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Fluctuations around the Wheeler-DeWitt trajectories in third-quantized cosmology
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The efFect of third quantization on Wheeler-DeWitt quantum cosmology is discussed by employing flat
and open simple minisuperspace models. The wave packets are constructed based on the field-
theoretical extension of the method of Hermitian invariant. These wave packets are the most "classical"
states and evolve along the Wheeler-DeWitt trajectories, the solutions to the Wheeler-DeWitt equation,
in superspace. The "observables" are defined by considering the universe field measurements. It is
shown that the fluctuation around each Wheeler-DeWitt trajectory measured by the Heisenberg uncer-
tainty converges on its minimum rapidly in the course of the universe expansion, while it becomes large
as the scale factor approaches zero. The result suggests the importance of the description by third-
quantized theory in the earliest stage of the universe.
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The metric of superspace [1],which is the collection of
spatial three-metrics of spacetime, has a hyperbolic signa-
ture. Correspondingly, the Wheeler-DeWitt equation,
which is the basic equation in quantum cosmology [2,3],
is of the Klein-Gordon type. There exists, therefore, a
problem in the naive probabilistic interpretation of the
wave function as a solution of the Wheeler-DeWitt equa-
tion. Undoubtedly, the probabilistic interpretation is of
central importance and should be respected in all quan-
tized theories.

Several proposals have been made in the literature to
incorporate the probabilistic interpretation in quantum
cosmology. Among others, an attractive idea is to per-
form the so-called third quantization [4,5] by analogy
with Klein-Gordon field theory. This approach enables
us to discuss the creation and annihilation of
(multi)universes in superspace. The necessity of third
quantization has been suggested also in the context of the
cosmological-constant problem and baby universes [6].

In a recent paper [7], however, it has been pointed out
that, in a closed-minisuperspace model, Auctuations of
the quantized universe field itself are still dominant even
in the region where spacetime is expected to be classical.
Clearly, there are some important points to be clarified.
First of all, the closed model is tachyonic (i.e., of imagi-
nary mass) with an identification of the cosmic-scale fac-
tor with time. In addition, quantum fields themselves are
not measurable quantities in field theory.

The purpose of this Brief Report is to study
the behavior of fluctuations around the solutions to
the Wheeler-DeWitt equation (called here the
Wheeler DeWitt trajectories) —due to the efFect of third
quantization by employing a simple and analytically
tractable minisuperspace model. We construct the wave
packets of the system, which are the most classical states
within third-quantized theory and evolve along the
Wheeler-DeWitt trajectories. Then we define the observ-
ables as the average values of the universe field over cer-
tain measurement regions in its superspace domain and
evaluate the fluctuations of the observables around the

Wheeler-DeWitt trajectories. We show that the Heisen-
berg uncertainty converges on its minimum value rapidly
in the course of the Universe expansion, while it becomes
large as the cosmic-scale factor approaches zero.

What is theoretically characteristic in the present dis-
cussion is that the Hamiltonian describing quantum dy-
namics of the universe field depends explicitly on the
cosmic-scale factor as time. This brings difficulties to
defining the ground state as the state of nothing. To treat
such a nonstationary field theory, here we examine a new
method, which is a field-theoretical extension of the
method of Hermitian invariant. We shall see how this
method provides a time-dependent ground state in a
peculiar manner.

The Wheeler-De Witt equation for the Friedmann-
Robertson-Walker universe filled with a homogeneous
massless scalar field P is given by
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where X and k are a cosmological constant and a curva-
ture parameter, respectively. The cosmic-scale factor has
been replaced by a as a =e . Possible potential terms of
the scalar field have been neglected for the sake of simpli-
city. [As explained below, a closed-universe model
(k = + 1) will not be treated in the main context of this
paper. ]

Equation (1) is a hyperbolic equation. It is apparently
not unique to identify one of variables with internal time.
However, it is quite essential to recognize that the hyper-
bolicity of Eq. (1) refiects the generic structure of super-
space. The signature of superspace [1] is always
( —,+, , +), and the timelike signature comes from
the volume factors of spatial three-geometries in the
canonical formulation of general relativity. Therefore we
identify a (P) with a time (position) coordinate in Eq. (1).
(In fact, this identification is most natural and becomes
more plausible when a possible anisotropy is taken into
account in the model. Another identification of the
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matter field P with time, then, leads to the wrong signa-
tures in the kinetic terms, and so some additional hy-
pothetical manipulations are needed. )

To proceed to third quantization, we regard Eq. (1) as
the Euler-Lagrange equation derived from the action

f dp e"'n(p»)
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g is no longer a wave function, but a basic dynamical
variable to be quantized. The canonical momentum II
conjugate to g and the Hamiltonian are constructed in
the usual way. Third quantization is then performed by
imposing the equal-time commutation relation

[P(a, g), II(a, g')]=i5(P P')—. (3)

Working in the Schrodinger picture with a substitution
II(P )~ i 5/5—$(P ), we obtain the functional
Schrodinger equation in the f representation:

provided that g*(p) =q( —p) due to the reality of g.
The Hamiltonian (9) is found to admit the invariant
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where the Hamiltonian is given by

(4)
where p=p(a, p) is a real solution of the nonlinear auxili-

ary equation

H(a)= —,
' f dP
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It should be noted that, in order to avoid instantaneous
tachyonic states in the whole range of time a, we have to
assume both A. and —k to be non-negative. Otherwise,
we cannot expect any physically meaningful solutions of
Eq. (4). (Therefore the closed Friedmann-Robertson-
Walker model with a vanishing cosmological constant
does not admit third quantization, at least within the
present discussion. See the final comment. ) Henceforth,
we restrict ourselves to the cases A, ~ 0 and k = —1,0.

Now, because of the explicit time dependence, there is
no well-defined notion of a Fock vacuum relative to the
Hamiltonian, in general. This makes it nontrivial to con-
struct the state of nothing. One possible approach to this
problem is to solve the functional Schrodinger equation
(4) explicitly by using the Cxaussian ansatz [8]. Here, in-
stead, we examine another approach, which is the field-
theoretical extension of the method of Hermitian invari-
ant [9].

The time-dependent Hermitian invariant is defined by
the solution of the operator equation

BI(a) +i[H(a), I(a)]=0 .
Ba

To simplify the analysis, we employ the "momentum rep-
resentation" for the operators:

The model is, thus, formally equivalent to the neutral
Klein-Gordon field theory with a time-dependent mass
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which satisfy the equal-time commutation relation

[A(a,p), A (a,p')]=5(p —p') . (14)

The other equal-time commutators vanish. This is of the
oscillator type, and therefore it is natural to regard
A (a,p) and A(a, p) as the creation and annihilation
operators.

In terms of these operators, I(a) is expressed as

I(a)= f dp A (a,p)A(a, p)+ V
4~

Here V=2~5(p =0) is the volume of the P space and is
an isolated divergent quantity.

The time independence of the divergence in Eq. (15)
suggests the existence of a well-defined normal-ordering

p can be taken as an even function of p. The overdots in

these equations stand for differentiation with respect to a.
The quantity I(a) is not unique since it depends on the
choice of initial conditions for p; but this arbitrariness
does not bring any new additional problems to the follow-

ing discussion.
By definition, the eigenvalues of I(a) remain constant

under time evolution in contrast with those of the Hamil-
tonian. This property enables us to define a time-
dependent ground state in a peculiar manner. Let us in-
troduce the operators
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procedure with respect to a ground state, which should
satisfy the condition

dO
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BA (a,p) +i [H(a), A (a,p)] = ip —A (a,p ) .
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(17)

In the g representation, the normalized solution of Eq.
(16) is given by

where we have used a representation-free notation.
An important point is that condition (16) is preserved

in time, because the generalized annihilation operator
evolves like

Equation (19) means that the difference between two
states is just a gauge transformation and, therefore, the
time-dependent Schrodinger vacuum is also well defined.
The state (19) is regarded as the state of nothing.

We now construct the wave packet at certain time ciao

as
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with D(p,p';a)=p (a,p)5(p —p'). This is the lowest
eigenstate of I(a), and plays the role of the ground state
in the instantaneous Fock space associated with the
operators (12) and (13).

The state IQ;a} is not a solution of the Schrodinger
equation (4). However, the corresponding Schrodinger
state is easily constructed by using the phase degree of
freedom, that is,

with the auxiliary equation

—X*(p)A(a.,p)] I&;a.) (»)

This is an eigenstate of the operator A(a~, p) with the
complex eigenvalue X(p), which is assumed to be square
integrable. So it is a coherent state and is most classical.
It is further assumed that this state coincides with the
Schrodinger state at ao. IX;ao&= IX;ao). The subsequent
time evolution is given by

IX;a& = U(a, a, )IX;a, &, (22)

U(a, ao) = T exp i f d—a' H(a')
0

(23)

where the symbol T stands for the chronological ordering
of the exponential operator.

The expectation value of the universe field P(P) with
respect to the classical state (22) is calculated as

(X;aI&(p)IX;a&= f dp e'i'~p(a, p) X*(p) exp i f da'p (a',p) +X( —p) exp —i f da'p (a',p)
1
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(24)

As can be seen, this represents precisely a set of solutions
of the Wheeler-DeWitt equation (1) associated with the
various solutions to Eq. (11). Thus the wave packets of
the classical states evolve along the Wheeler-DeWitt tra-
jectories in superspace.

Now, we discuss the effects of Auctuation on the
Wheeler-DeWitt trajectories by third quantization. It
can be done best by evaluating the Heisenberg uncertain-
ty in the measurement of the universe field.

The problem of measurements in quantum field theory
was investigated by Bohr and Rosenfeld [10]. One of the
most important points is that the quantities which can be
measured are not quantum fields themselves, but their
average values over certain measurement regions of the
domain. In the present case, these regions are laid on the

axis in superspace since we are working in the
Schrodinger picture. Let us take a region of the volume
2/i centered at the position /=$0 and define the opera-
tors
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Then the rescaled operators X=+2/ i/0,
P = i +2$i5/5/0 —satisfy the quantum-mechanical com-
mutation relation [X,P]=i The min. imum uncertainty
associated with the measurements of X and P is equal to
one-half.

The variance of X in the classical state (22) is calculat-
ed as
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(hX) (hP) —=—,'[1+p (a, O)p (a, O)] . (28)

This formula shows how the Wheeler-DeWitt trajectories
(24) are subjected to fiuctuations by third quantization.

We evaluate the right-hand side of this equation by us-
ing the asymptotic solutions to Eq. (11) at a~+ oo with
ao~ —ae in Eq. (22). In this case the precise form of Eq.
(6) is no longer essential. We make a simple choice of pa-
rameters: A, =O, k = —l. (The other choices do not affect
the subsequent conclusion as long as the no-tachyon con-
dition is satisfied. ) Asymptotic solutions to Eq. (11) are
then found to be p(a, O)- —ca (a—+ —ec), exp( —u)
(a~ ao ), where c is a positive integration constant. Thus
we arrive at the main result:

C~tr (a —+ —oo ),
(hX) (hP) —,

( + 4
) ( )

(29)

This result has clear physical meanings. The third-
quantized universe can rapidly reduce its fluctuations in
the course of expansion. The fiuctuations of the lt com-

The above approximation of p by its zero mode becomes
exact when P,~ ao. Similarly, the variance of P is

(hP) =- —,'[p (a,O)+p (a, O)] .

Thus we obtain the uncertainty relation

ponent become squeezed on the Wheeler-DeWitt trajec-
tories. Therefore the later adiabatic stage of evolution
can be described well by the Wheeler-DeWitt equation.
(The large fiuctuations in the momentum component may
not lead to any conceptual difficulties since, in this classi-
cal region, a should lose its role of a time parameter and
should be treated as a dynamical variable. ) On the other
hand, the large Auctuations around the Wheeler-DeWitt-
trajectories at the small scale factor [11]suggest that the
description by third-quantized theory might be important
in the earliest stage of the evolution.

So far, we have discussed Bat- and open-
minisuperspace models. Closed models could not be
treated in a unified way within the present framework. A
main difficulty is their tachyonic nature. In this point it
is quite interesting to introduce a self-interaction for the
universe field. The introduction of a quartic interaction
can remove the tachyon states from the closed models,
for example. In that case breakdown of symmetry would
occur and the creation of the universe might be discussed
from the viewpoint of the instability of the ground state
regarded as the state of nothing.
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