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We examine the Einstein equation with the energy-momentum tensors which correspond to an infinite
line string of finite radius plus an outgoing radiation field. It is used to see the e6'ect of the radiation field
on the spacetime of a cosmic string. We make some assumptions about the metric coefficients and find a
class of exact solutions. The result can be applied to studying the back reaction on a radiating cosmic
string.
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Cosmic strings may have been created during the phase
transition in the early Universe [1]. They could be seeds
for galaxy formation [2] and could act as a gravitational
lens [3]. Many discussions about cosmic-string physics
[4] have been based on the model of a string as a vacuum
exterior and nonvacuum interior solution of Einstein's
equation with cylindric symmetry [3,5,6]. Both the static
[3,5] and nonstatic [6] solutions have been investigated.

It is well known that particles can be created from a
nonstatic background spacetime [7]. The problem may
be treated by calculating the Bogoliubov transformation
associated with the changing gravitation field which may
be isotropic [8], anisotropic [9], or inhomogeneous [10].
Parker [11]has recently considered the creation of mass-
less scalar field particles minimally coupled to the scalar
curvature in a spacetime in which the initial geometry
was described by the Minkowski metric, and the final
geometry was described by the conical cosmic-string
metric [3]. The problem has also been investigated by
other authors in a more general situation [12]. However,
it is fair to say that, as the particles are created from the
string the spacetime outside the string thus was not a
vacuum, the geometry they used, which is described by
the Vilenkin form [3] with a time-dependent conical
metric, will not be realized.

In this paper we will attempt to find the geometry
which described an infinite line string with a finite radius
and an outgoing radiation field. We hope that such a
metric will be more suitable to studying the gravitational
particle production from a nonstationary cosmic string,
especially to studying the eFects of back reaction on a ra-

I

diating cosmic string. Note that this approach is like
those using the Vaidya [13], Vaidya-Bonnor [14], or
Vaidya —de Sitter [15] metric to investigate Hawking ra-
diation in a quantum black hole [16—18].

%'e start with a general cylindrically symmetric metric
[19]

d$2 e2(K —U (dt2 dr2)+e —2Up 2dkp2+e2Udz2

(1)
where U, K, and 8' are functions of t and r, y is the az-
imuthal coordinate, and z is the axial coordinate. The
energy-momentum tensor of a string is chosen to be [3,6]

T„(„„„)= —kr(t, r)diag(1, 0,0, 1), (2)

while that of a pure radiation field is

T„(„d;„;,„)=p(t, r)K„K, K„K"=0,
where K„ is a radial null vector field and kb is related to
the energy density of an outgoing radiation. Define the
total energy momentum

(3)

)M p(string) p(radiation) (4)

then in the coordinate basis (1) we have K„=(1,1,0,0)
and the nonvanishing components of the total energy
momentum become

T, '= cr —P, —

(5)

T = 0z

The Einstein field equations (G„=8m T„)to be solved are

tl 8' 8"
e ' ' — +K +K' —U —U' =8 ( +P)8' 8' W'

r
~ ~

I

e ' ' —K —K' +U +U' = —8m/,8 8' (7)
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K —E"+ U —U' =0,
8"' 8' 8"2(U —K} ~ ~ 2U+2U + 2U +2U' + U Ul = 88' 8' (9)

z( U —sc}
8'

8" —2UU' =8n$ . (10)

Equations (6) and (7), (8)—(11),and (7) and (10) will imply the following equations, respectively:

=8~~8

U —U"+ U —U' =0,8' 8'
~ ~

I

+( U —U') —(K K')—8' 8' 8
=0.

(12)

(13)

The conservation equations ( T„'. =0) give the relations

o.+ cr K —2U+ +P P' P—2( —U —K ) —2( O' K') ——
8'

8' 8"
8' 8' =0, (14)

2( U K)—2( O—' —K')— —X'o. =0 . (15)

Equations (15) and (14) imply

o. +o K —2U+ +K' =0 .8' (16)

Substituting Eqs. (10) and (11) into Eq. (15), and substituting Eq. (11) into Eq. (16) give the following relations, respec-
tively:

~ ~
I I

2 — UU'+2[ UU'+ UU' —UU" —U'U']+8' 8'
II I

(K"—K') —(K K')—8' 8 8
8"—(K —K') =0, (17)8

—(K —K')
8 =0. (18)

U = U)(t +r)+ Uo,

K =K, (t +r)+Ko,

(19)

(20)

Henceforth we shall solve Eqs. (8), (12), (13), (17), and
(18), and then use Eq. (10) to evaluate P and Eq. (11) to
evaluate o..

It seems that without further assumption about the
metric forms one is unable to find any analytic solution.
In [6], Shaver and Lake found all possible nonstationary
solutions of the above equations in the case of /=0 under
the simplifying assumption that the metric coefficients
are separable functions of their arguments, i.e.,
U=u(t)+p(r), W=w(t)Q(r). [Note that if /=0 then
Eq. (15) implies K'=0. ] We have made efForts to find the
analytic solutions with the physical properties of o. &0
( =0) within (outside) the string and P) 0 outside the
string, which presents a positive outgoing Aux, under the
assumption of separability of the metric coefficients.
However, the results are just those obtained from the fol-
lowing analysis.

One can easily see that in the case of

where U; and K; are constants, the equations to be solved
become the very simple partial differential equations of
W. The equations depend on whether or not U& =0.

Case 1. U, %0. In this case, the equations to be solved
are

8 =8 ', 8'=8"' outside string, (21)

W= 8"= 8 " outside string, (23)

W=W', W'= W", WWW" inside string .

The general solutions of Eq. (21) are any function form of
I'(t +r); however, no consistent solution could be found
to satisfy Eq. (22).

Case 2. U, =0. In this case, the equations to be solved
are
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W= W', W'= W", WA W" inside string .

The general solutions of the above equations are

W=a2(t +r) +a, t +b, r + Wo outside string,

W=azt +2a2rt+a&t+f (r)+ Wz, f (r)Aa2r

(24)

(25)

Sinr 2[Up K&(t +T) Kp]
~inside '

The match conditions Eq. (27), and the requirements of
P,„„;~,)0 (which represent a positive outgoing particle
field fiux) and o;„„z,)0 give the constrains

f (ro)=b, ro, f'(ro)=b~ . (27)

Because of the freedom of f (r) the match condition can
easily be satisfied. We present the following example
which may be the most simple solution of all:

U=Uc, K=K, (t+r)+Ko,

~outside a 1 f +b 1 r + 8 O

8';„„d,=a1t +sinr+ 8'o,
a1+b, 2[Up —K&(t+r) —Kp)

K] +b + W
e ~q outside ~

(28)

a1 cosr 2[Up —K)(t+ ) —K ]

a1t +sinr+ 8'o

inside string, (26)

where a;, b, are constants and f (r) is any function of r
(but not the form of a2r ), which shall satisfy the match
conditions at string radius ro:

ro=tanro, b1=cosro, K1 &0, a1, 8'o ~0 . (32)

If K 1
=a 1

=0 then the above solution becomes a static
one found previously [3,5]. If K, =0 then /=0 (but

oAO), and Eqs. (28) —(31) represent a new nonradiating
solution which was not found in Ref. [6], as our W func-
tion is a separable function form of w(t)+Q(t) instead of
the form of w(t)Q(r) used in Ref. [6]. Note that many
other analytic solutions could be found in the case of the
other function form off (r) and/or a2%0.

In conclusion, we have examined the Einstein equation
with the energy-momentum tensors which correspond to
an infinite line string of finite radius plus an outgoing ra-
diation field. We make some assumptions about the
metric coefficients and have found a class of exact solu-
tions. We hope that such a metric will be more suitable
to studying the gravitaional particle production from a
nonstationary cosmic string, especially to studying the
back reaction on the radiating cosmic string.
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