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In the quenched approximation, the gauge covariance properties of three vertex Ansatze in the
Schwinger-Dyson equation for the fermion self-energy are analyzed in three- and four-dimensional
quantum electrodynamics. Based on the Cornwall-Jackiw-Tomboulis e6'ective action, it is inferred
that the spectral representation used for the vertex in the gauge technique cannot support dynamical
chiral symmetry breaking. A criterion for establishing whether a given Ansatz can confer gauge
covariance upon the Schwinger-Dyson equation is presented and the Curtis and Pennington Anso, tz
is shown to satisfy this constraint. We obtain an analytic solution of the Schwinger-Dyson equation
for quenched, massless three-dimensional quantum electrodynamics for arbitrary values of the gauge
parameter in the absence of dynamical chiral symmetry breaking.
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I. INTRODUCTION

The Schwinger-Dyson equations (SDE's) provide a
valuable nonperturbative tool for studying field theories.
Phenomena such as confinement and dynamical chiral
symmetry breaking, which cannot be explained by per-
turbative treatments, ean be understood in terms of the
behavior of particle propagators obtained by solving non-
linear integral equations. However, the full set of SDE's
for any particular field theory contains an infinite tower
of equations and is thus intractible. A common approach
for dealing with gauge field theories is to approximate
the fermion —gauge-boson vertex by a suitable Ansatz de-
pending only on the dressed single particle propagators.
The problem is then reduced to that of solving a finite
set of coupled equations for the fermion and gauge-boson
prop agators.

Ideally, of course, one would solve the SDE for the ver-
tex itself. However, this equation involves the kernel of
the fermion-antifermion Bethe-Salpeter equation which
cannot be expressed in a closed form; i.e. , the skeleton
expansion of this kernel involves infinitely many terms.
Some approximation or truncation of the system must
therefore be made at a very early stage. An effective
way to do this is to make an Anso, tz for the vertex sat-
isfying certain criteria which the solution of the vertex
equation must itself satisfy. At the present time this lat-
ter approach is the most efficacious manner in which to
proceed since it allows for a study of the relative impor-
tance of particular vertex characteristics while avoiding
the technical difficulties associated with solving the ver-
tex equation directly. However, we expect that it will
soon be necessary to study the vertex equation itself in
order to make further progress.

A primary purpose of this paper is to compare the
effectiveness of three commonly used vertex Ansatze,
specifically with regard to their ability to ensure the
gauge invarianee of the theory. We begin with the re-
quirement that any acceptable Ansatz I'„(p, q) must sat-
isfy at least the following criteria: (a) it must satisfy
the Ward-Takahashi (WT) identity; (b) it must be free
of any kinematic singularities [i.e. , expressing I'„(p, q) as
a function of p and q and a functional of the fermion
propagator S(p), then I „should have a unique limit as
p2 ~ q2]; (c) it must reduce to the bare vertex in the free
field limit (i.e. , when dressed propagators are replaced by
bare propagators); and (d) it must have the same trans-
formation properties as the bare vertex p„under charge
conjugation C and Lorentz transformations (such as P
and T, for example).

Criterion (b) follows from Ref. [1] and criterion (c) is
related to this since together they are necessary to en-
sure that the vertex Ansatz has the correct perturbative
limit. The charge conjugation element of criterion (d)
is essential since it constrains the properties of I'~(p, q)
under p+-+ q.

One should also demand a further condition, namely,
(e) that local gauge covariance should be respected.

In fact, a criticism of the SDE approach to solving
gauge field theory has been the apparent violation of
gauge symmetry directly at the level of the equation be-
ing addressed. Ensuring gauge covariance of the solutions
of the SDE goes some way toward answering this criti-
cism and allowing for a direct comparison of SDE results
with those obtained from lattice gauge theory, for exam-
ple.

Although condition (a) is a consequence of gauge in-
variance, it is only a statement about the longitudinal
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part of the vertex, and says nothing about the transverse
part. By itself it is insufficient to ensure condition (e) [2].
A well-defined set of transformation laws which describe
the response of the propagators and vertex in quantum
electrodynamics to an arbitrary gauge transformation are
given in an early paper by Landau and Khalatnikov [3]
(LK). These laws leave the SDE's and the WT identity
form invariant and one can, in principle, ensure condition
(e) by choosing an Ansatz for I which is covariant un-
der the action of the LK transformations. Unfortunately,
however, the transformation rule for the vertex is quite
complicated, making this procedure difficult to imple-
ment. Here we will adopt a slightly diferent procedure.
The I K transformation rule for the fermion propagator
is relatively straightforward, and we are able to check
a posteriori whether solutions for propagators obtained
from a particular vertex Ansatz transform appropriately.

Herein we discuss three- and four-dimensional, Eu-
clidean, quenched quantum electrodynamics (QEDs and
QED4, respectively) and when discussing both we choose
to work with four-component spinors [4]. (In formulat-
ing the theory in Euclidean space we adopt the strategy
of Ref. [5].) In describing the theory as "quenched" we
mean that ferrnion loop contributions to the photon prop-
agator are ignored; i.e. , vacuum polarization corrections
are neglected.

We remark that QEDs has been much studied in recent
years because of its similarities with quantum chromo-
dynamics (viz. confinemen and ehiral symmetry break-
ing), because its dimensioned coupling provides a natural
scale which makes it a useful tool for modeling theories
relevant to unification and because it is not plagued by
ultraviolet divergences. For our purposes, however, it
is the fact that in both QEDs and QED4 the fermion
SDE is solved by the combination of bare vertex and
bare fermion propagator that makes these theories inter-
esting. The LK transform of the bare fermion propaga-
tor from Landau to any other covariant gauge is readily
found. Any Ansatz for the vertex which does not admit
the transformed propagator as a solution for an arbitrary
value of the gauge parameter can then be eliminated as
a possible candidate and is unlikely to form a basis for a
gauge covariant vertex in realistic models of non-Abelian
theories.

We describe the vertex Ansatze we are considering in
detail in Sec. II. The Ansatz of Ref. [6] is equivalent to
that employed in recent studies of the SDE using the

gauge technique [7, 8]. (The "gauge technique" assumes
that the elements of the SDE's, propagators, etc. , have
spectral representations in terms of which the SDE's are
reformulated and then solved for directly. ) We show in
Sec. III, using the Cornwall-Jackiw-Tomboulis (CJT) ef-
fective action [9] (of which the fermion SDE can be inter-
preted as the Euler-Lagrange stationary point equation)
that this vertex Ansatz cannot support dynamical chiral
symmetry breaking simply because it leads to indepen-
dent equations for the vector o.~ and scalar o.g pieces of
the fermion propagator, S(p) = i,p p —ov(p) + os(p),
the equation for o.g being homogeneous. This is true of
any Ansatz that yields independent equations for harv and
(rs in the chiral limit. (This is exemplified in the @CD
model of Refs. [10].)

In Sec. III we discuss the fermion SDE in QEDs and
QED4 in some detail and give numerical solutions to the
QED3 fermion SDE for various vertex Ansatze. In these
studies we concentrate mainly on the case of no dynam-
ical mass generation (although the vacuum of massless
QED3 is generally believed to be chirally asymmetric [4,
ll], as may be that of quenched QED4 [12]) and demon-
strate analytically that the vertex Ansatz proposed in
Ref. [13] leads to a SDE which is solved by the LK trans-
form of the bare vertex. The remaining two Ansatze,
however, do not satisfy this test. The observation of LK
covariance enables us to obtain an analytic solution to the
quenched, massless SDE in QEDs for arbitrary values of
the gauge parameter in the absence of dynamical chiral
symmetry breaking. We summarize our results and con-
clusions in Sec. IV. In an appendix we summarize the LK
transformations for @ED and give the LK transformed
three-dimensional free massless fermion propagator for
an arbitrary positive value of the covariant gauge pa-
rameter.

II. FERMION-PHOTON VERTICES

The most general form for a fermion-photon vertex sat-
isfying criteria (a) to (d) above has been given by Ball
and Chiu [1] and, in Euclidean space, it can be written
as

r (p, ~) = r„"(p,~) + r„(p, ~),

where

~"(u v) = —(&(~) + &(q)l ~~+, ," ((&(u') —&(q') —~ (&(u') —))(q')) ), (2)

S '(p) = t& PA(p)+ J3(p), (4)

and I'+ is an otherwise unconstrained transverse piece
satisfying

(p —q)„r„(p,~) = o, r„(p,p) = o. (3)

I'„ is given in terms of the dressed fermion propagator

where A and B are scalar functions of p2 = p„p„. Our
Euclidean space p matrices satisfy fp„,p„) = 2b„.

Chiral symmetry breaking in QEDs, both in its
quenched form [2] and in the presence of dynamical
fermions [14], has been studied with some success by ar-
bitrarily setting the tranverse part (3) of the vertex equal
to zero. The remaining part I'B is the first of the three
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Ansatze we will consider herein. When dynamical mass
generation is also allowed for, it goes some way towards
ensuring that the chiral condensate has only a weak de-
pendence on the gauge parameter in QEDs [2], and pro-
vides a value for the condensate in close agreement with
that obtained from lattice simulations [11,15]. However,
our earlier numerical studies [16] have shown that the re-
sultant fermion propagator does retain some dependence
on the choice of gauge.

The second vertex we consider is that proposed by
Haeri [6] which, in Euclidean space, can be written as

r„"(p,q) = i ~„s-'(q) —s-'(p)~„, (5)

s(p) r„(p, q) s( 1 1

where p(cu) is the spectral density of the fermion propa-
gator:

s(p) =

This result is true irrespective of whether the fermion
aquires a mass and can be easily verified by direct sub-
stitution and comparison [after continuation of Eq. (5)
to Minkowski space] [17].

Third we consider the Ansatz of Curtis and Pennington
(CP). In order to ensure multiplicative renormalizability,
they have proposed a vertex for which the transverse part
I'Tcp takes the form [13, 18]

7, , A(p) —A(q)
2d( )

x»(p —q ) —(p+ q)„(p p —p q)

with

with ~p = [p ~ij, +»p q]/[p —q ), or alternatively,

p'A(p) q'A(q—) A(p) A(q)—
p2 2 ~& 2 2p —g

B(» ) —&(q)
(~ ~.+»~ q) (6)

j9 —g

I'„ is easily seen to satisfy criteria (a) to (d) and must
therefore be of the form Eq. (1).

It is interesting to note that the Haeri vertex is identi-
cal to the spectral representation of the vertex employed
in the gauge technique [7, 8]:

For QED4, the CP vertex gives a chirally symmet-
ric fermion propagator which is exactly multiplicatively
renormalizable at all momenta [19]. It has also been used
in Landau gauge QEDs in conjunction with a one-loop-
corrected photon propagator [20], with the result that
chiral symmetry is broken irrespective of the number of
fermion Havors.

1 = (ip p+ m)S(p)
d"q

+ ', „D„.(p q)&„s—(q)r„(q, p)s(p). (12)

By quenched we mean that virtual fermion loops are ig-
nored in the gauge-boson propagator which corresponds
to setting II(k) = 0 in Eq. (A5). Our aim is to study the
gauge covariance properties of Eq. (12) with the Ansatze
for the vertices described above. An Ansatz which leads
to a fermion propagator which does not respond to a
gauge transformation in the manner prescribed by the LK
transformations, Eq. (A2), can reasonably be eliminated.
As we will see, this provides an additional constraint on
the transverse part of the vertex.

A. Haeri Ansats and dynamical chiral
symmetry breaking

We will first consider I'H of Eq. (6). An interesting
observation is that, writing the propagator in the form

S(p) = —i~ p«(p)+os(p)
and defining the partially amputed vertex

A„"(p q) = s(p)l',"(p q)s(q)

(13)

(14)

Eq. (12) provides two decoupled equations, one for «
and one for cry, when m = 0, i.e. , for massless fermions.
This is obvious upon inspection since A„ involves o~
multiplied only with odd numbers of p matrices and os
multiplied only with even numbers. It is also worth not-
ing that the equation for O.g is always homogeneous and
hence the solution is determined only up to an arbitrary
multiplicative constant.

With Eq. (6) in Eq. (12) one always has the chiral-
symmetry-preserving solution

III. THE QUENCHED SCHWINGER-DYSON
EQUATION

We now turn our attention to a consideration of the
quenched fermion SDE for QEDs and QED4..

(»' —q')'+ [M'(p) + M'(q))'
d(p q) = , + ,+Q

(10) s (p) = ip po~ (p)— (15)

where M = B/A, yielding the Ansatz

pCP (p q) ABC + pTcp

p2A(p) —q2A(q)
p2 /f2

(p + q)p A(p) - A(q)
2 2 2 2p —e s

+B-dependent parts.

s~G= ~ p ~(p)+ f~(p) (16)

This was the case, for example, in the phenomenological
@CD studies of Ref. [21]. We remark that in Eq. (15) and
Eq. (16) the vector part of the propagator is necessarily
the same. This is essential to the argument that follows

for m = 0 and, in addition, it is also probable that the
equation admits a dynamical chiral-symmetry-breaking
solution for m = 0 which would have the form
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and is what sets this Ansatz apart from the others we
consider.

The SDE is the stationary point equation for the CJT
efFective action [9] which, evaluated at this stationary
point, is [22]

V[S] = (t l [
— ( ) ( )]+ -t [ ( ) ( )l).

ddp

(17)
One might measure the relative stability of these ex-
tremals by evaluating the difference V[S~+] —V[S~].
For an Abelian gauge theory with Ny fiavors of fermion,
one finds (for d = 3 or 4 since we use 4 component
spinors) that

B. Chirally symmetric solution
and gauge covariance

For the remainder of this section we focus our atten-
tion on the chiral-symmetry-preserving solution of the
massless SDE: S(p) = ip—.po~(p).

We first note that since

1
ding (d —3)p q

p q

2» (P —~)(» —~)
(p —~)' )

then, in the Landau gauge, Eq. (12) admits the free prop-
agator solution

V[S ]
—V[S ] = 2' 1 os(p)

S(») =, 1
(20)

since it is reasonable to assume that o.g and o.~ are real
for real Euclidean p . (Since the equation for o s is homo-
geneous, this difference can, in fact, be made arbitrarily
large: as ~ Ayers. ) Hence, based on the CJT effective
action (which is the same as the auxiliary field efFective
action at the stationary point) one finds that I'f cannot
support dynamical chiral symmetry breaking.

for each of the vertices discussed herein because of crite-
rion (c). We therefore immediately have the important
result that if a given vertex Ansatz is to satisfy the gauge
covariance criterion then, for arbitrary g, the associated
SDE must have the LK transform of the free field prop-
agator as its solution [Eq. (A2)].

In order to study this it is helpful to consider the mass-
less SDE in configuration space:

b"(x —y) = p B*S(x—y) + e d zd"x'd y'p„D„„(x—z) +O'O'E(x —z) S(x —x')I' (z;x', y')S(y' —y), (21)

where we have explicitly divided the gauge-boson propagator into a sum of a transverse, gauge-independent piece D„„
and longitudinal, gauge-dependent piece K. Making use of the WT identity

8„'I'„(z;x', y') = S (z —y')6 (x' —z) —6"(z —y')S (x' —z)

and the identity I p B*S(x,x')S i(x', z) = p 0*6"(x—z), one obtains the massless SDE in the form

(22)

~"(x —y) = ~ &*S(x—y) —e'I d"z[p B*E(x—z)]6"(x —z) —[p B*Z(x —y)] ~
S(x —y)

+e d"z d"x'd"y'p„D„(x —z)S(x —x') I' (z; x', y') S(y' —y). (23)

Now it is clear by inspection that if

d"z d x'd"y'p„D„(x —z)S(x —x')I'„(z; x', y')S(y' —y) = 0, (24)

then Eq. (A2), with S(x; g = 0) given in Eq. (A8), is a solution of the massless SDE; i.e. , it is a solution if the last
term on the right-hand side of Eq. (12) is identically zero in Landau gauge.

Most studies of the SDE's are undertaken in momentum space and it is a simple matter to transcribe Eqs. (23) and
(24). We see that the solution of the SDE is LK covariant if

(25)

where D~+„(k) = (6„„—k„k„/kz)/k in the quenched theory, in which case the propagator satisfies

(26)
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in the covariant gauge-Axing procedure.
It is now a simple matter to analyze the gauge covariance properties of our vertex Ansatze.

X. Hall-Chiu Ansatz

Using the BC vertex of Eq. (2) the QEDs SDE takes the form

2

A(p) —1 =
4a~p2

while in QED4 it is

g2
A(p) —1 =

8vr~@2

&p'A(p) —q'A(q) p'A(p) + q'A(q) p+ q &

A(q) ~
p' —q' 2pq p —q )

ln p +q
p'+q'1 p+q & 2 2 A(p) —A(q)

2pq p —q j

q ( p'
0 A(p) , 8(q -—p)+A(q)—,8(p- q)A(q) ( qz p

(p + q ) ~

-8(q - p) + 8(p -—q) i

3A(p) —A(q)» (p' qz

p2 q2 (q2 p2

(27)

(28)

It is clear that in neither of these equations is the right-hand side identically zero in the Landau gauge (( = 0)
and therefore this vertex cannot have the correct LK transformation properties. (This had already been established
numerically in Ref. [2] for QEDs. )

8. Haeri Ansatz

Using the Haeri Ansatz of Eq. (6) we find the following form of the SDE in QED3,

2

A(p) —1 =
4+~@2

1 (p2A(p) —q2A(q) p2A(p) + q2A(q) p+ q l p+ q A(p) —A(q)
A(q) ~ p —q 2pq p —q y p —q p —q

(29)

while in QED4 it takes the form

dq ( A(p) —8(q —p) + A(q) —8(p —q) —3 z p 8(q —p) + q 8(p —q)
p' A(p) —A(q) - . 2

A(q) ( qz p ) p

Again it is clear that the right-hand side of these equations is not zero in the Landau gauge and hence this vertex
cannot have the LK transformation properties necessary to ensure gauge covariance.

8. Curtis-Pennington Ansatz

The CP vertex is a difFerent matter. The QEDs SDE is

—ez( 1 (pzA(p) —qzA(q)
4vr~p2 o A(q) ( p~ —q2

p'A(p) + q'A(q) p+ q &
ln

2W p —q)
in which the right-hand side is clearly zero in the Landau gauge. Hence this vertex, or at least that part of it
which contributes to the SDE, has the form necessary to ensure gauge covariance of the chirally symmetric fermion
propagator.

It is possible to solve this equation analytically. The solution, for ( ) 0, is

A(p) 8~p q ez() ' (32)

as it should be since this corresponds to the LK transform of the massles free fermion propagator in QEDs, as we
show in the Appendix. [To obtain this result we first rewrote Eq. (31) in the form

1 —ez( q d (1 p+q ) 1

A(P) 8vrzP c A(q) dq (q P —q ) PzA(P)
('

1
p+q

&~

p —qp
(33)
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us with a much needed additional constraint upon the
vertex. function which, while not a full implementation
of criterion (e), nevertheless is a restriction on the form
of the transverse part of the vertex: (e') In the absence
of dynamical chiral symmetry breaking; i.e. , for o.p = 0,
the vertex must be such that Eq. (25) is satisfied, where
D„(k) is the transverse part of the quenched photon
propagator.

0.4

0.2

0.2 OA 0.6 0.8

Noting that the second integral in this equation is zero
and using the identity

1 x a+x
dx ln

vr 1+x2 a —x
= arctana, (34)

Eq. (32) follows. ]
The SDE for QED4 using the CP vertex is given in

Ref. [19] and can be written formally as

4 ~ ~(p —c)—,A(p) —1 =

+e( 2 z)&' A(&)
q2 A(q))

(35)

with no = ez/(4vr). In Ref. [19] this equation was solved
by introducing an upper bound on the q2 integral. The
actual form of the solution depends on the manner in
which the divergent momentum integral is regularized.
However, the fact that the right-hand side of Eq. (35) is
proportional to ( does not. This equation is, of course,
Eq. (26) for d = 4 and hence the CP vertex also satisfies
criterion (e) in QED4.

To illustrate our discussion we present plots of numer-
ical solutions for the function 1/A(p) in QEDs obtained
from the BC and Haeri vertex equations, (27) and (29),
at ( = 1, Fig. 1, together with the CP vertex solution,
Eq. (32), also at ( = 1. It is clear that the BC and
Haeri vertices do not give the correct LK transformed
bare propagator as a solution and so fail to maintain the
gauge covariance of the SDE.

To close this section we remark that Eq. (25) provides

FIG. 1. This is a plot of 1/A(p) as a function of p in

Ds with ( = 1 (Feynman gauge) and e = 1. The solid
line is Eq. (32), the analytic solution expected from the LK
transformation; the numerical results are * = Haeri Ansatz,
A = Ball-Chiu Ansatz, and 0 = Curtis-Pennington Ansatz.
Clearly, the Curtis-Pennington Ansatz yields the correct so-

lution.

IV. SUMMARY

The Schwinger-Dyson equation (SDE) approach to the
solution of a gauge field theory provides an intuitively
attractive manner in which to address this problem and
one which is less computationally intensive than lattice
gauge theory, for example. A serious impediment to this
application is the apparent lack of gauge covariance in
all SDE studies to the present. In the fermion SDE
this can be traced to i~adequacies in the structure of
the approximate and/or truncated fermion —gauge-boson
vertex used in these studies. Addressing this violation of
gauge symmetry in QCD is made difficul by the pres-
ence of ghost Belds, however, progress can be made with
Abelian theories. In addition to being interesting in their
own right, the outcome of these studies can provide some
understanding of necessary characteristics that should
be incorporated in the construction of phenomenologi-
cal, model SDE's for QCD. The results we have reported
herein, which are summarized below, may be seen in this
connection in addition to standing alone as a contribution
to understanding gauge covarianee in QEDs and QED4.

We have considered three diferent Ansatze for the ver-
tex in the quenched, massless QEDs and QED4 fermion
SDE: (1) that due to Ball and Chiu [1]; (2) that due to
Haeri [6]; and (3) that due to Curtis and Pennington [13].

In considering Ansatz (2) we observed that it is iden-
tical to that employed in the gauge technique and that,
based on the CJT efFective action, this Ansatz cannot
support dynamical chiral symmetry breaking since a so-
lution with no dynamically generated fermion mass; i.e.,
a solution of the form S(p) = ip . @crt(p), is alw—ays
dynamically favored in this case. The feature of this ver-
tex which entails this is the fact that it yields decoupled
equations for harv and erg [Eq. (13)]when the fermion bare
mass is zero. Whenever this is the case the C3T effective
action will predict that the chirally symmetric solution
is dynamically favored.

We obtained a necessary condition which must be sat-
isfied by any vertex Ansatz if it is to confer gauge covari-
ance on the quenched QEDs and QED4 SDEs. This con-
dition is simple: the Ansatz must allow a free, massless
propagator solution in Landau gauge; i.e. , S (p) = ip.p,
which provides a much needed constraint on the trans-
verse piece of the vertex, Eq. (25). Only if this is the
case can the solution of the SDE respond to a change in
the gauge parameter as prescribed by the LK transfor-
mations, i.e. , can the solution be gauge covariant. Only
Ansatz (3) satisfies this constraint and it satisfies it both
in QEDs and QED4. In demonstrating this we obtained
an analytic solution of the quenched, massless QEDs
SDE for arbitrary values of the gauge parameter in the
absence of dynamical chiral symmetry breaking.
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APPENDIX: THE LANDAU AND
KHALATNIKOV TRANSFORMATIONS

As pointed out in Sec. I, one would like to restrict
the vertex further by imposing condition (e); namely,
that the form of the vertex Ansatz, stated in terms of
the dressed propagators, should be covariant under local
gauge transformations. The gauge transformation laws
relating the propagators and vertex of @ED to their Lan-
dau gauge counterparts were first given by Landau and
Khalatnikov [3]. These rules are most easily specified in
coordinate space and we give below the corresponding
Euclidean space transformation laws.

In an arbitrary gauge, the photon propagator is modi-
fied from its transverse, Landau gauge form D»(x; 0) by
the addition of a longitudinal piece parametrized by an
arbitrary function 4:

D (x; 6) = D „(x;0) + B„B A(x). (A1)

The corresponding rule for the fermion propagator is

In going beyond the quenched approximation Eq. (19)
is modified as follows:

1
+

1 1
(36)

(»
—q)' (p —q)' 1 + rI(p q—)

'

where II(p —q) is the photon polarization scalar. Subse-
quent to this modification it follows that the free, mass-
less particle propagator is not a solution in Landau gauge
when the bare vertex is used. In this case Eq. (23) com-
bined with gauge covariance, Eq. (A2), does not require
Eq. (24).

We may thus conclude that Ansatz (3) has another de-
sirable feature, in addition to those discussed in Refs. [13,
18, 19]: that of ensuring gauge covariance of the quenched
SDE, at least in the absence of dynamical mass genera-
tion. The other two Ans6tze may be discarded since they
manifestly cannot allow gauge covariance in QEDs or
QED4. Hence, one may make the inference that these two
Ansatze are less likely to provide a good starting point in
phenomenological SDE studies in @CD than Ansatz (3).
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where B& is the nonamputated vertex defined in momen-
tum space in terms of the amputated vertex I'„by

&p(p q) = s(p)r (p q)s(q)Dp (p q-) (A4)

which is obtained by taking 4 in Eq. (Al) to be

A(x) = —( d"k e '"'

(27r)" k4 (A6)

Within this set of gauges, one finds that in QEDs the
transformation rule for the fermion propagator, Eq. (A2),
becomes [23]

S(x g) —S(x 0)e- 'Cl*»/ ~

The free massless propagator is S i(p; 0) = ip p which
corresponds to the following function in configuration
space

S(x; 0) = (As)

Applying Eq. (A2) one obtains the LK transformed func-
tion in an arbitrary covariant gauge:

S(x.g)
7 ' x

e e&»2:~/—sar

4vr/x/" (A9)

For ( ) 0 one may evaluate the Fourier amplitude di-
rectly to obtain

s(p;() = iv p e'(— (s~p&
1 — arctan

lp2 Svrp e2 ) (A10)

For completeness we give a formula for the LK trans-
form of the bare vertex p„ from Landau gauge to an arbi-
trary covariant gauge. Using Eqs. (Al), (A2), and (A3)
one obtains the transformation rule for the partially am-
putated vertex

One can check directly that these transforrnations leave
the WT identity and SDE form invariant [16].

In the usual covariant gauge-fixing procedure the pho-
ton propagator takes the form

1 t' k„k l k~k,
k2[1 + 11(k2)] q

"" k2 k4 '

s(x; z ) = s(*;o)e'»~~'»-~~*»» (A2) ) = s(p)r„(p, q)s( (A11)

where e in the exponent is the gauge coupling constant.
The rule for the fermion-photon vertex is

which is simply

A„(x,y, z; 6) = A„(x,y, z; 0)e' »~&'&-~&*-»». (A12)

&„(x,y, z; 4) = B„(x,y, z; 0)e"»~&'» ~&* »»-
+s(x —y;o)e"» ~'»- ~*-»»

B
x [A(x —z) —E(z —y)],

Bz~
(A3)

(,0) 7 PYP / q

P 0

one finds that, for arbitrary g,

(A13)

If the vertex is equal to the bare vertex in the Landau
gauge,

A~(p, q () = —1
16m 2 " Bp~Bqp

e (u —c.v) e—~'Cl &—ul ls~ (A14)
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