(-kl@t(o)@(0)I

—k') = (-kl@t(0) lo) (ol@(0)I

—k')
so that

EkEI, —1
kk/ (20)

and, as usual, 8 is the angle between k and k'. We define

1 1

(2&)'2 V'EI Ea
(13)

1
Q2

1 1
2kk' z —cos 8

1
, ) xl. (z)PI.(cos 8),

(-klan(0) I-k') = g (14)

Setting M = Po, since the zeroth component of momen-
tum in the c.m. frame is just the invariant mass of the
e+e system, we find the integral equation

—M(M —2Eg) Qp(k)

[here we use the usual normalization, e.g. , Eq. (12.7) in
Ref. [18], of the Fock-space states for the Klein-Gordon
equation] we conclude that

where PL are the standard Legendre polynomi-
als. Using the orthogonality of these polynomials

[J dx Pl. (x)PI,I(x) = br, l, 2/(2L+ 1)], we find

2L+1 1
PI, (cos 8) d8

2 z —cos8
= (2I, + 1)QI.(z), lzl ) 1.

xr(z) =

(22)

Here we have used Eq. (7.124) in Ref. [19] to evaluate the
integral in terms of the Legendre functions of the second
kind, Ql. . Finally, then,

= g dk'( —kl x(0) I

—k') (—k'
I @(0)I ~)

1 1 2I +1
, ) Qr, (z)PI. (cos8).

L
(23)

g
2

2(2vr)s ,@,(k').

(M, —M~) d gk, (k)( M+iM~ —2Eg)@~(k) = 0.

The orthogonality relation between states of different
invariant mass can be proven to take the form

The expansion is valid for all points outside the segment
of the real axis between —1 and 1. The limiting branch
points at z = 1 occur for k = k'. Since we shall use
a numerical method that is not sensitive to this branch
point singularity, we shall not use a finite photon mass.

If we now restrict our attention to the 8 wave (L = 0),
using Qo(z) = —

2 ln( i), we find the integral equation
(we drop the subscript A from now on)

M(M 2E„)~(k)

This suggests that we should normalize the bound state
solutions by

o.4vr k'dk' Ei,Ei,I —1 —kk'

4vrz 0 k+1+ ki2 Ei,Ei,r —1+ kk'

d k @,(k) (M, + M~ —2Ei, )@~(k) = 6;~. (17) (24)

In the following, we use scaled momenta and energies
that are related to the old ones by multiplication with
rn. We also introduce o. = ez/(4vr) = g2/(rn216vr), and
redefine the wave function @(k) = @(k)QEI, (Of course.
we delete all reference to this tilde. ) We thus find the
following integral equation, that we shall solve below: +1+k"

Ei Ei, —1 —kk'" Z„Z„.—1+II/

Once again, the equation simplifies slightly if we intro-
duce @ = kQ,

M(M —2EA, )Q(k)

M(M —2EA, )QA(k) = ——
7r2

dk' Qg(k')./ 1 1
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In order to ea wi ed 1 'th the nonlinear eigenvalue problem
Iil aild(25) we separate i in o a't ' t linear eigenvalue problem an

a self-consistency condition:

Mg(k) = 2Ei,g(k)
dk' Ei,Eg —1 —kk'

Ei Ei, —1+kk'1+ A."

(26)

(27)A=

The QED eigenvalue problem is linea r as we shall see
below.

IV. NUMERICAL TECHNIQUES

ln ~k —k'(P(k')dk', (28)

'
1 P&k~ can be evaluated in closed formwith a polynomia & &, can

~ ~ ~

1
~and is nite. wefi

' lf e thus treat the logarithmic singu ari-
1' itl and approximate any function mu ip yi gties exp icit y, an a

e to re ularize thethem by a polynomial, we do not have o reg
kernel.

~ ~ ~In practice, we a so map1 the integration interval 0, oo
on (0, 1), by using a conformal mapping p'n ofkto z —z .
It can easily be seen a eth t the character of the singularities

/han e and that they now behave as ln ~z —z ~.does not change, an
We then decompose the integral kerne in o a gI" and a part containing the logarithmic singularities,

The partia -waveh t' 1- ave decomposition of the Coulomb poten-
m lex relatives, in momentum

s ace leads to integral kernels containing terms t at e-

b the introduction of a finite photon mass, w ic
t k to zero after solution of the equa

'
is a en o

inate s ace,cedure is i erend'K t from the one used in coor '
p

r for the solu-where no nih fi 'te photon mass is necessary or e
ible that wef b nd state problems. It seems plausib etion of oun s a e

' e hoton mass inshould be able to forgo the use of a fimte p o
This can indeed be shown to be the

case for our numerical method. We rely on t e ac a
any integral of the form

k ~ k exp( —i8/2). (30)

In the numerical calculation o oound states we find
M = 2 is a parently a spectral accumulation point,

and we expect the existence of an infinite y erg
h ld. This situation is drawn inconve g gr in to this thres o

'
n M as a function ofF' 1 where we plot the solution asig. ) W

I that fi ure we have also indicated,d as the dashen a
27 . Each intersec-line the self-consistency condition 27 .

to the equation for unrealistica y g
h sical (Rydberg) spectrum occurs in a small range near

h' h display in a little more detailci = 1/(2n. 137, w ic we isp
in the inset.

dberf d th t the binding energy of the Ryd g
of 10levels can easily be calculated with an accuracy o

li htl so that we calculate theif we change the equation s ig t y so a
binding energy directly, mstea of the rest mass. e ac-

o 1' 't d b the matrix diagonalization,curacy seems to e imi e y

To calculate the resonances we should take a i er-
. First of all let us state that theent approach, however. Firs o

rrow thatex ectation is ath t the resonances are so narrow a
b 1. We now have to solve anwe can take a to e rea.

inter-tiiat a art from the energy-dependent in er-equation t at, apar om
functions, looksd the square-root-type energy func 'action an e

r e uation inver much like a nonrelativistic Schrodinger q

nonrelativistic qu
'

weuantum mechanics. s usua we
1'dentify a resonance wit a p

'
ha ole in the secon

In nonre ativis ic~ ~ t 4

sheet of the Green's function G(u).
chanics one may use the complex coordinate

an eigenvalue of an equation re ate o e
by a complex rotation of k,

I(z, z') = I'(z, z') + I'(z, z') ln
i
z —z' i. (29)

lized mid oint rule for theWe use a seventh-order genera ize
'

p
'

on thetion. The numerical method was checked on t e

form of the 1s state is an eigenvector o e num
bl with a relative accuracy better than 10 . Pur-

discussed exten-ther details of the numerical method are isc
'n endix A.

In our numerical studies we rst oo a
p roblem Eq. L' )) an~26~ d implement the self-consistency

E without performing a calculation,~ ~conditions later. Even wi ou
we know that the spectrum of (26) should have e o-
lowin eneral features: For 6 = 0 we have a purely con-

& 2 and a continuouswe expect bound states wit
spectrum for M & 2.

Co

0.5
1

't
At

CX

FIG. 1. The solutions of the j.ntegra qral e uation (26) as a
nction of 6 . The dashed line represents t e se self-consistency

' }lt ' Th ' t ho sthbola looks almost like a straight ine. e in
—2x 10 5(M &2, 0&6&2xsolutions where 2 — x
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In essence this implies that solutions with complex k
which used to blow up at infinity (so-called Siegert
boundary conditions),

CD
CD

CD

Q(r) e'"", Im(k) ( 0, (31)

now become square integrable for 8 large enough,
Im[k exp( —i8/2)] ) 0.

The mathematical foundations of the method do not
extend to the current problem. Since our equations are
only marginally diferent from the nonrelativistic case,
however, we claim that numerical justi6cation of the
quality of the method should be sufficient.

The integral equation under study is

(M —2EI, )Q(k)

CD

CD
I

Ol
CD

CD
I

CO
CD

ED
I

2.113 2. ll4

Re(E)

I

2.115 2.116

e 'e~~dk' EA, EI, —1 —kk'e '0
ln "",. @(k'),

vr E E E ~ —1+kk'e 's
FIG. 3. Trajectory E(8) of the lowest resonance in Fig. 2.

0 runs from 0 to 0.7. Markers are drawn at each tenth radian.

(32)

where EJ, = gl + e 'sk . Prom the nonrelativistic limit
we know that the ln term generalizes the Fourier trans-
form of a local potential. As a test of the approach we
replace the logarithm in Eq. (32) by the S wave of the
Fourier transform of the "Gaussian-shell" potential

V(r) = A sin 8d8 dPexp( P[r —ro(8—, P)] j

= 27rA(exp[ P(r —ro) —
]
—exp[ —P(r + ro) ]).

(The Fourier transform and 8 wave decomposition are
given in Appendix D.) For positive A this potential func-
tion has as a spherically symmetric barrier through which
a wave function localized on the inside can leak to the

outside, and thus becomes a resonance with a Gnite
width.

We have chosen ro = 4, P = 1, and two different pos-
itive values for A, one intermediate value, A = 0.065,
where the resonances have an appreciable width, and a
large value, A = 1.032, where the resonances are very
narrow, simulating the behavior we are trying to find for
the @ED problem. We have diagonalized the complex-
scaled problem (using the finite difference method of Ap-
pendix A) for several values of 8. The results for inter-
mediate A are given in Fig. 2, where one can see the
appearance of two resonances as 8 increases above a cer-
tain threshold. This is a very general feature: As we
change 8 so that the continuous spectrum rotates into
the complex plane, at some point the continuous spec-
trum crosses a resonance (on the second Riemann sheet)
which now becomes a complex eigenvalue, and remains
so as we further increase 8. This uncovering can be seen

CD
~ ~

CD

CO

CD
I

OOOOOOOO
OOOOOO OOO

oo
ooo

oo
I:I

CD

CD—

uJ

CO

C)
1

OOOOOOO
OOOOO

oo
ooo oo oo o

CD
I

2.0 2.1 2.2 2.3
Re(E)

I

2.4 2.5
2.0 2.5 3.0

Re(E)

I

3.5 4.0

FIG. 2. Numerical complex energy solutions for the scaled
eigenvalue problem with the Gaussian-shell potential for in-
termediate coupling A. We have used 8 = 0.1 (lozenges), 0.2
(triangles), and 0.3 (squares) rad. Note the two resonances
indicated by arrows.

FIG. 4. Complex energy solutions for the scaled eigen-
value problem with the Gaussian-shell potential for large cou-
pling A. We have used 8 = 0.1 (lozenges), 0.2 (triangles), and
0.3 (squares) rad. Note the very narrow resonances.
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very nicely in Fig. 2. We show the trajectory E(8) for
the first of these two resonances in Fig. 3, which demon-
strates the stabilization properties of the energy: If we
had an infinite basis we would not have to worry about
the choice of rotation angle, since after uncovering the
resonance it would remain in the same spot. If we use a
finite basis, however, we should choose an optimal rota-
tion angle, where the energy is stationary with respect to
8. The pole in our example is almost stationary for 8 from
0.3 to 0.7 rad, so we have good stabilization. Finally, we
show in Fig. 4 that we can also obtain narrow resonances
by increasing A. Note that due to the relativistic nature
of our energy term the spectrum only rotates by 8 for
large energies (28 for the usual nonrelativistic case).

Having satisfied ourselves about the viability of our
method we have tried extensively to find resonances in
the scalar @ED problem, for 6 ( 10 s. We have var-
ied (p) and the scaling angle, but have been unable to
discover any resonance. This, and its consequences, are
discussed in our previous paper [12].

V. THE REALISTIC +ED PROBLEM

[M —2E(k)]@(k) =— dk'I(k, k'~ cr('), cr("))@(k'),

where the kernel I is defined as

(34)

Even though the result discussed in the previous sec-
tion is interesting in itself, it does not allow us to draw
any conclusions about the situation encountered in @ED.
Here one can use a formalism similar to the one used
in Sec. II to derive an integral equation. As discussed
in detail by Klein and Dreizler [17], there is the addi-
tional problem that the electron and positron are dis-
tinguishable, so that we need an explicit symmetrization
to refiect the underlying charge-conjugation symmetry of
@ED. After a considerable amount of algebra, one finds
the following integral equation when the small compo-
nents of all Dirac spinors are eliminated:

4EE'
I=(2q z —Q )[1+~ i~ +icr(') (~ x K')]8+m E'+ m

x[1+~ ~'+ io(") (~ x v.')]
+Q-'ol'& 0&~'[0('& (K —K')][0("& (K —K')]

+Q [4K m'+ 4iS m x rc, ']. (35)

Here the following quantities have been introduced: Q
was already defined in Eq. (19), q = (k —k'), ir =
k/(Ei, +m), and o denotes the Pauli matrix for electrons
(e) or positrons (p), respectively. Finally S = &(o'(') +
o ("&) is the total spin.

In contrast to Eq. (25), the mass M appears only
linearly. This makes the equation a little easier to
solve, since we do not have to impose additional self-
consistency.

Equation (34) has been shown to contain the Breit
limit, and as such contains much of the same physics as
the equation used by Spence and Vary [3]. In particular
it contains a magnetic force, claimed to be responsible
for the appearance of resonances. Of course the task
of making a partial-wave decomposition of this kernel is
much more formidable than for the scalar case. The final
result, which can be summarized sufBciently concisely,
is listed in Appendix C. We have first checked that we
can obtain a reasonable description of the bound state
properties of the equation. These are given quite well by
our numerical method, and agree to fourth order in o.
with the results give in Bethe and Salpeter [22].

Next we have complex scaled the integral kernel, which
has analytic properties paralleling those of the kernel dis-
cussed in Sec. III. We have concentrated our attention
on the J = 0+ and the J = 0 channels, since the last
is usually considered to be responsible for the resonant
structures seen in the experiment. We have again per-
formed extensive numerical calculations, using a variety
of values for 8 and p. A result of a representative cal-

culation is given in Fig. 5. If we compare this to the
resonances seen in Fig. 3, we see that there is not even
a hint of any nonsmooth behavior in the discretized con-
tinuous spectrum.

VI. DISCUSSION AND OUTLOOK

We have thus found no resonances in the current ap-
proximation to @ED. As argued in our previous paper

oooooo o 00000 ooo o C

CQ

C)
I

ooooo V

o o oo
o

o
o

2.0 2.5 3.0
Re(E)

3.5 4.0

FIG. 5. A representative example calculation for the J =
0 channel. We have used 8 = 0.1 (lozenges), 0.2 (triangles),
and 0.3 (squares) rad.
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[12] the positive result obtained by [2] is probably due to
the erroneous interpretation of numerical apects of their
result. The work by Spence and Vary is also in doubt,
since the results by Horbatsch [13] seem to show an ex-
treme sensitivity to the choice of collocation points, so
that the numerical apects are once again suspect.

Together with the results of our calculation we draw
the tentative conclusion that the mechanism studied in
this paper (two-body states with one-photon exchange)
cannot be responsible for the appearance of resonances.
This is in accordance with the virial argument by Grabiak
et at. [11].We do not claim that this argument rules out
resonances caused by multiple-photon exchange [23].

We have also not ruled out that the high field effects
occurring in the heavy-ion reactions may actually be re-
sponsible for the occurrence of these resonances, even
though there are no convincing theoretical grounds for
such a conclusion. (See however [9] where it is shown
that resonant production with a moderately slow —but
unrealistic —time variation can give rise to sharp res-
onances. ) lt is not clear to us whether the fact that
pair production seems to occur near the two-pair-creation
threshold can be explained in this scenario.

We are therefore very interested in the results of the
ongoing experiments at Argonne. We believe that these
will be able to shed some light on this confusing but
interesting issue.

Mg, = 2E,@, —aI;~Q~. (A5)

This can then be solved for M by a simple matrix diago-
nalization. We refrain from giving the complicated form
of I,~ here, which is caused by treating the logarithmic
singularity exactly.

APPENDIX B:FOURIER TRANSFORM OF THE
GAUSSIAN-SHELL POTENTIAL

In order to calculate the Fourier transform of (33),

The integral over z' is then evaluated numerically by
approximating I"'(z, z') &i,, &, @(z') for fixed z with a
seventh-order interpolating polynomial in z', using func-
tion values at the grid points z, = (i + 1/2)h. We calcu-
late the integral from ih to (i+ 1)h, however. For given i
we use the function values at (i —5/2) h, . . . , (i+7/2) h, ex-
cept near the end points where we use an asymmetric in-
terpolating polynomial, e.g. , 0, 1/2h, 3/2h, . . . , 11/2h for
the integration from 0 to 3h. In this process we use the
boundary conditions @(k = 0) = @(k = oo) = 0. This
leads to a high-order accurate version of the midpoint
rule.

We thus integrate the logarithm exactly, approximat-
ing all other parts of the integral by polynomials, and
obtain a discretized version of the integral equation, that
schematically looks like
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APPENDIX A: FINITE DIFFERENCE
SOLUTION OF THE LINEAR

EIGENVALUE PROBLEM

In order to facilitate the numerical solution of Eq. (26)
we introduce the new integration variable (p denotes a
scale)

we calculate the Fourier transform before the angular in-
tegration,

d re'"'e P" "'l = (vr/P) exp
~

—
~

exp(ik ro).( kz&

& 4»
(B2)

We then find

V(k) = A
/

—
f

exp (—f~) ( kz)
4 )

k = pz/(1 —z), z = k/(k+ p). (A1) x sin 8 d8 dP exp[ik ro(8, P)]

An integral equation of the form

Mg(k) = 2E(k)@(k) —o. I(k, k')@(k')dk' (A2)

(B3)

The S-wave partial wave of this equation is given by

becomes Vo(k, k') =
z V(k —k')d eos 8.

Mg(z) = 2E4,$(z) —op
1dz'(, 2I(z, z')Q(z').

(A3)

Using

s = k + k' —2kk'cos8, (B5)

The kernel I is next decomposed into a singular and a
regular part,

we find

sds = —kk'd cos 8. (B6)

I(z, z') = I"(z,z') + I'(z, z') ln[zz'/(z —z') ]. (A4) Thus
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"+"
I/'0(k, k')=, e ~ sin sr0 ds

"+"
r()P»2kk/ 2

2—fP (elSIo 'e 282o)'ds

, gape ~'OIm erfc(ir0~p+ Jk —k'J) —erfc(ir0~p+ [k + k'])
r0

(B7)

APPENDIX C: PARTIAL-'WAVE DECOMPOSITION OF THE INTEGRAL KERNEL

If we employ the following definitions,

q2 = (k —k')2,
Q' =c' —(EA: —EA, )',

EA, EA —m 2

2(k2+ k'2)
u'=

LQL-1(z) + (L+ 1)QI+1(z)
2I +1

LQ.— ()+(L+1)Q..()
2I +1

4EE' kk'

(E+ m)(E'+ m) 2~

the partial-wave decomposition of the integral kernel can be written as

(C1)

(LSJM]I]L'8'JM) = 6ss 6rL (2 QL(y)+2ss Qr(y) + («') Qr(y) — QL(z) —2«'QL(z) + («') QL(z) )
+bye 6LL [QL(z)(r2+ r.' ) —QL(z)2rr']( —l)L(4 + S)

+2y«s'(, , )6 8&/'S(S+ r) ).(2]Qr,.(y) + «'Qr(y)l + IQL. (*).—. «'QL. (2)l)
L

1 1 1
[L ]gL 1 L/L 1 L'LL'L000000

+36r. K' SS' ) [L ][Lg]L1L2[2QL,(y) —QL, (z)](—1) '+ + +
L LbL1L~

1/2 1/2 S 1 1 Iy LS I )(LL I)11L111,. I LLL I L'
Xk 1/2 1/2 8' )k 1 1 L2 S' L' L L' L Ly 00 0 00 0 0 0 0 0 0 0

1 1L11L
+6SS' ) QL. (z)L C '

(—1)L+s+~
L L1Lg

1/2 1/2 S
x ) IIQ (, , & 1/2 I/2 S' 2 ( 6LL6sLI+S 61,,16L,I(,'r) ), , ,S L L1

LqL~ 1 1 L

1/2 1/2 S
+12«'( —1) + + SS' ) 6r, „,„QL.(z)(, , & I/2 , I/2 s' r]LI]S L L1

L~L) 1 1 L1

1 1 LI
[L ]~1 I~ L~1 L&z L'

I L~ 0 0 0 0 0 0 (C2)
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