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model near the critical point: The Gaussian variational approximation
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Using the Craussian variational approximation, we describe the approach to the continuum limit in P
theory in 3+ 1 space-time dimensions. We study the solutions of the variational equations and their sta-
bility and compare our results with those of Monte Carlo calculations on a lattice. The importance of
lattice effects is investigated by putting the Gaussian wave functional on a lattice. We find an abrupt de-

crease of the fourth derivative of the effective potential in the vicinity of the critical point, which is con-
sistent with Monte Carlo calculations. In the continuum limit b ~0+, the renormalized theory shows a
broken phase which is degenerate with the symmetric phase. In the asymmetric phase the theory is
found to be asymptotically free, in agreement with the conclusions of Branchina et al.

PACS number{s): 11.10.Ef, 05.50.+q

I. INTRODUCTION

Using the Gaussian approximation, which is equivalent
to the Hartree-Bogoliubov approximation, we describe
the approach to the continuum limit in P theory in 3+1
space-time dimensions. We study the solutions of the
variational equations and their stability and compare our
results with those of Monte Carlo calculations on a lat-
tice [1]. These results can be useful in the understanding
of mass generation through the Higgs-boson mechanism.
It is also important to know if it is judicious to use
Gaussian trial wave functionals to describe the vacuum
state of a quantum field theory in three space dimensions
[2,3]. Our approach to the critical point allows one to
compare this approximation directly with Monte Carlo
simulations, the accuracy of which depends strongly on
the size of the lattice (see Ref. [4] for a comparison be-
tween the Gaussian effective potential and lattice results
in 1+ 1 space-time dimensions). Moreover, one may
hope that this comparison between the two nonperturba-
tive methods will be useful in the case of QCD [5].

The Hamiltonian density we consider is

2

V(y, m)= —G '(m )
— G(m )
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(3)

In this equation, G(m ) and G '(m ) are defined as
(xlG lx) and (x G 'lx), i.e.,

where the kernel G is par ametrized as
—„'G (x, y)=(x ( —b, +m )ly), is a function of the two
variational parameters y and m, which we take to be in-
dependent of x. No new infinities are introduced when y
and m are functions of x. So we restrict ourselves to this
case for our comparison. With this assumption one ob-
tains, up to an additive infinite constant,

&=—,'~ (x)+ —,'[VP(x)] +—P (x)+ P"(x) .

The expectation value V of & for a Gaussian wave func-
tional

'It[/(x)] =A'exp ,' f dxd—y—

X [P(x)—cp]G '(x, y)[P(y) —y],
(2)

G '(m')=(x12& —b, +m'lx) .

These quantities are independent of position because we
have assumed y and m to have the same property.
Minimization with respect to cp and m yields
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2 b 2 b 2 2=mG'(m ) a+ —G(m )+—p —m =0,
m 2 2

(5)
the dimensionless quantities cp»«, m»«, and r0. y=Ayla«,
m =Am»«, and a =A r0. Using the eigenvalues of the
operator —b, on a lattice [6],

where G'(m )=dG(m )/dm . By calculating the stabil-
ity matrix one can show that the solution of Eq. (5) which
corresponds to m —=0 is always unstable. By combining
(4) and (5) when mXO and pAO, we can show that
m =by /3 which we define as the broken phase.

In the first part of this paper we consider the Gaussian
approximation with a lattice regularization. For the
Gaussian wave functional on a lattice, analytical formu-
las are derived which allow an evaluation of the uncer-
tainties arising from the finite number N of mesh points
used. In the second part of the paper we investigate the
case where the theory is regularized by means of a cutoff
in momentum space. In this case, analytic formulas suit-
able to discuss the approach to the continuum limit are
presented. A comparison with earlier work is made.

II. THE GAUSSIAN WAVE FUNCTIONAL
ON A LA'I"I'ICE

We first consider the Gaussian wave functional on a
lattice of N sites with a mesh size hx =1/A and period-
ic boundary conditions. As in Ref. [1], let us introduce

~ 2 y—b,(k„,k, k, )=4A sin + sin + sin
N

a+ x x + g m =0,b 2

2V' —g+ m'

becomes

2 2b
ro ™la«Aa«2

b km km
sin' + sIn' '

8N' k„,k , k

2
—1/2

kz~ mlatt+ sIn +
4

(7)

In the broken phase we have m „«=(b/3)y~, «. i.e.,

where k„, k, and k, = 1, . . . , N, the gap equation,
defined as

r =—
0

2m latt b

8N I,
1/2

2
k„m.

2 kym 2
kzm m

sin + sin + sin +
N 4

The function ro(mt, «) defined by Eq. (8) has a maximum r, which is attained when m„« is equal to a critical value m,
such that

2 3/2
b k~~ ky~ kz~ mc

sin + sin + sin +

The corresponding critical value r, of the maximum is given by

m C b

8N' k, k, k

' —1/2
~ 2 kx~ 2 ky~ 2k

sin + sin + sin +
N N N 4

(10)

For ro (r„ there is a solution with broken symmetry. For ro ) r„Eq. (8) has no solution and there is thus no solution
with broken symmetry. The sym. metric solution satisfies

2 b
r0 ™latt 38N 1/2k„k k,

sin2 + sin + sin
N 4

Figure 1 shows the solution m„«of the gap equation (7)
[i.e. , Eq. (8) for ro (r, and Eq. (11) for ro ) r, ] as a func-
tion of r0 for N =10 and a bare coupling constant b =6.
We also show the results of the Monte Carlo calculations
of Ref. [1] with the same value of b The Gaussian .ap-
proximation on a 10X 10X 10 lattice and the Monte Car-

lo lattice calculations give the same qualitative behavior
with two branches corresponding to a symmetric phase
on the right of the critical point and to a phase with bro-
ken symmetry on the left of the critical point. The
Gaussian approximation is qualitatively more satisfactory
than first-order perturbation theory (dashed line in Fig.
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FIG. 1. The solution mi, «of the gap equa-
tion (7) as a function of ro for b =6. The solid
line shows the results of the Gaussian approxi-
mation on a 10X 10X 10 lattice, the points are
the result of Ref. [1],and the dashed line is the
prediction of perturbation theory.
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1), which gives mi, « = 2ro—for ro (r, from Eq. (8) and
m la«

= ro for ro & r, from Eq. (11).
We point out that in Monte Carlo calculations, because

of the finite size of the lattice, m&,«never actually goes to
zero. The same occurs for the Gaussian on a lattice. For
instance, the minimum of m&,« for b=6 is 0.075, for
%=10, and 0.045 for N =20. These values are attained
on the symmetric branch at ro = r, .

Using the Gaussian approximation on a bigger lattice
does not significantly modify the curve in Fig. 1 but it al-

lows one to determine the critical value r, more accurate-
ly. For N =10 we obtain a value for r, (r, = —0.695 at
m, =0.125) lower than the Monte Carlo result
(r, = —0.4). The perturbative value is r, =0. For N =20
we obtain r, = —0.686 at m, =0.075. When the number
of lattice points is large (N))1/m„«), the semiconver-
gent Riemann sum (9) occurring in the definition of the
critical point can be replaced by an integral so that Eq.
(9) becomes

1= f dx f dy f dz
m,

sin ex+ sin ~y+ sin mz+
4

3/2

(12)

For small b, m, is small and the dominant contribution in the integrand arises near the origin. We obtain

16m
lnm + ~ ~ ~

C (13)

in agreement with the results of Consoli and Ciancitto [7].
It is important to note that expression (13) for m, is intrinsically nonperturbative. Indeed m, vanishes as well as all

its derivatives at b =0. Therefore the result (13) cannot be obtained by a naive perturbation expansion.
The corresponding value of r, is

r =—
C

m C

, f""dxf "dy f "dz
1/2

m,
sin x + sin y+ sin z+

4

(14)

pC

m C b

32
'

Approximating sinx by x, limiting the integration volume
to a sphere of radius m/2, and setting m, to zero in the
argument of the square root gives the following (reason-
able) estimate of r, :

For b =6, the previous formulas give m, = 10 and
r, = —0.3. The critical point is thus located in a region
where the number of mesh points necessary to get a good
accuracy is very large. Indeed this condition requires
N )&No = 1/m, =exp(8m /b ). For b =6 one has
%0=10 while for b =60, a value also considered in Ref.
[1],No=5.
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It is worthwhile emphasizing that, from Eq. (13), we
learn that m, does not vanish in the limit of a large num-
ber of mesh points. This has interesting consequences.
Indeed it means that, in order to have after renormaliza-
tion a finite value of the expectation value of the field y
(determined by y =3m /b =3A m„«/b), the bare cou-
pling constant b must be sent to zero with the mesh size
b,x = 1/A according to the relation

1 1 A 1 1
ln + ln —, (15)

where M is an arbitrary mass scale. To lowest order this
gives

1 1 A 1
ln + ln

161T I 16m

1 A
ln +. . . (16)

16~ M

This formula allows one to calculate the p function which
can be constructed as

dl M
db

d lnM

To lowest order we obtain

b2
p(b) =-

8m

so that the theory in the symmetry-broken phase is found
to be asymptotically free in agreement with the results of
Branchina et al. [8]. We shall return later in Sec. II to a
more detailed discussion of this formula.

Another quantity for which useful comparisons can be
made between the Gaussian approximation and Monte
Carlo calculations is the renormalized coupling constant
defined as

1+bG'
1 bG'/—2

(18)

The variation of the renormalized coupling constant as a
function of the bare constant ro is shown for b =6 in Fig.
2 for the Gaussian approximation using a 20X20X20
lattice and the Monte Carlo method. Similar qualitative
trends are seen on both curves, in particular the abrupt
decrease of A,z in the vicinity of the critical point.

Thus our variational result agrees with the Monte Car-
lo calculations of Ref. [1].

With formulas (17) and (18) for the renormalized cou-
pling constant A,z, it is also possible to obtain the pertur-
bative results for the P theory in the infrared domain.
For this purpose, we use the definition of Callan and
Symanzik for the p function (which is not the definition
we have used previously when we work with the bare
theory):

'R
p(A, ~ )=m

for fixed b and A. m is the solution of the gap equation
and the infrared region corresponds to the limit m ~0.
In the symmetric phase we find

In the phase with broken asymmetry, Xz is found to be
(after a tedious calculation)

=b 1+bG 3 G "y
1 —bG'/2 (1—bG'/2)

+ —G'" +— (17)
2 (1 bG'/—2) 4 (1 bG—'/2)

where primes indicate differentiations with respect to m .
In the symmetric phase the expression of A,z is

d V(m(q)), y)
R

d 4

where m(y) is the solution of BV(m, q&)/Bm =0 and the
fourth derivative is calculated at the minimum of
V(m, tp).

1
(k~ )=

1677. ( 1+$G')

For small b, this gives P(A, ~ )=3k,z/16m. , which is the
usual perturbative result. In the asymmetric phase, the
relation between A,~ and b is more complicated. Howev-

SYMMETRY-BROKEN
PHASE

FIG. 2. The renormalized coupling constant
as a function of ro for b =6. The solid line
shows the results of the Gaussian approxima-
tion on a 20X20X20 lattice. The points are
the results of Ref. [1].
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III. GAUSSIAN AFFROXIMATION WITH
A MOMENTUM CUTOFF

For large enough quantization volume,
3

G(m )= —fdk
k +m

3

G '(m )= k2+m 2

2'
Denoting the cuto6'by A we find

G(m )= ~ A —m ln
1 2 2 2A

8Ir' &e m
(19)

G '(m )= 2A +2m A —m ln
8Ir2 &e m

er, for small b, we obtain the same result for the P func-
tion as in the symmetric phase. The results obtained with
the Gaussian variational approximation are therefore
consistent with the fact that the P theory is perturbative-
ly infrared-free.

One question left out from the previous discussion is a
check of the stability of the (position-independent) solu-
tions we have obtained. Are these solutions real minima
or are they sometimes maxima? These questions are easi-
ly analyzed in the framework of a momentum space regu-
larization, which we now examine.

2 = 2m latt ~Plat t +
Sm

mlatt 2+~V latt ~

Platt
(24)

where we have neglected terms such as m /A . On both
sides of the critical point we have studied the stability of
the solutions of Eqs. (4) and (5) by considering the stabili-
ty matrix defined as

BV BV
B(pB+ 0+Bm

BV BV
Bm Bg 0m 8m

(25)

m 0
(26)

0 2m G'(m ) —G'(m 2) —1
2

We have also compared (in units of A ) the shapes of the
potentials V(]p„«,m„« =0), V(]p„«,m„«) as functions of
&p] «and V(]p] «=o, m„„), V(]p„«,m]„, ) as functions of
m],«, where ]p(m) and m(]p) are the nonzero solutions of
Eqs. (4) and (5), respectively.

On the right of the critical point (i.e., e=+1 or
ro ) r, ), the minima of V(q&],«, m],« =0) and V(y],«, m„«)
are at ]p],«=0. For ro not far from r„V(]p],«, m],«) is
lower than V(]p],«, m],«=0) near ]p],«=0. The stability
matrix at the point cp»«=0, m»« is given by
given by

m'
4

(20)
and its determinant is equal to

up to terms of the order of m /A . To parametrize the
approach to the critical point, it is convenient to use in-
stead of the constants ro and b a dimensionless mass scale
p„«=p/A and a new coupling constant k:

bro+
16~

1+ ln
b 2

+e p] ]]

b

2

1+ ln
b 2

16& e p]~]t

@=+1, (21)

The case e= + 1 (
—1) corresponds to the right (left) of

the critical point as can be seen from the relation

2 =2k
e]p]a«=

b
("o rc) ~

(23)

where r, = —b/16m for the regularization scheme con-
sidered in the present section. As in Sec. I we will work
in the dimensionless quantities ml, «and yi, «. Keeping
the ultraviolet cuto6' A fixed we will now send ro to r„
i.e., pi, « to zero. This corresponds to the renormalization
condition a+bA /16' =0. The gap equation (6) for
m l tt is now written as

(27)

When we approach the critical point from the right and
neglecting terms of order 1/ln(p], «), m],« is a solution of
the equation

16' 2
latt nmlatt

b
n . /~e

2
« ln(~],«) =O,

m mG'(m )by

mG'(m )by 2m G'(m )
—G'(m ) —1
2

(29)

(28)

that is, m],«=0 or m],«=(4/e)exp(32~ /b). The
second solution has to be eliminated because it corre-
sponds to a mass higher than the cutofF'.

These results obtained in the case of e=+ 1 or ro ) r,
confirm the analytical results obtained previously by Bar-
deen and Moshe [9] in the large-X approximation and the
Monte Carlo calculations of Ref. [1].

For ro (r, or e= —1, the absolute minimum occurs at
nonzero values yl,«and m»«which are related by
m],«=(b/3)y], «. The stability matrix at this point is

given by
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and its determinant is equal to

detA = —2mi, «G'(mi, «)[bG'(mt, «)+ I] .

We have a minimum if

(30)

have taken the rescaled mass of the broken solution to be
the mass scale M. The determinant (36) can be written as

detA =b 2M c(1—c),
with

4 16m 2 4
2 exp — & m»«

e
a (31) bc =bX= ln

16~
4A

e 2b aM2 (37)

—m»« lnm»«+ —ln ~e
2

Pl tt 1 (Pl tt)

(32)

that is, m»« =0 or

Approaching the critical point from the left, m&,« is now
a solution of the equation and thus it is positive for 0 & c & 1. The values c =0 and

c = 1 correspond to det A =0.
Equation (37) can be viewed as a generalization of the

renormalization condition (34). With an adequate choice
of a, it provides a finite value for the energy in the (m, y)
plane if the bare mass a is endowed the renormalization
prescription

4 16~2
(33)

bA b M b 4Aa+ =E 1 — ln
16~ 2

(38)

b(A) 4A
ln

16~ eb(A)M
(34)

The nonzero solution verifies the inequality (31) provided
that b & 16m. , and in this case it corresponds to the abso-
lute minimum. This nonzero value for the mass obtained
in the continuum limit on one side of the critical point
cannot be excluded by the Monte Carlo calculations of
Ref. [1],which have rather large error bars.

As we already found in the previous section, the attrac-
tive feature of expression (33) is that it shows directly the
prescription we have to use for the renormalization pro-
cedure. If spontaneous symmetry breaking is required to
arise at a finite scale M =y /3, then the dependence of
the coupling constant on the cutoff must be

i.e.,

b A2 b~M2a+ =e (1—x),
16m

(39)

where e=+1 and x=c+b/16m . From this equation
the interpretation of the constant c (or x) is straightfor-
ward. We start with two bare parameters a and b and, as
expected, we end up with two parameters: a numerical
constant c or x and the dimensionless bare coupling con-
stant b. We can also choose c (or x) and the scale mass M
as independent parameters. The value x =1 corresponds
to the massless theory (which is the case studied by the
authors of Ref. [8]).

From Eq. (37) we obtain a nonperturbative estimation
of the dg function [defined as P(b) = —M db /dM]:

or, keeping only the two first-order terms,

1 1 4A 1 1 4A
ln + ln ln

b ( A ) 1677.2 eM 2 1677 1677

P(b) =
16m c

b

For small b (ab/16' c «1),

(40)

(35)

det A =b 2M br ( 1 bX ), — (36)

where'=(l/16m. ) ln(4A /e b M ) and A is the stabili-
ty matrix obtained after the rescaling of the variational
parameters m ~b m and q& ~b '+

tp . In (36) we

It is worthwhile noting that Eq. (34) is also encoun-
tered when examining the stability of the solutions of the
gap equation. Indeed, the determinant of the stability
matrix given by Eq. (30) can be written as

b2
P(b) =-

8m c
(41)

This expression has been obtained by the authors of Ref.
[8] from the requirement of renormalization-group in-
variance. These authors also introduced a numerical
constant 0 &c & 1. The value c =

—,
' corresponds to the 13

function calculated from the one-loop effective potential.
With the renormalization conditions (37) and (38), the

expression for the energy as a function of the rescaled
variational parameters m and y becomes

8b' V= 2x(1 —x)(m +eM ) + —,'[q& +3e(1—x)M —3xm ]

b

16m
2l(1+x)m +(1+2x)m +2el(1 —x)M m —2e(1 —2x)M m +21m y —2m qP —2eM ttp

2 4[l m +m —21m —2elM m +2eM m ],
16m

(42)
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where l = ln(m /M ) and we have subtracted a constant
term. In Eq. (42), the energy is written explicitly as an
expansion in the small parameter b /16m. . Only for o.'= —,

'

do we get an expression for the energy for which the
dominant first term is finite in the (m, y) plane. For
x =1, the first brackets reduce to 3[m —(y /3)] and
vanish in the broken phase. In order to find the
minimum of V in this case we have thus to consider the
next term in b/16~ since the first term does not deter-
mine both m and y. For b~O, the expression for the
energy given in Ref. [5] can be obtained from Eq. (42)
with the choice a =0, x = 2 b—/g—,
F.=p /M (2+x)/(1 —x), and p =e M, g being the re-
normalized coupling constant and p the mass at the sym-
metric minirnurn.

V b2a —1 b 'M'
24

b4a —2 b

16m

'M'
3

For the asymmetric saddle point,

~2 3M2 m 2 M2

the corresponding quantities are

(iii) If x = 1 and e= —1, i.e.,

y b2a —1 b M
detA =0 .

(51)

(52)

(53)

IU. CONCLUSIONS

bA ba+ =0, ln
16m 16~

4A

eb M
(54)

2 e(1—x)
(43)

(The subscript R is for the rescaled fields. ) The energy
and the determinant of the stability matrix at the
minimum are given by

2 4

y b2a —1 c(1—c) M +O(b2a)
(c+2) 8

1 )2d«~=b~--2" " M~+O(b~--').
c+2

For e= —1 and 0 & c & 1, the minimum occurs at

2 3M2 m 2 M2

(44)

(45)

(46)

The energy and the determinant at the minimum are
given by

4
V= b'(1 —c )(3——c ) +O(b ),

8
(47)

detA =b c(l —c)2M (48)

(ii) If c = 1 and e = —1, i.e.,

bA,a+ 16''
b baM2 b 4A

ln
2

' 16~2 e 2b aM2
=1, (49)

we obtain one minimum and one saddle point. For the
symmetric minimum,

b

48~
(50)

the energy and the determinant are given by

We are led to the following conclusions for the phase
structure of the P theory in 3+1 space-time dimensions
in the Gaussian approximation.

(i) If the bare coupling constant b and the bare mass a
satisfy the renormalization conditions (37) and (38) with
c )0. For e(1 —x))0, the minimum occurs at

we obtain again one saddle point and one minimum. The
symmetric solution y~ =0, m~ =0 is a saddle point:
V =0 and det A =0. For the asymmetric minimum,

y& =3M, m& =M, the energy and the determinant are
given by

My b a — b detg b4a —2 M4
16 2 8 16

(55)

By choosing the rescaling a= —,', the energy remains
finite in the limit A ~~. For the renorrnalization
choices (ii) and (iii) we have found two phases yz =0 and

y~ =&3 M which happened to be degenerate in the con-
tinuum limit b —+0+. On the line m =by /3, the poten-
tial becomes Aat in the limit b~0+. However, interest-
ing dynamical evolution with a momentum dependence
can be studied.

The main result emerging from the Gaussian variation-
al approximation is that the theory is found to be asyrnp-
totically free in the broken phase. This conclusion differs
drastically from the predictions of perturbation theory.
We want to emphasize that the exponential form (33) for
the solution m&,«at the critical point shows that the oc-
currence of spontaneous symmetry breaking cannot be
seen in perturbation theory. The differences between the
perturbative and the variational results can be under-
stood by considering the diagrammatic interpretation of
both methods. We recall that the Hartree-Bogoliubov
approximation for the propagator is an infinite resumma-
tion of a certain type of Feynrnan diagrams. Indeed, it
has been shown [2] that the Gaussian approximation for
the P propagator sums all diagrams without overlapping
divergences. In addition to the geometrical series gen-
erated by the one-loop diagrams with the free propaga-
tor, it contains also a11 the so-called "cactus" diagrams.
Therefore, in contrast with the usual perturbative di-
agrammatic expansion, the one-loop diagram which con-
tributes to the n-point functions in the Gaussian varia-
tional approximation contains the propagator with the
self-consistent mass. The perturbative calculation and
the variational Gaussian approximation agree in the sym-
metric phase. However, the variational method contains
a stability analysis. When the expansions are performed
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around two different vacua, the predictions are different.
The question of the stability of the broken phase in the

case of a more general set of trial states is still an open
problem. The Gaussian approximation does not take into
account all the overlapping divergences. A systematic
post-Gaussian expansion which converges near
b~0+, m =bM is necessary to have quantitative con-
trol on the variational approximation (see Ref. [10] for
post-Gaussian corrections in the precarious phase and in
the autonomous phase).

In conclusion, we have presented a comparison be-
tween the Monte Carlo lattice calculations and the
Gaussian approximation for (t theory in 3+1 dimen-
sions. In this latter case we have been able to work out
the continuum limit and to evaluate finite-size effects by
putting the Gaussian wave functional on a lattice. We
have found that in the continuum limit b ~0+,
a+bA /16m. =0, the renormalized theory shows a bro-
ken phase which is degenerate with the symmetric phase.

Finally, we want to reemphasize that the Gaussian ap-
proximation is not consistent to all orders of perturbation

theory. The perturbative expansion, which leads to the
so-called true effective potential, is itself understood only
as an asymptotic expansion. However, the agreement we
have found with lattice calculations encourages us to
think that the Gaussian approximation contains the
essential physical properties of the theory.

ACKNOWLEDGMENTS

We are grateful to Janos Polonyi for numerous discus-
sions, suggestions, and clarifications concerning the
Monte Carlo results of Ref. [1]. One of the authors
(C.M. ) thanks Professor John Negele and the members of
the Center for Theoretical Physics at MIT for their hos-
pitality and support. We also thank Goran Arbanas for
helpful suggestions. This work was supported in part by
funds provided by the U.S. Department of Energy
(D.O.E.) under Contract No. DE-AC02-76ER03069.
Division de Physique Theorique is Unite de Recherche
des Universites Paris XI et Paris VI associee au CNRS.

[1]K. Huang, E. Manousakis, and J. Polonyi, Phys. Rev. D
35, 3187 (1987).

[2] T. Barnes and G. I. Ghandour, Phys. Rev. D 22, 924
(1980).

[3] A. Kovner and B. Rosenstein, Ann. Phys. (N.Y.) 187, 449
(1988).

[4] M. D. Kovarik and R. Koniuk, Phys. Rev. D 39, 2434
(1989).

[5] A. K. Kerman and D. Vautherin, Ann. Phys. (N.Y.) 192,
408 (1989).

[6] J. Zinn-Justin, Quantum Field Theory and Critical Phe

nomena (Oxford University Press, Oxford, England, 1990),
Sec. 7.2.

[7] M. Consoli and A. Ciancitto, Nucl. Phys. B254, 653
(1985).

[8] V. Branchina, P. Castorina, M. Consoli, and D. Zappala,
Phys. Rev. D 42, 3587 (1990).

[9] W. A. Bardeen and M. Moshe, Phys. Rev. D 28, 1372
(1983)~

[10]I. Stancu and P. M. Stevenson, Phys. Rev. D 42, 2710
(1990);I. Stancu, ibid. 43, 1283 (1991).


