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Recent results concerning the light-cone gauge are reported. In particular we revisit the nonsinglet
Altarelli-Parisi kernel in the leading-log approximation. Ultraviolet and infrared singularities are neatly
disentangled thanks to the Mandelstam-Leibbrandt prescription in the vector propagator. A new inter-
pretation emerges of “real” and ‘‘virtual” diagram contributions. Then we exhibit the one-loop renor-
malization of the composite operator 4,(0) 4 %(0) as a first step towards full control of gauge-dependent

insertions.
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I. INTRODUCTION

Perturbative calculations in non-Abelian gauge
theories started being performed several years ago in the
light-cone gauge, owing to its simple partonic interpreta-
tion. As a matter of fact, in the deep-inelastic limit pla-
nar Feynman diagrams give the dominant contribution to
structure functions, as is well known.

Beyond the tree level, however, some difficulties were
met in handling the extra singularities coming from the
vector propagator [1,2]. The usually adopted Cauchy
principle value (CPV) prescription led indeed to incon-
sistencies already at the one-loop level. If taken literally,
it entails renormalization ‘“‘constants” which depend on
longitudinal momentum fractions [1] and a violation of
the relevant Ward identities. Although the final results
turned out to be correct owing to ingenious physical in-
sights [1], there was a clear feeling that some theoretical
developments were missing. We quote from Ref. [1]:
“...hopefully, it will be a challenge for field theory experts
to provide a more formal support for our “phenomeno-
logical rules”.”

After the proposal of the Mandelstam-Leibbrandt
(ML) causal prescription [3,4] for the spurious singularity
and the independent work in which it has been derived in
a canonical scheme [5] and renormalization at any order
in the loop expansion [6] has been proven, we think that
all necessary ideas as well as technical tools [7] are now at
hand to put such results on a firmer basis. As a first step
in this direction we will discuss a new derivation of the
nonsinglet Altarelli-Parisi (AP) kernel in the leading-log
approximation and show how ultraviolet (UV) and in-
frared (IR) singularities can be neatly disentangled in a
formulation where renormalization “constants” are truly
constant. In so doing the role of real and virtual contri-
butions to the AP kernel is elucidated and a new physical
interpretation is obtained.

The second issue we discuss is the renormalization of
composite operators [8,9], a topic not touched in Ref. [7].
The main point here is to understand whether nonlocal
counterterms are needed as happens for the one-particle-
irreducible (1PI) vertices [6,7]; were it the case, an abnor-
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mal mixing would occur in gauge-dependent quantities,
jeopardizing dimensional considerations. A direct one-
loop calculation for A}:(O)AE(O) shows that nonlocal
singular terms, although present in single diagrams, do
indeed cancel in their sum, giving rise to normal mixing.
The generalization of this property to any order in the
loop expansion will be reported elsewhere [10]. The be-
havior of more general composite operators is at present
under investigation.

II. THE AP KERNEL

In the sequel we use dimensional regularization to con-
trol UV divergences whereas IR singularities do not
occur as we stay suitably “off shell.” We closely follow
the concepts and notation of Ref. [1], with which the
reader is invited to consult.

The nonsinglet AP kernel is defined as the coefficient in
the leading-log approximation when p?—0 of the quanti-
ty
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Cr being the color factor and g the coupling constant. In
this equation V represents the virtual Feynman diagram
contribution due to the UV renormalized quark propaga-
tor in the limit when p2—0 [1], p is the spacelike incom-
ing quark momentum, k the (spacelike) four-momentum
of the outgoing quark to be integrated up to —Q?,Q be-
ing the momentum of the incoming off-shell photon, and
D, the gluon propagator. No UV singularities occur as
we are considering an absorptive part. The gauge is
specified by the vector n,(n, 4#=0) and kinematics can
be usefully parametrized as
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the quantity £ being interpreted as the longitudinal
momentum fraction P of p carried by k.

The crucial point in our treatment concerns the discon-
tinuity of the vector propagator. In the ML prescription,
the “spurious” pole possesses a causal nature and thereby
contributes to the absorptive part of D,,, at variance
with the CPV prescription. We have indeed [5,7]
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The vector 7, which is conjugate to n in the ML prescrip-
tion [np] '=fp /(Apnp +ie) is here parametrized as
(P/np,0,P/np).

The second addendum was not considered in Ref. [1].
Introducing Eq. (3) in Eq. (1), an easy calculation gives

Q2
2

] , (4)
where a=g?/47 and the distribution (1—x)7! is
defined for any suitable test function ¢ as
Jopte)1—x)ldx = [[d(x)—d(1)]1(1—x) " 'dx.

We stress that the singularity at x =1 is here regular-
ized, not by the virtual contribution (which occurs in V),
but by the “spurious” pole, which behaves as a ghost and
softens the wild IR behavior of the gluon propagator
[11].

The one-loop correction to the quark propagator in
light-cone gauge with the ML prescription, has been
thoroughly discussed in Ref. [7]. Using dimensional reg-
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where T? are the color algebra generators in the adjoint
representation; the antisymmetric tensor A7 is defined
as
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FIG. 1. One-loop diagrams with composite operator inser-
tion.

ularization and minimal subtraction scheme [12], we get,
for the UV renormalized self-energy,
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the quantity 2, being finite in the limit p2—0. From Eq.
(5), following the rules given in Ref. [1], one easily derives
the expression
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which, when inserted in Eq. (4), leads eventually, at order
a, to the factor multiplying In( —p?),
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namely to the well-known AP result. We remark in pass-
ing that, were we interested in ‘“counting” gluons, the
ghost contribution should not be considered and then the
transverse gluon discontinuity would fully expose the ex-
pected IR singular factor (1—x) ! [13].

III. COMPOSITE OPERATORS

As a first example we discuss the operatorial quantity
A7%0)A™%0) in the one-loop approximation. As is ex-
pected [14], this quantity develops a singularity which is
here regularized dimensionally.

The relevant diagrams to be considered are (Bose sym-
metric ones are understood) shown in Fig. 1, where y,n
are Lorentz indices, a,b,c,d refer to color and the cross
denotes the composite operator insertion. All singulari-
ties unrelated to the insertion are understood to be al-
ready renormalized [14]. A lengthy but straightforward
calculation gives [10]
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and the antisymmetric differential operator A¥7 is
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In Eq. (8) the first addendum at the right-hand side is the
one-loop renormalized composite operator [14].

One should remark that Eq. (8) exhibits a “normal”
mixing; in particular no nonlocal operators of the kind
(nn®/nf )(A#d/nd), which do contribute in graphs A and
B, but cancel in their sum, are involved. One can prove
that this property holds true to any order in the loop ex-
pansion [10].

The final goal is of course to get a full control over
gauge-dependent structures which may appear in con-
crete QCD perturbative calculations [15]. We consider
the result we have derived above as a first step in this
direction.
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