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Electromagnetic vacuum fluctuations and electron coherence
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The coupling of the quantized electromagnetic field to coherent electrons is investigated. The
eBects both of photon emission and of the electromagnetic vacuum fluctuations upon electron inter-
ference are analyzed. The modifications of the vacuum fluctuations due to a conducting plate lead to
a decrease in the amplitude of the interference oscillations. The possibility of observing this effect is
discussed. It is also shown that there is an analogue of the Aharonov-Bohm eEect in which electron
interference is sensitive to vacuum fluctuations in regions from which the electrons are excluded.
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I. INTRODUCTION

Two of the more fundamental aspects of quantum the-
ory are quantum coherence and vacuum fluctuations.
Quantum coherence and the associated interference phe-
nomena are the essence of quantum mechanics. An espe-
cially subtle manifestation of quantum coherence occurs
in the Aharonov-Bohm efFect [1]. Here the nonlocal as-
pects of quantum mechanics are revealed in the ability
of coherent electrons to respond to a classical magnetic
field in a region from which the electrons are excluded.
Similarly, vacuum fluctuations are the essence of quan-
tum field theory, the quantum theory of a system with
an infinite number of degrees of freedom. Again a sim-
ple but subtle manifestation of the vacuum fluctuations
of the electromagnetic field is the Casimir effect [2], the
force of attraction between a pair of parallel, uncharged
perfectly conducting plates. Although it has apparently
been observed [3], the experiments are not as precise as
one would like for such a fundamental effect.

In this paper, we will discuss effects which arise when
coherent electrons are coupled to the quantized electro-
magnetic field. (By the phrase "coherent electrons, " we
mean any single- or multiple-electron quantum state with
definite phase information, as opposed to a mixed or ther-
rnal state. ) An obvious effect is the emission of photons,
which will in turn alter the interference pattern. This will
take the form of both a phase shift and of a distortion
whereby the amplitude of the interference oscillations is
changed. The latter can be understood as due to deco-
herence, the electromagnetic field coupling causing a loss
of quantum coherence. It can also be understood as an
aspect of quantum measurement theory: Photon emis-
sion may make it possible to determine which path an
electron takes in a double slit experiment. A less obvious
effect is that of the electromagnetic vacuum fluctuations
upon the interference pattern. These are best understood
in a context such as that of the Casimir effect, when there
are conducting boundaries present which modify the vac-
uum fluctuations. It will be shown that this modification
can also change the amplitude of the interference oscilla-
tions (leading to "vacuum decoherence") [4]. It will also
be shown that the combined effects of photon emission
and vacuum fluctuations can be expressed as a double
surface integral [Eq. (33)] over a world sheet bounded

by two electron world lines. Consequently, coherent elec-
trons are sensitive to vacuum fluctuations in regions from
which they are excluded, an efFect which combines the
features of the Aharonov-Bohm and Casimir effects.

In Sec. II the essential formalism is developed. The ef-
fects of vacuum fluctuations and of photon emission are
considered separately, and expressions for the phase shift
and amplitude distortion due to each are given. In Sec.
III, the effects of conducting boundaries are discussed.
The phase shift and amplitude distortion are calculated
explicitly for the case of electrons traveling parallel to a
single conducting plate. It is shown that the phase shift
is due to the electrostatic Aharonov-Bohm effect. The
change in the amplitude of the interference pattern is the
true effect of the vacuum fluctuations. In Sec. IV the re-
sults are summarized and discussed. The magnitude of
the change in amplitude is estimated and the possibility
of its experimental detection is discussed. Unless other-
wise noted, Lorentz-Heaviside units with 5 = c = 1 will
be used.

II. BASIC FORMALISM

A. Vacuum persistence amplitude

The effects of vacuum fluctuations upon an electron in-
terference pattern may be most simply derived using the
formula for the vacuum persistence amplitude first given
by Schwinger [5]. Ifj"is a classical current which is cou-
pled to the quantized photon field, there will in general
be photon creation. We consider a situation in which the
current is switched on at a finite time in the past and
off at a finite time in the future. If ]in) is the photon
in vacuum, and ]out) is the out vacuum, then (out~in)
is the vacuum persistence amplitude. This is the proba-
bility amplitude for the vacuum to remain the vacuum,
that is, the amplitude for no photons to be emitted. This
amplitude has a simple expression in terms of the photon
Feynman propagator D&

W

(out
~
in) = exp —— j„(x)j~ (z') D~~ (z, z') d zd z'

2
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If the current is due to a point particle of charge e, then
it has the form

j "(x) = e d~ u" (~)6~ &(x —x(~)),

(outlin), (out
1
in),*

= exp( —
'

dx'D~ (x, x')

where u~ is the particle s four-velocity, ~ is its proper
time, and its world line is given by x = x™(r).In this
case, the vacuum persistence amplitude may be expressed
as

2 C2
dx'„D~" (x, x') . (7)

It is useful to separate the Feynman propagator into
its real and imaginary parts:

(outlin) = exp
A+2

DF (x, x')dx„dx'
/ 1

D~~ (x, x') = —D„"(x, x') ~ D„"(x', x) —i,D" (x, x'),

where the line integrations are taken over the world line
of the charge. In the classical limit, one expects the argu-
ment of the above exponential to have a large, negative
real part. This expresses the improbability that no pho-
tons will be emitted by a large, time-dependent current.

Now consider an electron interference experiment in
which coherent electrons may travel from x, to xy along
either of two classical paths Cq or C2. First let us recall
the analysis of this experiment when the effects of the
electromagnetic field are ignored. Let @i and @2 be the
amplitudes for an electron to travel along Cq and C2,
respectively. Then the superposed amplitude is @ = Qi+
gq, and the number density of electrons detected at xf
ls 1 2A, =...(- .

2
dx'D~ (x, x')

t

where D„"(x, x') is the retarded Green's function, which
is nonzero only if x lies to the future of x', and

D" (X, X') = -(01(A"(x),A (x'))10)

is the Hadamard function. Note that both D" and D„"
are real functions.

The amplitude for an electron to traverse path C, with-
out emitting a photon is

(outlin), = A,e'~',

where

«(xf) = IWI' = Ilail'+ I@~I'+ &Re(@i42) (4)

the last term being responsible for the interference pat-
tern. Next we incorporate the coupling to the quantized
electromagnetic field. Suppose Chat no photons are emit-
ted. This is the interference pattern that would be de-
tected by a veto experiment. In such an experiment, we
would set up deCectors for both electrons and photons.
The interference pattern will be observed even if the flux
of electrons is sufficiently small that there is only one
electron in the apparatus at any one time, In the veto
experiment, we would use such a low flux and arrange
that whenever a photon is detected, the electron detec-
tors are shut o6' for a time at least as long as the electron
travel time through the system. This ensures that we
are observing the interference pattern produced by those
electrons which have not emitted a photon. The net am-
plitude for an electron to pass through either slit without
emitting a photon is

@ = (outlin)i/i + (outlin)zg2,

where, e.g. , (outlin)i is the amplitude that no photon
is emitted when an electron travels along Ci. Now the
number density of electrons detected at xf is

iiv (xf ) =
I
@I' =

I
(«t lin) i@iI' + 1(out lin) ~@.I'

+2 Re((out
1
in) i (out

1
in) z@i@z).

is the magnitude of the amplitude and

dx'„D„""(x, x')

dx' D„""(x',x)

is the phase shift. Now we can express the electron num-
ber density as

&v(xf) = Ai 1@i1
+ A21@21 + 2AiA&Re[e' ~' ~'&pi@*].

(13)

The factors A2i and A22 are probabilities for not emitting
photons. If, for example, @2 = 0, then nv(xf) = Ai lgi I,
the factor Ai representing the fraction of the electrons
which are counted in a veto experiment. In empty space,
the retarded Green's function is nonzero only for light-
like separated points. However, the electrons move along
timelike world lines, for which no two distinct points may
be separated by light rays. Thus, points at which x g x'
do not contribute to Pi and P2. These phase shifts are
formally infinite, but they do not depend upon any of the
characteristics of the paths and are hence unobservable.
When boundaries are present, this is no longer true, and
finite, observable phase shifts arise.

B. Approximation of classical trajectories

The interference term now contains the factor

(6)
An issue which was not addressed in the previous dis-

cussion is the justification for assuming that the electrons
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move along classical trajectories, when in fact they are
quantum particles subject to uncertainties in both posi-
tion and momentum. In this subsection we will examine
the accuracy of this approximation. In order to do this,
let us outline a formalism which is in principle capable of
going beyond the approximation of classical trajectories.

Describe the electron by a Dirac spinor @. (It is suf-
ficient to consider only a first-quantized Dirac theory,
because we are dealing with effects at energies far be-
low the electron's rest-mass energy. ) The current is then

= ega&Q. Let us adopt the interaction picture to
describe the quantum dynamics. In this case, the time
evolution is described by the U matrix:

U(t, to) = T(e '~'0 '
) = T(e 'J'o'" ). (14)

Here Hr = Jj„A"dsx is the interaction Hamiltonian,
A~ is the second-quantized photon operator in an appro-
priate choice of gauge, and T denotes the time-ordered
product. We now wish to make two simplifying assump-
tions. The first is that the electron is moving nonrela-
tivistically in a wave packet state. The second is that we
may ignore magnetic moment effects. The effect of the
magnetic moment will be discussed in Sec. III C, where it
will be argued to be very small. The Gordon decomposi-
tion of the Dirac current, j", allows it to be written as a
sum of a convection current and a spin current. The lat-
ter carries the information about the magnetic moment
effects and is neglected. To the extent that the wave
packet is sharply peaked in both position and momen-
tum, the former takes the form of the classical current
of a point charge given in Eq. (2). In this case, the U
matrix takes the form

U(t, t ) = T(e "~'o " * ). (15)
We may assess the accuracy of this approximation by

assuming that the wave packet has the minimum uncer-
tainties in position and momentum, Ax and Ap, respec-
tively, allowed by the uncertainty principle, so that

6p6x = h. (16)

Suppose that the wave packet moves with a mean speed
v and that L is the characteristic length of the appara-
tus. We wish to require that when the electrons traverse
a distance L, the momentum uncertainty introduces a
spreading of the wave packet which is of the order of the
original position uncertainty, Ax. This implies

ApL (»)m v

which, when combined with Eq. (16), leads to

A~ AgB

Lv L
where m is the electron's rest mass, A~ is its Compton
wavelength, and AgB is the de Broglie wavelength. The
ratio & is a dimensionless measure of the accuracy of
the approximation which treats the electron as traveling
on a classical trajectory. This is the usual criterion for a
quantum particle to exhibit classical behavior. As long as
L is of macroscopic dimensions and v is not exceedingly
small, this ratio is very small and the approximation is

excellent. For example, if v = 0.01 and L = 10 cm, then
Ax yp

—5

If one wished to go beyond the classical trajectory ap-
proximation, it would be necessary to take into account
the finite spread of the wave packet in both position and
momentum. In this case, the spacetime integration in
Eq. (14) will not reduce to a line integral, but rather will
receive a contribution from all points inside the world
tube of the wave packet. If one were to adopt a path-
integral formulation rather than the operator formula-
tion of quantum theory used here, this contribution cor-
responds to summing over paths in addition to the clas-
sical trajectory.

We can use Eq. (14) to derive the vacuum persistence
amplitude, Eq. (1), which is the vacuum expectation
value of the 8 matrix: (OIU(oo, —oo)IO). If we expand
the right-hand side of Eq. (14), apply Wick's theorem,
and use the relation

DF (x, x') = —t(OIT(A" (x)A (x'))IO),

the result is Eq. (1).

(19)

C. Effects of photon emission

I@) = Ivi)li+ Iv2)A (21)

In our previous discussion, we obtained the electron num-
ber density as the absolute square of an amplitude. How-
ever, it could also be interpreted as the expectation value
of the operator

n(x) = 6(x —x').

That is, if g is the Schrodinger wave function, then the
corresponding number density is

n(x) = (n(x)) = @*nod x' = lg(x)I .

This operator acts only in the subspace of electron states,
and so if the state vector is as given by Eq. (21), then
the number density is

We are now in a position to consider the situation in
which we do not attempt to detect the emitted photons.
Thus we have to allow for the possibility that the final
state of the electromagnetic field is a multiphoton state.
The quantum state at late times is U(oo, —oo) IO), which
is a superposition of all possible photon number eigen-
states. Let Iv) = l(n, )) denote an arbitrary photon
number eigenstate with the set of occupation numbers
v = (n, ). Also let Ui and U2 be as given by Eq. (15),
where the line integration is taken along the paths |q and
Cz, respectively. Then, for example, bi(v) = (vlUil0)@i
is the amplitude for an electron to travel along path Ci
and emit photons into state Iv), and b2(v) is the corre-
sponding amplitude for path C2. The photon state which
results when an electron travels along path C, is

lv, ) =) b, (v)lv) (20)
V

Thus the quantum state of the combined photon-electron
system, when both paths are available, is
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~(x) = (@l~(x)I@)= (v ilv i) I%I'+ (v ~lv'2) I%I'+ 2«((v 2lv i)@i@2)
= Ilail'+ I421'+ 2 «(&v 2lv i)@i42). (24)

In contrast with Eq. (13), if, for example, Q2 = 0 (path 2 is blocked), we have that n(x) = lail . This is due to
the fact that here we are including all electrons, regardless of whether or not they emit photons. We are primarily
interested in the interference term, and so we need to calculate the factor

(v 2lv i) = ).bi(~) b2(~). (25)

Note that the above expression would be equivalent to Eq. (7) if only the v = 0 term, the contribution of the vacuum
state, were to be included. Now we are summing over the contributions of all possible photon states. The above
quantity is evaluated explicitly in the Appendix, with the result that

(v, lv, ) = exp e' dx„dx'(OIA (x')A" (x) Io)

tC
x exp

2
dx' D~ (x, x')— dx'„D~" (x, x')

2

(26)

The first factor on the right-hand side contains the effects
of photon emission, that is, all of the v g 0 terms. This
factor is complex, and so it is useful to write it in terms
of its amplitude and phase. This is done by use of the
identity

(oIA (x')A'(x) IO)

exp 6 dx„dx'„D"(x, x') (3I)

representing photon emission. It may be written as

uum effects and photon emission effects. The amplitude
factor e~ also contains the factors Ai and As, represent-
ing vacuum effects, and the factor

= D~.(x, x')+ —D„~(x',x) —D& (*,x') . (27)

The result is

W = ——e2 dx„dx'„D"(x, x'),
C C

(32)

exp e dxp d*'.(oIA" (x')A" (x)Io)

=exp e2 dx' D" (x, x') e'~~. (28)
2

The phase shift due to the effects of photon emission is

12W = ——e da~ da' D" 'i' (x, x'), (33)

where C = Ci —C2 is the closed path obtained by travers-
ing Ci in the forward direction and C2 in the backward
direction. By means of the four-dimensional Stokes the-
orem, we may write

12
P~ = —e

2
d*„' D„~(x',x) —D„""(x,x') .

where da„ is the area element of the timelike two-surface
enclosed by C, and

(20)
(x, x') = —,'(0IP" (x), F"(x'))lo) (34)

The two terms in this expression can be given a sim-
ple physical interpretation: The first is the phase shift
introduced when a photon emitted at point x on C~ later
arrives at point x' on C2, and the second is the corre-
sponding effect of a photon emitted on C2. It would be
tempting to imagine that an electron on one path emits
a photon, which later scatters off of another electron on
the other path, thereby shifting the interference pattern.
However, one must be wary of such a picture, as this
phase shift is present even when there is only one elec-
tron in the system at any one time. What are actually
interfering here are different classical histories for a single
electron.

By use of Eqs. (26) and (27), we can write

(721%i) ew ei(4 +kg —4g)

The phase factor is the combined phase shift due to vac-

is the Hadamard (anticommutator) function for the field
strengths. The electron interference pattern is now de-
scribed by the number density

&(x) = Ilail'+ I&21'+ 2e «[e' + ' '4iA'I.

In the present case, all electrons are counted, regard-
less of whether photon emission occurs, and so no factor
of Ai arises. The combined effects of vacuum Huctua-
tions and of photon emission have some similarities to
the Aharonov-Bohm efFect with classical electromagnetic
fields. The quantity W may be expressed as either a dou-
ble line integral of the symmetrized vacuum expectation
value of the vector potential or as a double surface inte-
gral of the corresponding expectation value of the field
strength. The electron interference pattern is thus sen-
sitive to the vacuum fluctuations in regions from which
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the electrons are excluded. It is possible to construct ex-
plicit examples of this using conducting boundaries. If
the electrons move in a region outside of a closed, per-
fectly conducting surface, the field strength Hadamard
function D""'~ (x, x') in the exterior region is indepen-
dent of the details of what is inside the surface. However,
according to Eq. (33), we could move around conductors
within this surface, change D" '~ (x, x') on the interior,
and hence alter the electron interference pattern. More
generally, conducting boundaries provide a means for al-
tering and hence probing the eKects of electromagnetic
vacuum fluctuations upon the interference pattern and
will be the topic of the remainder of this paper.

III. EFFECT OF CONDUCTING BOUNDARIES

We are interested in a situation where there is a con-
ducting boundary present. In this case, the propagator
(Feynman Green's function ) may be expressed as

D~~ (x, x') = D~~o(x —x') + D~~R(x, x'), (36)

where D~&o(x —x') is the photon propagator in the ab-
sence of the boundary, and the renormalized propagator
D~&&(x, x') is the correction introduced by the presence
of the boundary. Similarly, the Hadamard and retarded
Green's functions may be expressed as sums of empty
space and of renormalized contributions. If we are inter-
ested in comparing the interference pattern in the pres-
ence of the boundary with that in the absence of the
boundary, then the relevant quantities are those formed
from the renormalized Green's functions. The electron
number density may now be written as

n(x) = [oil'+ 1421'+ 2e 'e "«[e' ""&i&2]

Here $0 and Wo are the phase shift and distortion, re-
spectively, in the absence of a boundary, and PR and WR
are the changes in the phase shift and distortion intro-
duced by the presence of the conducting boundary.

The particular geometry which we will consider in this
paper is that of a single, perfectly conducting plate. A
convenient choice of gauge is the Feynman gauge, in
which the empty-space Feynman propagator takes the
form

pv
D (o~xx') = 7/" Ap (x—x') = — 2[(,)2

.
]

(38)

Here q" = diag(1, —1, —1, —1) is the metric tensor. The
corresponding Green's function in the presence of a sin-
gle perfectly conducting plate in the z = 0 plane is of the
form of Eq. (38), where the renormalized Green's func-
tion has the "image" form,

A. Quantum phase shift

Now that we have the renormalized Green's function,
we may proceed with the calculation of PR, the quantum
phase shift due to the vacuum fluctuations in the presence
of a single conducting plate for electrons which travel a
fixed distance above the plate. Consider first the double
line integral along C~.

dx'. D~R(x, x'). (4o)

Recall that the phase shift along thi. s path due to the
presence of the plate is

Pi~ = —2e «(Fi). (41)

If Cq lies in a plane parallel to and a height zp above
the conducting plate, the n~n term in DzR does not
contribute, and

dx"dx'„2~(x —x').

We wish to assume that the spatial length Li of Ci is
large compared to zp and that Cq is suKciently smooth
that we may break it up into a sequence of straight-line
segments, each of which is itself long compared to zp. Let
I', be the result of a double line integration along one of
these segments of length L, . The electron moves with a
speed v along this segment, which we may take to extend
in the y direction. Thus,

dx"dx'„=dtdt' —dydy' = (1 —v )dtdt'

(1 —v )dtdt'

(1 —v2) (t —t') 2 —4zo2 —i e
' (44)

Both of these integrations extend over a time interval
T~

——L, /v. Because T~ )) zo, we may approximate the
integral by letting one integration run from —oo to oo;
the other integration then simply produces a factor of T, .
Thus,

T~(l —v )4'~ ~(1 v )t2 4zo le'(45)

strength Green's function [6] D& '~ (x, x'). This latter
function must satisfy the boundary conditions that its
transverse electric and normal magnetic components in
each variable must vanish at the plate. For example,
D~' (z = O, x') = D~ ' (x, z' = 0) = 0, etc .One
may verify that these conditions are indeed satisfied. Of
course, Dz '~ (x, x') also satisfies the Maxwell equations
in both variables.

D~~~(x, x') = —(g" +2n~n )Ap(x —x'). (39)
The remaining integration may be performed by residues,
with the result

Here x' = (t', x', y', —z') is the reHection of the point x'
in the z = 0 plane, and n" = (0, 0, 0, 1) is the unit vector
normal to the plate. If one takes the four-dimensional
curl of D~+ in both 2: and 2.", the result is the field

L,gl —v2
2

8mvzp
(46)

However, Fq is just the sum of the contributions of the
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various segments and Li = P L, , and so

I i/i —v'
8+vzp

(47)

Because L, » zp, the contributions in Eq. (42) that arise
when x and x' lie on difFerent segments are negligible. In
the approximation used here, Fi is real. Finally, we have
the result for the net phase shift, PR = PiR —PzR, due
to the presence of the plate

e26Ly 1 —vz

16' vzp

o.d Lv'1 —vz

4vzo
(48)

A~ = (C, vC, O, O).
1

1 —v

The corresponding Aharonov-Bohm phase shift is

(50)

(51)

Because dx& ——(1, —v, 0, 0)dt, we find that

nAL/1 —v'
JAB =

4«o
and hence P~n = PR. Note that if v && 1, the phase
shift is an electrostatic Aharonov-Bohm effect in that the
dominant contribution comes from the AP component of
the vector potential.

B. Distortion of the interference pattern

The primary effect of the quantized electromagnetic
field upon the electron interference pattern is contained
in the real amplitude factor e~ defined in Eq. (30). The
approximation employed in the previous subsection was
not sufBcient to detect this contribution, but it can be
computed from Eq. (32). The renormalized Hadamard
function for a single conducting plate is

g""+ 2n"n
DR (x, x') =— (53)

As before, we restrict attention to electron trajectories
x(t), which lie in a plane parallel to and a height zp above
the conducting plate. In this case,

A dx"dx'„
2vr c c (t —t') z —[x(t) —x(t')]2 —4zpz

'

(54)

where 0 I = Li L2 is —the difference in the spatial length
of the two paths, and o. = ez/(4vr) is the fine-structure
constant.

This phase shift may be interpreted as the Aharonov-
Bohm phase shift due to the potential of the image
charge. In the electron's rest frame, this is a purely elec-
trostatic potential:

4= (49)
16mz

In the laboratory frame, in which the electron is moving
in the x direction with velocity v, the vector potential is

where p denotes the principal part.
A simple case in which we may evaluate this inte-

gral is when zo is large compared to the electron's flight
time. (See Fig. 1.) let Ti and Tz be the flight times
along paths C& and C2, respectively. If zo )& T~, T2,
then the denominator of the above integrand is approx-
imately —4zo. If the motion is nonrelativistic, v && 1,
then $& $& dx"dx' = (Ti —T2), and

o.(Ti —T2)z
R 8az2 (55)

(1 —v z)dtdt'

(1 —vz) (t —t') z —4z,' (56)

Here the electrons move across the plate at a constant
speed v, and T = L/v is the flight time. This integral
may be explicitly evaluated with the result

a Tv'1 —v2 Tgl —v2 —2zp
ln

2m 2zp Tv 1 —v + 2zp

T(1 —v2) —4z(2i—ln
4zo

(57)

The most interesting limit is that of non-relativistic elec-
trons (v « 1), for which T » zp. In this case

= ——1+ ln
7r 2UZQ

(58)

Note that in this case the entire effect is that due to
vacuum fluctuations. The photon emission factor does
not arise here because the renormalized Green's function
is zero along the path Cq, and hence the sole contribu-
tion to W~ comes from the double integral along Cq.
Again we find that W~ & 0, and so the interference pat-
tern is reduced. One might interpret this as being due
to "vacuum decoherence, " that is, a tendency of the elec-
tromagnetic vacuum fluctuations to decohere the electron
wave function, even in the absence of photon emission.

I
I

I Z 0
I
I
I

FIG. 1. Closed path for which the Bight times are long
compared to the electron's distance zo from a conducting
plate.

Note that 8 R ( 0, which corresponds to a diminution of
the intensity of the interference pattern.

Let us now consider an interference arrangement in
which one path Cq passes over a conducting plate in a
straight line for a distance L but the other path C2, is
entirely in empty space, as illustrated in Fig. 2. If we
ignore any fringe effects at the edges of the plate, we may
write
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~R (Ill + I22 2I12) ~2' (60)

The integrals Iqq and I2q are of the form of the integral in
Eq. (56). In the limits that v « 1 and zo « min(T1, T2),
they are given by

I
I~~ ——2 1+ ln

2'Uzp

I22 = —2 1+ in
(61)

The cross term involving both paths is

FIG. 2. Path Cq passes over a conducting plate at a height
zo for a distance L )) zo. Path C2 bypasses the plate.

One might intuitively visualize this as a loss of phase
information as the electron is jostled by the fluctuating
electromagnetic Geld. What is not clear is whether this
vacuum decoherence can be interpreted as arising from
the ability to distinguish the paths, as one can interpret
the decoherence due to photon emission.

Let us now consider a geometry in which both vac-
uum eKects and photon emission arise. We now let both
paths pass a distance zp over a conducting on intersect-
ing straight lines, as illustrated in Fig. 3. The remainder
of the paths are assumed to be in empty space, where the
renormalized Green's function vanishes. Again fringe ef-
fects at the edge of the plate are ignored. The electrons
on both paths have a speed v relative to the laboratory
frame. Let Lq and L2 be the lengths of the trajectories
over the plate, respectively, and T1 and T2 be the cor-
responding flight times. The double line integral around
the closed path C may be expressed as

dx"dx„'

c, c, (t —t') —[x(t) —x(t )j —4zo
(62)

x(t')
I

= v,.i(T1 —t), (63)

where v„~ is the relative velocity of the two electrons,
and

I» = p
71 +2

1

(t —t') 2 —v,2„(T,—t') 2 —4z,'
(64)

In the non-relativistic limit, we may ignore the v„&term
in the demoninator. The resulting integral may be explic-
itly evaluated; however, the resulting expression is rather
complicated. In any case, we are primarily interested in
its limiting form for small zp. For zp &( T, where T is
the smallest of T1, T2 and ~T1 —T2~, this form is

This integral is a Lorentz invariant which may be evalu-
ated in the rest frame of the first electron, in which case
the trajectory of the second electron, path C2, is given
by

(59)

The corresponding contributions to WR may be written
as

(65)

Finally, if we combine Eqs. (60), (61), and (65), we
Gnd

IP III I I 1 'fffff
f''' ' ll l If f

I I

-T —T 2-

+0
)

(66)

C2

FIG. 3. Paths Cz and C2 begin in empty space and fin-
ish by traveling distances Lz and L2, respectively, above a
conducting plate.

Note that the argument of the third logarithm in the
above expression cannot be too small because of the re-
striction that ~T1 —T2~ )) zo. As in the previous example,
WR ( 0, and so the interference pattern is diminished by
the presence of the plate. The photon emission contri-
bution I» is of the same form as the vacuum terms, but
yields a positive contribution to WR. This reHects the
fact that the presence of the plate tends to reduce pho-
ton emission (the radiation field of the image charge in-
terferes destructively with the electron's radiation field).
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Note that although we have considered straight trajec-
tories, those portions of the trajectories which are above
the plate are finite, and so in general there can still be
photon emission occurring.

C. Image charge and other effects

In addition to the quantum field-theoretic effects which
are the main topic of this paper, an electron moving near
a conductor will also be inHuenced by the classical elec-
tromagnetic field of the charges in the conductor. In the
case of a single plane boundary, this is the Beld of a single
image charge. The electrostatic attraction of the image
will tend to pull the electron toward the plate and possi-
bly make it diHRcult to construct the situation which we
have analyzed, that of a trajectory at a constant height
z = zp above the plate. Let the electron now have a
height z = zp —((t) above the plate. The equation of
motion for the electron in the direction normal to the
plate is

g 2
~ ~

2(zo —()' (67)

As long as ( (( zp, the solution of this equation is ap-
proximately

Q2

((t) =,t'.
4mzp2

(68)

LC&v
e

(70)

Thus the characteristic time during which the electron
falls into the plate is

2+zos m
tp =

e

and the image efFect will be negligible so long as this time
is long compared to the electron's fiight time, T = L/v,
i.e., so long as

tron's magnetic moment. This magnetic moment has the
magnitude p = eAc and dimensions of length. Quanti-
ties such as W~ which describe the distortion of the in-
terference pattern are dimensionless, and the only other
length scales are those which characterize the geometry.
Hence in the case of electrons traveling a long distance at
a height zp above a plate, we expect that magnetic mo-
ment effects will be suppressed by a factor of the order
of Ao/zp and will hence be negligible.

IV. SUMMARY AND DISCUSSION

We have seen that coupling of coherent electrons to the
quantized electromagnetic field gives rise to both pho-
ton emission and vacuum Huctuation effects. These com-
bined effects are similar to the Aharonov-Bohm effect in
a classical magnetic field. The interference pattern can
be sensitive to changes in the vacuum Huctuations in a
region from which the electrons are excluded. In the
single-plate geometry which is the primary example used
in this paper, we found that the phase shift, Eq. (48), can
be interpreted as an electrostatic Aharonov-Bohm effect
due to the potential of the image charge. Although the
Aharonov-Bohm effect due to a classical magnetic field
has been verified experimentally, the electrostatic effect
has not yet been observed. Thus it is of interest to con-
template whether the phase shift, Eq. (48), could be used
as the basis for an experimental test of the electrostatic
Aharonov-Bohm effect.

The primary effect of the vacuum Huctuations is to
distort the interference pattern through the factor of e~
in Eq. (35). The presence of a conducting plate modifies
the amplitude of the interference oscillations by a factor
of e R = 1+ WR. An attempt to measure this effect
might utilize the geometry of Fig. 2, where one beam
passes over a conducting plate for a distance I at a height
zp. Here WR is given by Eq. (58). The maximum possible
value of L for fixed zp, or equivalently the minimum value
of zp for fixed L, is given by Eq. (71), the constraint
which comes from the classical image charge effect. This
constraint may be rewritten as

We can rewrite this constraint as
3

t z
L (( (6cm)v~ (1 pm

(71)
2vzp

1

&3x10

Thus the maximum magnitude of WR is bounded:

(72)

It is possible to satisfy this constraint over a large range
of the parameters. We will discuss the various constraints
on an experimental configuration in more detail below.

In this paper, the single-plate geometry is our primary
example due to its simplicity. However, other geometries
could be of interest in attempts to observe the vacuum
Huctuation effects. In particular, one could minimize the
image charge effect by using two parallel plates. In this
case, an electron traveling exactly midway between the
plates will "feel" no net force. Such a trajectory is, how-
ever, unstable on a time scale tp. By arranging the initial
trajectory of the electrons sufBciently close to the mid-
point, one might be able to improve upon the constraint
Eq. (71) by perhaps an order of magnitude.

As noted above, we have ignored the effects of the elec-

~

Wrr
~

& 2.3 x 10 11.3 + —ln
~

1 ( zp

2 (I pm
(73)

~

4WR
~

= 1.6 x 10 (74)

Thus it is possible to arrange for ~W~~ to be of the or-
der of 2'%%uo. Note that for fixed L, ~WR~ increases with
decreasing zp. However, if we saturate the constraint
Eq. (71), then both L and ~Wrr~ increase with increasing
zp. Because ~Wrr~ depends only logarithmically upon zp,
larger values for zp have little efFect. (Increasing zp from
1 p,m to 10 cm, the size of the observable Universe, only
increases ~WR~ from 2% to 20%%uo. ) If we were to change zp

by a factor of 2, with L fixed, the change in ~Wrr~ would
be
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Whether such changes in the magnitude of the interfer-
ence oscillations are in fact observable in a realistic ex-
periment remains to be determined.

The emphasis in the above discussion has been on free
electrons moving in the vicinity of a conductor. However,
there is an alternative possibility, that of using coherent
electrons inside of a material [7]. For example, in a su-
perconducting quantum interference device (SQUID), co-
herent Cooper pairs produce interference efFects. It may
be possible to observe the phase shift PR and distortion
factor W~ in a Josephson-junction device in which the
Cooper pairs move in a plane parallel to, but a distance
zo above a conducting plate. There should then be a
change in the amplitude of the interference oscillations
similar to that for free electrons. A more detailed anal-
ysis of this situation is required, however. In particular,
it is not clear what will play the role of the electron's
velocity in this case.
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APPENDIX

Here Eq. (26), which describes the effects of both
vacuum fiuctuations and photon emission, will be de-
rived. We may express the photon states which arise
when an electron travels along the paths Cq and C2 as
~pq) = Uq~0) and ~y2) = U2~0), respectively, where

In this product, we wish to bring all of the (—) operators
to the left and all of the (+) operators to the right. Let
us first examine the expression Q . e ' e ' . Because this
product is already time ordered, a given b. sits to the
right of only those 6&+ which are later in time, which will
be denoted by I, & j. As the 6 is moved to the left;, we

pick up a factor of e~"' &~ from each l ) j, i.e. ,

IIe(
— f A cE

) (Al)
bI+~b~ ~b~ ~b)+g(b)b

Thus,

(A10)

We may break the paths into a set of discrete segments.
Let Cq be the set (Ax"(j)) and |2 be the set (Ax'"(k)).
Then if

e ~ e ' =exp~ ) (b~b~) ~
e ~ e '. (All)

~- ~+ & - & ~- s+

l&j 3 3

and

b~ = ied x„(j)A"(j)—

ck = ie42."„(k)A~(k),

(A2)

(A3)

Similarly,

'e" e'" = eepl ) (c ce)) e'"
k a)m

+
k (A12)

{V2IV ~) = {OIU~U~IO) (A4)

This is done most readily if we separate operators into
I

we can write Uq ——Q e ' and U2 = Qz e '". Further-

more, U2 ——Pi', e'". Here Q is a time-ordered product
and Q * is an anti-time-ordered product.

The quantity which we wish to evaluate is the vacuum
expectation value

The ck need to move past those c+ which are earlier
in time. The operators within each of the two products
on the right-hand side of Eq. (A12) commute with one
another, and so the distinction between time ordering
and anti-time-ordering is irrelevant. Next, it is necessary
to commute all of the 6 to the left of all of the c+. This
introduces a factor of exp(Q& (cl,b~)) If we combi.ne this
fact with Eqs. (All) and (A12), the operator product,
Eq. (A9), becomes

p — ).(b')+).(') + ).{-")+).{bb.)+&.("b.) ....""
3 k k&m l&j kj k

e e a ~

k

b+
2 (A13)
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The vacuum expectation value of the operator products in this expression is just unity because of the fact that
e~~ ]0) = ]0), etc. Thus

(W2[ei) = (»&2) = exp -[ ).(b,')+):(ck) l
+ ).(cmck)+). (bibj)+) (ckb&) .

k 2 k&m l&j kj
(A14)

We may express the sums which appear in the above expression back in terms of integrals of two point functions
as follows:

) (bj) + 2) (bibj) = T ) bt ) bj ———e
)

d*'.(OIT(A'(x) A (x')) Io) (A15)

) (c', ) + 2 ) Ic c, ) = r' ) c ) c, )
= —e' dx„dx'„(0]T*(A"(x)A (x')) [0)

= —e2 x„dx'„(OIT(A"(x)A" (x')) 10) (A16)

and

) (ckb, ) = e
kj

dx„dx'(0]A (x')A" (x)]0). (A17)

Here T denote the anti-time-ordered product. If we substitute these expressions into Eq. (A14) and use the relation,
Eq. (19), we obtain the final result of this appendix, Eq. (26). It is also possible to obtain this result by use of
functional techniques [8].
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