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Self-consistent solutions for vacuum currents around a magnetic Aux string
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%'e consider the feedback effects of the vacuum currents induced by a magnetic Aux string in 2+1 di-
mensions. Self-consistent induced charge and current densities that satisfy both the Dirac and Maxwell
equations are given for the dimensionless coupling constant g —=e /m ~0 and g~ ~. These quantities
for arbitrary g are inferred from the results of the two limiting cases, and also studied numerically.

PACS number(s): 12.20.Ds

I. INTRODUCTION

The presence of a classical background gauge field
(BGF) for QED in 2+ 1 dimensions has been shown to
polarize the Dirac sea, giving rise to induced charge and
current densities [1—6]. This intriguing phenomenon has
been widely studied to lowest order in g —= e /m(e (0
and m being the fermion charge and mass, respectively),
and some important conclusions are established. The to-
tal induced charge Q is found to be a topological invari-
ant proportional to the spectral asymmetry of the Dirac
operator Q= eF/2, w—ith F the total magnetic ffux,
0(F(1 [1,5,6]. For a spatially uniform BGF, the feed-
back interactions of the vacuum currents are manifested
by an effective photon mass e /4~ [2,7,8].

The particular system with a magnetic flux string
(MFS) located at the origin has been investigated to order
g in detail [5,6]. It is shown that both the induced charge
and current densities, obtained by summing up contribu-
tions from all fermion partial waves, exhibit singularities
at the origin and decay exponentially at large radius r
with a characteristic length scale 1/m, the fermion
Compton wavelength. The total charge is computed and
the relation Q = eF/2 is veri—fied. The induced current
produces a return flux of order g opposing the applied
one. In particular, as F &1, a charge ——e /2 is attracted
to the MFS, which can be understood as due to the ex-
istence of a highly singular bound state located at the ori-
gin.

However, the above conclusions, drawn without in-
cluding feedback interactions whose importance is pro-
portional to the magnitude of g, are only valid in the limit

g (& 1. For larger g the lowest-order behavior of the vac-
uum currents is expected to be modified by feedback
effects [5]. The quantity e /m is equivalent to the ratio
of the fermion Compton wavelength to the photon one.
All significant variation of the vacuum polarization is
confined to a region on the order to the photon wave-
length, since the exchanged massive photon can only
propagate on this length scale. For vanishing g, the pho-
ton wavelength is so large that the induced charge and
current can be distributed in a region characterized by
the fermion Compton wavelength, as shown in the previ-
ous approaches [5,6]. At the same time, a negative in-
duced charge eI /2 and a reverse induced current, re-

quired by conservation laws, are located at infinity.
These distributions will not be changed dramatically until
the photon wavelength comes close to the fermion one.

When the photon wavelength is smaller than the fer-
mion Compton wavelength (g ) 1), feedback interactions
become more influentia, and the lowest-order results
cannot give an appropriate description for the system. In
this case one expects that the opposite vacuum currents
located at infinity will move toward the origin and cancel
the positive ones near the MFS. The resulting distribu-
tion is then restricted to a region characterized by the
photon wavelength. A full understanding of this transi-
tion of length scales due to feedback efI'ects requires an
all-order consideration.

Our aim in this paper is to give a full picture for the
vacuum polarization in the presence of the MFS. This
system is described by (2+1)-dimensional Dirac and
Maxwell equations coupled together through feedback in-
teractions. The former generates vacuum currents gov-
erned by the combination of the applied and induced po-
tentials, while the latter produces the induced scalar and
vector potentials from the vacuum currents. We shall
derive self-consistent solutions for these quantities that
satisfy both of the above equations in the limits g ~0 and
g~ ~ explicitly. The results lead to a rough sketch for
the case of arbitrary g.

Our conclusion is that when g is large enough the in-
duced charge and current densities contract to the origin
with shrinking photon wavelength. The total induced
charge near the origin is less than the lowest-order result,

eF/2, and app—roaches zero with increasing g. The to-
tal induced flux opposes the applied one and its magni-
tude approaches I'. As g~ ~, the photon wavelength is
so small that all the opposite vacuum currents move to-
ward the origin and the cancellations become complete.
The MFS becomes completely invisible.

Note that the induced gauge fields in our analysis are
still treated as classical quantities, and quantum fluctua-
tions associated with them are ignored. Thus, our ap-
proach can be thought of as a mean-field approximation.
This approximation will become exact as g~ ~ because
virtual photons are so massive in this limit that the quan-
tum fluctuations die out completely. The virtual
fermion-antifermion pairs that give rise to the
phenomenon of vacuum polarization interact only with
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an induced BGF without radiative corrections. Based on
this argument, our calculation for large g makes sense.

A difference in the amount of induced charge for the
two cases m =0 and m~0 has been proposed in Refs.
[8,9]. It is found that setting m =0 at the outset leads to
a vanishing induced charge density p(r ) and thus zero to-
tal charge, while the topological invariant Q= —(eF/2)sgn(m), independent of ~m ~, is not altered if
we take the limit m ~0. It is further argued that this
amount of induced charge is distributed at infinity, since
p(r) diminishes at any finite r as m ~0. We shall point
out that this difference disappears in an all-order con-
sideration because both cases lead to a vanishing induced
charge corresponding to the g ~~ limit.

The calculation involved in the case g~0 is simple
[5,6]. The fermion wave functions are obtained by solv-
ing the Dirac equation directly without the induced sca-
lar and vector potentials. The induced charge and
current densities, computed from these wave functions,
are self-consistent because feedback interactions are
negligible. For larger g, the exact calculation is extreme-
ly difficult. Therefore, some approxi. mations will be made
in the intermediate stage. We shall ignore the induced
scalar potential at first and absorb the induced vector po-
tential into a radius-dependent effective Aux. The corn-
plexity of the formula relating the wave functions to the
induced current density is then greatly reduced. Then we
solve this equation along with the Maxwell one numeri-
cally. The expected features of the vacuum currents are
observed. We show that the approximations turn out to
be exact as g ~ ~, and the above solutions become self-
consistent in this limit.

The rest of this paper is organized as follows. The re-
sults for g~O are reviewed in Sec. II. Some useful for-
mulas which will be employed later are given. The oppo-
site induced charge is explicitly shown to be distributed
at infinity. In Sec. III we obtain the self-consistent solu-
tions for the induced currents and potentials for g~ ~.
The approximations mentioned above are used. A model
form for the induced vector potential is proposed. In Sec.
IV the case of intermediate g is studied, and the accuracy
of the approximations is explored numerically. Section V
gives conclusions.

II. PREVIOUS RESULTS (g «1)
In this section we explicitly define the system described

by the (2+ 1)-dimensional Dirac equation in the presence
of the MFS [5,6]. Results are given for the induced
charge and current densities when feedback effects are ig-
nored. This is equivalent to analyzing the system in the
g «1 limit. The formalism presented here also will be
useful for the case g ))1.

The complete Dirac Hamiltonian for (2+1)-dimen-
sional QED is given by

H=a. (p —e A, —e A)+13m+eA0,

where the representation a=(o „o.2), P=o3 is used, o &,

o 2, and o 3 being the Pauli matrices [3,10]. The term A is
the induced vector potential. derived from the induced
current density. The induced scalar potential A 0 is

defined similarly. The applied vector potential A
pp

due
to the MFS is described in cylindrical coordinates by
[3 5]

eA =—8aPP (2)

with F= (e l—2m. ) It) A,„dl the total magnetic fiux.
Now we review previous results where the feedback

effects on A and A0 initially are ignored. The two-
component eigenstates of energy and angular momentum
for the Dirac Hamiltonian are proposed to have the gen-
eral form

4i. (r ~)=
y((r )

in&

y2(r )e'

d v+1(E™)x(= —i x2+ x2

V(Z+m)X, = —i X, ——X,

(3)

The normalized solutions to Eq. (3) are simply [5,6]

J~ (kr )

g) ing k E+m
T, —e

iqk iL9J ( +, )(kr)e'6+m
(4)

with

n EX, v=n —F, 0&F &1,
O~k ~ ~, E=++k +m (5)

+1, n~0,
n&0,

with q chosen to make (b(i, square integrable at the origin.
The induced vacuum currents are expressed as a sum

over all products of partial waves [1]:

e(j")= g sgn(E„)g„y"P„
k, v

(6)

where appropriate regularization is assumed [11,12]. The
terms in Eq. (6) corresponding to high angular momen-
tum, or large v, do not contribute due to regularization,
and the expression is simplified using Wick rotation to
give [6]

sin(mF) k
V'k' —m '

for the induced charge density and

where the functions y, ( r ) and y2( r ) satisfy the set of
equations
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j (r)=e(j ) =e f dk [K~(kr) K—F,(kr)K~+)(kr)]Vk' —m'

for the induced current density. KF(kr) is the modified
E-Bessel function of order F. The formula for the charge
density p(r) is obtained by Wick rotating the integral
[which contains only two terms JF(kr) and J F(kr) after
a symmetric cancellation in the sum] to the imaginary
axis in the complex k plane. In the derivation of the
current density j(r), a similar cancellation is achieved us-
ing the single recursion relation [6]

—me
p(r ) = K()(2mr ),

27T r

j (r ) = K, (2mr ) .
—me

2& r

(10)

The general features of the induced charge and current
densities are summarized as follows. Both of them
diverge near the origin and decay exponentially at large r
with a length scale 1/m. The total induced charge is
easily computed to be Q = eF/2 by integ—rating Eq. (7)
over all space. As F approaches 1 from 0, p(r) increases

vJ, (x)=—[J„,(x)+J +,(x)] .
2

The radial current density (j") vanishes due to the rota-
tional and time translational symmetries of the system.
The integrals in Eqs. (7) and (8) can be performed explic-
itly for F= ,' with th—e results [5,6]

with F for all r when F(—,', and then decreases at 1arge r
and increases at small r when F & —,'. Therefore, the
charge becomes localized toward the MFS as F—+1. For
F=1, a charge of —e/2 is concentrated at the origin. Of
course in a self-consistent solution, an extremely localized
charge does not exist due to strong repulsion. The behav-
ior of j(r) is similar to that of p(r) for 0 (F(—,, but it
decreases for all r for F & —,'. There is no localization of
current as F~ 1. For F= 1 the current disappears.

The induced current gives rise to a magnetic field
which in turn defines an induced flux, FI. This induced
return flux cancels part of the applied flux from the MFS
as seen from the result [6]

FI —— g F(1 F2) (0—&F & 1) .
12m.

The induced flux and thus the feedback effects are of or-
der g, which vanishes as g ~0. Equations (7), (8), and the
induced scalar and vector potentials derived from them
constitute the self-consistent solutions in this case.

Now we shall show explicitly that a negative induced
charge eF/2 is located at infinity. This charge, coming
from the partial waves with high angular momenta, does
not appear in the calculation due to regularization. In
fact, the calculation for p(r ) does not involve regulariza-
tion as shown in the expression

me " ~ k — 2p(r)= — y dk [J („F)(kr)—J („F+))(kr)],
k +m

(12)

which follows the definition of the current density equa-
tion (6) and the lowest-order solutions equation (4). No
regularization is assumed because the k integrals are now
well defined in spite of the divergence of the single in-
tegral

f dk J,(kr) .
k +m

After the symmetric cancellation we have

over r. Integration of po(r) over all space gives the stan-
dard results g= —eF/2. A straightforward calculation
indicates that an induced charge eF/2, which is indepen-
dent of n, is derived from the second term p„(r). This
opposite charge is distributed at infinity since p„—1/n
~0 at finite r as n —+ ~. If regularization is introduced,
however, it will disappear when n approaches ~. We
shall show in the next section that the opposite induced
charge moves toward the origin as g increases.

p(r)=p()(r)+ lim p„(r), (13) III. LARGE-g LIMIT

When the coupling constant g increases, feedback
effects become important. The scalar and vector poten-
tials created by the induced charge and current densities
affect the motion of the fermions. The change in the be-
havior of the fermions in turn affects the induced charge
and current distributions. Therefore, it is necessary to
take into account this interplay in order to have a con-
sistent picture for the system. Including influences of the
induced scalar and vector potentials simultaneously will
make the situation too difficult to handle. Our first at-

where

J„+F(kr)] . —

Note that we do not take n to ~ until p„ is integrated

po(r)= — f dk [J F(kr) Jg(kr)], —
4)r () k +m

(14)

p„(r ) = f dk [J„F(kr)
4')r o k +m
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tempt is to ignore the scalar potential and obtain a con-
sistent solution for the induced current density that
satisfies both the Dirac and Maxwell equations. This
study, though not complete, might give a hint about the
vacuum polarization in the limit g ~ oo.

Ef we make the variable changes E~mE, r~r/m,
and A —+ —e A in Eq. (3), the Dirac equations without
the induced scalar potential A0 are written in terms of di-
mensionless quantities as

the cutoff in the k integral, and that the convergence of
the sum over partial waves is very slow. Therefore, an
exact numerical solution seems not practical, and we
resort to an analytic approach.

Our first step is to find approximate solutions to Eq.
(15) which avoid the difficulties encountered in the nu-
merical study. A reasonable candidate that takes into ac-
count the effect of the induced vector potential and main-
tains the simplicity of analysis is

(F- —1)y)(r ) = i —y, (r )+ y, (r )
d v+1

+g A (r )y2(r )

(15)

' 1/2
;„B k E+1

4m E iqk iB
q [v+ 1+gr A ( r ) ](k

(18)
(F+ 1 )yz( r ) = —i y)(r ) ——g ()r ) —g A ( r )y)(r )

v

where g =e /m is shown explicitly in order to indicate
the feedback interactions. The induced vector field A (r)
obeys the Maxwell equation

d 1
(rA ) = 4qrj (r),—

dr r dr

or the equivalent integral form

rA(r)=2m. I dr'r' j (r')+r f drj'(r')
0 r

where the induced current density j(r) is calculated from
the solutions y( and y2 to Eq. (15). A direct numerical
approach for solving Eqs. (15) and (16) has been attempt-
ed. However, it is found that the results are sensitive to

Note that the index v of the Bessel function has been re-
placed by the function v+gr A (r ). If Eq. (18) is inserted
into Eq. (15), all the terms cancel except those due to the
derivative of the indices of the Bessel functions, or the
derivative of the induced vector potential gd(rA )Idr.
The approximation will be good if this quantity is small.
We shall observe that as g~ oo, Eq. (18) turns out to be
exact. The motivation for this approximation is that the
induced vector potential decreases the applied one by
different amounts at different r, and the resulting com-
bination is absorbed into radius-dependent indices of the
wave functions.

In this approximation j (r) maintains a similar expres-
sion to Eq. (8), with the magnetic fiux F replaced by the
factor F grA (r). App—lying the same recursion relation
Eq. (9), we derive the formula for the induced current
density:

sin[(F —gr A (r ))qr]r k'j(r)= [+F A( ) —l(k )+—F A( )+ l(kr ) +F —A( )
(k—

k —1
(19)

r j (r) — — F tan(Fqr), r~—0,1 1

4m. 4

exp( 2r)—
3&2 sin[(F —gh)m. ], r~ oo .

r 3/2
1j(r)-

4m

(20)

In turn, from Eqs. (16) and (20), r A (r ) behaves as

Our aim is to solve Eqs. (16) and (19) for a consistent
induced vector potential A(r). A careful observation of
Eq. (17) shows that, if r j (r) is finite at the origin and
vanishes fast enough at infinity, r A (r) approaches zero as
r ~0 and a constant h as r —+ ~. Substituting these qual-
itative properties of rA(r) into Eq. (19), the assumed be-
havior of r j (r) described above is maintained. There-
fore, a consistent description for the system should con-
tain these features.

Evaluating Eq. (19) with the assumed property of
rA(r) inserted, we have the following boundary condi-
tions for the induced current density:

rA (r) —const Xr, r ~0,
rA(r)-h 1—,, r~oo .

exp( —2r )

const Xr'

(21)

A numerical analysis using an iterative method (de-
scribed in Sec. IV) reveals that as g increases the constant
h decreases, and the slope s to reach this height increases.
However, the convergence of the numerical solution be-
comes very slow for large g. Because h and s are the im-
portant parameters that characterize the behavior of the
induced vector potential, we propose a model form for
rA(r) with these two parameters, which are determined
by the boundary conditions at the origin and infinity.
Once the parameters are fixed, the behavior of the in-
duced vector potential in the limit g~ ~ can be studied
analytically. The accuracy of the model function will be
justified in Sec. IV. A possible model for rA(r) that
satisfies the requirements of Eq. (21) is given by
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( ) h 1
exp( —2r)

exp( s—r'~ )+sr'~ (22)

2

Examining Eq. (22), we find that rA(r) possesses the
limiting expressions

1.5 -—

O

SrA(r)-h 2+—r, r~0,

rA(r)-h 1 —'
1/2 r~ oo

5
pT

which exhibit the required behavior of Eq. (21). The
physical meaning of h and s can be understood as follows.
The product gh is exactly the total induced magnetic Aux,
and s defines the characteristic length scale r —1/s, over
which the induced current is distributed. Thus, the
dependence on s in the g ~ ~ limit can verify our state-
ment proposed in the Introduction. Inserting Eqs. (20)
and (23) into (16) we obtain a set of coupled equations for
h ands:

r

s 1
h 2+ = — F tan(—Fm ),

2 4

0 I I I I I I I I I I I I I

0 20 40 60

1.5—

I I I I I

80 100

h sin[(F —gh )m]

4&Fr

(24)

0
0 20

I I I ) I I I i ) I I

40 60 80 100

Equation (24) can be solved simply, and the g depen-
dence of h and s is shown in Fig. 1, from which we find,
in theg —+ ~ limit,

h —— s-
g

2g
1/2 1/2

F tan(F~)—1 — 2

4
(25)

It is evident from Eq. (25) that for large g the induced
magnetic Aux almost cancels the applied one due to the
MFS, and thus makes j(r) vanish everywhere except the
tiny region characterized by r —1/s —1/g, or the pho-

FIG. 1. The g dependence of parameters h and s.

ton wavelength in our present notation. The small j(r) in
turn defines a small induced vector potential A (r)
signified by h. However, the induced feedback integra-
tion gA ( r) is strong enough to cancel the applied one.

Using an expression for the charge density similar to
Eq. (19),

sin[(F —grA(r))n ] dk
k

p r
3 r 2 F—grA(, r)

7T ~k —1
(26)

F tan(Fm )—1 2 (27)

it is found that p(r) vanishes for r )0, and the total induced charge Q =(F gh )/2-0 for g ))1—because r A (r ) =h is a
constant in this limit. This result is consistent with the conclusion that Q is a topological invariant proportional to the
total magnetic fiux F Fz, Fi =gh. From —Eqs. (24) and (25) we find

1/2 ' 3/2 1/2F—gh 2 FQ= [1+6(1/g )] .
2 VT g

These observations indicate that the negative vacuum
currents located at infinity move toward the origin and
cancel the positive ones. Note that Q decreases as
1/g, and thus the efFect of the induced scalar potential
gAO is suppressed by 1/g' . The neglect of Ao at the
outset is justified for large g. The approximate wave
functions in Eq. (18) become exact because grA(r) is
essentially constant as g~ao. The derivation from the
exact solutions appears only in the small range r ~ 1/g,

and also vanishes with large g. Based on the above
justifications we obtain a self-consistent picture for the
system when g~ac as follows. All the induced quanti-
ties j(r), p(r), A(r), and Ao(r) vanish. The feedback in-
teraction gA (r) is large enough to cancel the applied vec-
tor potential, but gAO(r) is still small. This leaves no
contradiction to the vanishing of j(r) and p(r)

From the consistent solutions for g ~0 and g ~ ao de-
rived above, it is easy to determine how the vacuum
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currents are distributed for arbitrary g. For vanishing g,
the induced negative charge eI'/2 is located at infinity,
and the positive one e—F /2 is distributed near the origin
with an exponentially decaying tail. As g increases, the
negative charge begins to move toward the origin to can-
cel part of the positive one and compress the distribution
into a region characterized by 1/g. When g))1, the
cancellation becomes complete and the space is left unpo-
larized. The description for the induced current density
is similar.

Our results also solve the apparent contradiction be-
tween the two cases m =0 and m ~0 mentioned in the
Introduction. From the all-order investigation in this
section, both analyses imply vanishing total induced
charge corresponding to the limit g~ ~, and the con-
tradiction disappears.

IV. INTERMEDIATE g

.03

lq

I

.01

0—

01 I I I I

0
l' (F=0.9)

I I I I I I

2

FIG. 2. The r dependence of the induced current density
r j(r } for F=0.9, and g = 1, 10, and 14, exhibited with the dot-
ted, short-dashed, and long-dashed curves, respectively.

As mentioned in Sec. III, a direct numerical analysis
for the coupled integral equations (17) and (19) is very
difficult due to the slow convergence of A(r) as g —+ ~.
Therefore, we proposed a model form for r A (r) in order
to study analytically the behavior of the induced vector
potential for large g. For intermediate values of g, how-
ever, explicit numerical solutions to Eqs. (17) and (19) are
possible. We still ignore the induced scalar potential A0.
The solutions, though not exact, can give us an idea
about how they differ from the 1owest-order ones and
how they vary with g.

We solve for A (r) and j (r) satisfying Eqs. (17) and (19)
using an iterative method initiated with the expressions
in Eq. (g) for the induced current density. Results of con-
vergent r j (r) are displayed in Fig. 2 for F=0.9 and
g =1, 10, 14, respectively. We find that the curves do not
monotonically decrease in r with respect to those derived
from the lowest-order analysis. The variations can be in-
terpreted in terms of the radius-dependent effective Aux
F gr A (r). In the—region of r where the applied Aux F is
reduced from 0.9 to 0.5 by the induced one, r j (r) grows
with r. Afterward, it decreases and vanishes at large r,
following the lowest-order curve corresponding to the net
Aux F—gh. These curves also show that the decrease be-
comes stronger with increasing g, and the induced
current is distributed in a region characterized by 1/g, as
expected.

Results of convergent grA(r) for the same values of F
and g are exhibited in Fig. 3, where the dotted curves in-
dicate the corresponding ones obtained from the model
A(r). They show a similar characteristic length scale
1/g again. Note that the difference between the two
curves increases with g for g & 10 and decreases after-
ward. The consistency of the model with the exact
gr A (r) is already very good as g attains 14, so that we are
convinced of the conclusions about the g —+ ~ behavior
acquired from Eq. (22). The induced current densities de-
rived from the model A (r) also show the same degree of
consistency to the numerical ones. We do not display
them in Fig. 2 for simplicity.

The behavior of the induced charge density p(r) is
studied using Eq. (26) with the numerical solutions A (r)

.8—
/

/
r

.6 —/
—/

r

I a

4
I

TI
.2

p I I I I

0
I I I I I I I I I I I I I I I I I I I I I I I I I

1 2 3 4 5 6
r (g=14)

.8—
r

/
/

6 —/
/ ~

I ~

/

4
I '
I '
I

.2 T,
-'

7~

I I I I I I I I I I I I I I I I I I I I I I I I I I I I

1 2 3 4 5 6
r (g=10)

.08—

.06—
Ch

.04 —,"
i

.02 ~
I

p
0

I I I I I I I I I I I I I I I I I I I I I I I I I I I I

1 2 3 4 5 6
r (g=1)

FIG. 3. The r dependence of the self-consistent induced vec-
tor potential and the model grA(r) from Eq. (22), presented
with the dashed and dotted curves, respectively, for F=0.9, and

g = 1, 10, and 14.
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inserted, and results for rp(r) are shown in Fig. 4. The
curves possess similar features to those forj (r)

We expect that the inclusion of A0 will pull the vacu-
um currents toward the origin due to the attraction be-
tween opposite induced charges. However, the qualita-
tive features mentioned above are maintained. At the
same time, Q is reduced because of the more complete
cancellation between opposite charges. Based on this ar-
gument, the effect of the induced scalar potential is less
important. The neglect of A0 is especially successful in
the large-g limit since Q decreases as 1/g as explained
in Sec. III.

In Sec. III we have absorbed the feedback effect due to
the induced current into the index of the Bessel function.
The purpose of this approximation is to maintain the
symmetric cancellation employed in the lowest-order cal-
culation so that we do not need to consider all partial
waves. The solution matches the exact one very well for
g —+ ~ because r A (r) becomes constant for r )0 in this
limit. For intermediate g, Eq. (18), obtained from the as-
sumption that gr A is constant, should be thought of as
the leading term in a series expansion of the exact wave
function in the derivative of grA. Therefore, we shall
study how the results for intermediate g are modified by

~2
l

)I

.15 —')',

1

\

.05—

I

0 .2 .4 6 .8 1

the contribution from the next-to-leading term. The ex-
pansion of the wave function to the first derivative of grA
is derived by inserting Eq. (18) into the right-hand side of
Eq. (15):

r (F=0.9)

FIG. 4. The r dependence of the induced charge density rp(r)
for F=1, and g=1, 10, and 14, exhibited with the dotted,
short-dashed, and long-dashed curves, respectively.

.X2.
k E+1

4~ E

1/2
g d(rA) v

I

iqk g d(rA ) d~v
q( '+1)

v= qv'

kg d(rA) d
(

p p)
47TE dr v=F —grA

(30)

Integrating Eq. (30) over k we obtain the correction to
the induced current density:

bj (r)=g d(rA) d
p (r)

dv

where the induced charge density p is given by Eq. (26)
with F—grA replaced by V.

Equation (31) is evaluated for g = 10 with the numeri-
cal solution A(r) inserted. Results for the modified in-
duced current density r (j +b,j) are exhibited in Fig. 5.

where v' =v+gr A. Comparing Eq. (28) to (18), the
correction 6„ to the vth term (k /2nE)qJ, .J

~
.+&~ in

the sum for the integrand of the induced current density
from the first derivative of gr A is given by

2 2
qkg d(rA) d~v dJ
4' dr d& v —qv d& v —q(v + &)

(29)
Summing Eq. (29) over all partial waves, a similar sym-
metric cancellation to that in the calculation for the in-
duced charge density leads to

Note that this correction is not self-consistent, but it
shows the tendency of the modification. It is observed
that the correction vanishes for r ) 1, where gr A is essen-
tially constant, and enhances the preliminary results in
the region of small r, with the features of the curve main-
tained. A similar numerical evaluation has been carried
out for g =1 and 14. For the former, the first-derivative
correction is less obvious because of smaller gd(rA )/dr.
For the latter, the deviation is of the same degree as that
for g =10. We expect that a self-consistent analysis for
the first-derivative correction will reduce the deviation.
The approximate solutions Eq. (18) are thus reliable for
intermediate g, at least qualitatively.

Based on the above formalism, the consistent solutions
for g ~~ can be justified by examining the asymptotic
behavior of the first-derivative contribution. We observe
that, from the model A (r ), Aj (r) is nonvanishing only in
the range r —1/s —1/g, and its magnitude behaves like
hj-gd(rA )/dr-ghs -g from Eq. (23), since the
derivative of the charge density is finite. This correction
to j(r) gives rise to a corresponding b, A(r) to A(r). If
6A vanishes faster than A as g ~~, the current density
will not change, and the consistent solutions are stable.
We find that, from Eq. (17), r(AA ) —bjr (1/g, be-
cause r ~1/g. Compared to rA —1/g, the correction is
negligible.
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FIG. 5. The behavior of the induced current densities v j(r)
with and without the first-derivative correction from gr A (r), ex-

hibited with the dotted and dashed curves, respectively.

V. CONCLUSION

In this paper we have explicitly calculated the self-
consistent vacuum currents in the presence of a MFS in
the limits g ~0 and g ~ ~ . Their decreasing features at
large g, which are not shown in a lowest-order considera-
tion, indicate that negative vacuum currents move to-
ward the origin and cancel the positive ones. We have
also demonstrated the transition of the characteristic
length scale for the vacuum polarization from the fer-
mion Compton wavelength at small g to the photon one
at large g. Combining the observations in these two lim-
its gives us an approximate picture for intermediate g.
Compared to the case g~O, the vacuum currents are
more compressed near the origin due to the smaller pho-
ton wavelength, and their magnitudes decrease faster be-
cause of the cancellation by the contribution from
"infinity. " These observations are justified by the explicit
numerical analysis in Sec. IV.

It is shown in our results that no localized induced
charge exists at the origin for I'~1 when g~ ~, since
the cancellation is complete in that case. In fact, there
should be no point induced charge for arbitrary g if we
take into account the induced scalar potential, which
gives a strong repulsion for an extremely concentrated
charge density. Therefore all the induced quantities are
distributed with an exponentially decaying tail. It is also

shown that the system with fermion mass m ~0 and
fixed charge e coincides with that of massless fermions.
The apparent difference between them disappears in an
all-order analysis.

The approximations made in Sec. III are designed to
study the g —+ ~ behavior, so we do not expect that they
work equally well for arbitrary g. Ho~ever, the
modification from the first derivative of grA is still con-
sistent with the expected behavior for intermediate g —10
as shown in Sec. IV. Hence, the results give a rough
description for the system. Higher-derivative corrections
can be included systematically and analyzed self-
consistently according to the formalism proposed in Sec.
IV. Bound-state solutions will appear if we consider the
induced scalar potential, but they do not change the
features mentioned above very much. These bound states
become weaker with increasing g because gA0 decreases
as 1/g'

There is only a single dimensionless parameter
g=e~/m in the analysis of (2+1)-dimensional QED.
Therefore, the limit g —+c)0 can be equivalently under-
stood as either e —+ cd or m ~0. At the same time, the
radiative corrections from virtual photons, which become
very massive in the large-g limit, are highly suppressed.
The analysis with the quantum fluctuations excluded then
turns out to be exact, that is, our quantum mechanical
treatment is the same as QED. For intermediate g such
quantum effects on the induced gauge field may become
important. Since the total Aux and angular momentum
are conserved, knowing the exact behavior for g « 1 and
g~ ~ leads one to conclude that for intermediate g the
modifications to the induced quantities from quantum
fluctuations will preserve the qualitative results presented
here. The method developed in this paper can also be ap-
plied to the similar system in 3+ 1 dimensions [13]. Oth-
er induced quantities such as the induced angular
momentum [10] might be a good check for our con-
clusions. Other approaches such as Schwinger's
"proper-time" formalism [14,15] should lead to similar
results. It might be worthwhile to investigate these to-
pics in detail.
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