
PHYSICAL REVIEW D VOLUME 47, NUMBER 12

Finite-temperature efFective actions for gauge fields

15 JUNE 1993

Ian Moss
Department of Physics, University of Nevjcastle Upon Tyne, NE1 7RU, United Kingdom

Stephen Poletti
Department of Physics, University of Adelaide, South Australia 5001

(Received 7 January 1993)

We consider the problem of computing the kinetic terms in the one-loop effective action. General
results are presented for an expansion of the heat kernel of a second-order operator in powers of
covariant derivatives. This is used to find the kinetic terms in the high temperature limit of the
effective action up to the square of the gauge field strength.
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I. INTRODUCTION

It is currently conceived that the material in the early
Universe underwent a series of phase transitions associ-
ated with the breaking of gauge symmetries [1,2]. The
physical properties of the various fields are described in
local thermodynamic equilibrium by an effective action
I', related to the free energy F by I' = PI", where P is
the inverse temperature [3, 4]. In some important cir-
cumstances, inhomogeneous fluctuations in the Higgs or
gauge fields can play an important role, and a knowl-
edge of the kinetic terms in the effective action is useful.
One such situation which interests us at present is when
the baryon number changes because of topological fluc-
tuations in the gauge fields. Another situation is at the
phase transition itself when the nucleation of phases can
take place.

Various methods have been employed to calculate ki-
netic terms in the effective action. Sj.nce the coefIicients
of these terms are often not analytic in the coupling con-
stants, the effect of these techniques is to resum infinite
series of Feynman graphs. Some methods are based upon
calculating the Green's functions [5—8], others on opera-
tor expansions [9]. The type of operator considered up
until now has been rather restricted, as both of these
methods become complicated in more general cases.

The method described here is based upon the heat ker-
nel of an operator. There is a large literature on proper
time expansions of the heat kernel for second-order op-
erators of the form

where D is a covariant derivative and X a matrix [10].
With a little ingenuity, it is possible in simple cases to
regard this as an expansion in covariant derivatives and
field strengths [11—13]. However, this runs into difficul-
ties when the matrix X is not proportional to the unit
matrix. We have therefore derived an iterative scheme
which leads to the first terms of the heat kernel expan-
sion of (1.1) in powers of covariant derivatives for the
general operator.

The heat kernel expansions are used in this paper to
calculate the kinetic terms in the effective action with
one chiral fermion loop or one boson loop. Some of these
terms have been calculated before in discussions of the ef-
fects of sphalerons on the baryon asymmetry of the Uni-
verse [14—16]. In particular, terms of the form pNcs,
where p, is the baryon chemical potential and %ps the
Chem-Simons number of the gauge fields, have been ob-
tained by evaluating Feynman graphs [17—21]. In our
results, other one-loop terms in the effective action are
included and we allow nonzero Higgs fields. We give
the field strength squared terms which contribute to the
nucleation rate of sphalerons. [This is proportional to
exp( —AI ), where AI' is the increase in effective action
caused by a sphaleron. ] We also calculate the leading
terms involving the gradient of the Higgs fields.

Some of the terms in the one-loop effective action are
infrared divergent and have to be modified by includ-
ing higher-loop graphs. For a range of temperatures, the
relevant graphs are ring diagrams. These diagrams intro-
duce a temperature-dependent correction to the masses
which we have included.

After summing ring diagrams, we find that the ther-
mal corrections to the kinetic terms are generally smaller
than the original terms. The most interesting terms are
therefore those which are not represented in the original
action. These may be topological, as with the Chern-
Simons terms, nonanalytic or dependent on gradients of
the thermodynamic variables. This last case can arise, for
example, when the particle density is not homogeneous.
Although we do not pursue this particular possibility fur-
ther here, the relevant terms in the effective action have
been calculated.

II. HEAT KERNEL EXPANSIONS

The heat kernel has been used traditionally in quan-
tum field theory to study the effects of background fields.
We will use the operator (1.1) on a manifold JH, with
eigenvalues A and eigenvectors u having the boundary
conditions appropriate to the problem. The heat kernel
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is then defined by

K(x, x', t) = ) ut (x)u„(x')e ""'. (2 1)
dp(x) (k + Z(k, x) ) K(x, x', t) e '"i* * l

Its usefulness to us lies in the definition
= —K(k, x', t) (2.8)

lndet& =— d~(x) ('(x 0) (2.2)
where

the generalized ( function being defined by
OO

~(x s) =
~( )

pR dt t'-'tr [K(x, x, t)]

~Y = UYU + V'UU 9X = UXU

for s ) d/2, where d is the dimension of M. This pro-
duces a regular function at s = 0 after analytic contin-
uation in s. It also leads to a dependence on the renor-
malization scale p~.

The covariant derivative can be split into space and
gauge potential parts, V = V' —Y. Under a gauge trans-
formation U,

Z = X+2ik„Y" —Y"Yq —Y~,q. (2 9)

The function Z(k, x) is now replaced by an expansion
in powers of x —x' about Z(k, x'). After replacement of
x —x' with tI =iO/Ok, we get

k + ) , Zp, .—„„b"'.. .6™K = —K.
r=p

(2.10)

The derivative expansions for K can be simplified by
choosing a gauge in which Y~ = 0 at x = x' and Y~ „=
0. Suppose that the expansions in ordinary derivatives
are written

(2.4) K=Ko) a„, z=)-z„ (2.11)

tr [K(x, x, t)] = (4~t)-+') A, (x, t) (2.5)

It follows directly from the definition of the heat kernel
that the trace at coincident points is invariant under the
gauge group. This trace has a famous asymptotic expan-
sion in powers of t.

Here, we will define a slightly different expansion in
powers of covariant derivatives:

and from order n,

a„=—Kp
1) —,Z, ,„, „„6"' P'"Koa„„

0&r+s&n

with ap ——I, then, from the leading order,

—(A: +xQ)ep=6 (2.12)

LK = —K. (2.6)

where A, contains i covariant derivatives of X.
The terms in the expansion can be derived from a mo-

menturn space expansion of the equation

(2.13)

We can expand this expression further by introducing
the eigenvalues of Xp, calling them m, . Let T, be the
projection matrices onto the corresponding eigenspaces,
then

Define the transform

K(k, x', t) = dp, (x)e '"(* * lK(x, x', t) (2.7) K = T (k'+m,') (2.14)

and then This allows us to write

a„=— ) —T Z .. . T e-(mg —mi)tpp1 pi „a
r. Silg] 'Pi" n —r —s

0&r+s(n
)Q

(2.15)

where 6 = b —2ikt.
Once the a„have been obtained, we can recover ex-

pansion coefficients for the heat kernel, as in Eq. (2.5),
by

ai = ) (T,ZO ~Tq2ik"t —T,ziT~) e
2ig

Integrating from t = 0 leaves

(2.17)

A„"'(x,t) = (4vrt)+ dp(k)tr[KO(k, t)a„(k, x, t)].

(2.16)

The nc reminds us that we have chosen a gauge and have
to use the gauge invariance to recover the expansion in
covariant derivatives.

The first iteration of Eq. (2.15) gives

ai = ) [T,ZO, „T~2ik f,~(t) —T,ziT, g ~(t)],

where

f, (t) ~=m (t —m +m e ')e

g,, (t) =m z(1 —e ')e

(2.18)

(2.19)

(2.20)
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and m = pL~ —m
For the expansion coefficient Ai, we use

tr(Kpai)

= ) tr(T, Zp, „T~)ik"t —tr(T~ZiT~)t e ~" + (2.33)

+ ) tr(T;Xp „T,Xp'T, )g;, (t)
~ 03

+) tr(T, Yp"'"T~Yp, pT, )6„b [ 4q—,, (t)/t]

+ ) tr(T~ZiT, ZiT, )y,, (t).

A"' = —) tr(T, XiT,) te (2.22)

Proceeding to the next order leads to

tr(Kpa2) = ) tr(T, Zp „T~)K," (t)

+) tr( TZ, T)(—t)e-&" + "
+) tr(T, Zp„T Zp T,)F," (t)

~ 32

+) tr(TYp „T~YpP„T,)k k 6'pG, ~(t)

+) tr(T, ZiT~ZiT;)H ~(t) (2.23)

(2.21)

Only the last term survives the integral over k in (2.16):
In order to construct an expansion in covariant deriva-

tives we introduce covariant tensors which reduce to the
above terms in the chosen gauge. If we define the field
strength by

i ['D„, 'D—,), (2.34)

Ap ——) tr(T, )e (2.35)

A2 = ) tr(T, 'D„'D~XpT, )p, (t)
2

+ ) tr(T, 'D„XpT, 'D~XpT, )rl,, (t)

then Y„„Y" is replaced by -'V4 and Y„Y ~ by
zE~ + 2'D4. The field strength counts as two powers
of derivatives in the covariant expansion as given below.

The covariant expansion coeKcients are given by

where

z;" (t)

+,", (t)

G'~(t)

H,, (t)

( 4k"k t+—3'" )p;e

[2tK;~k"k" + (q,~
—r,~)6" ]e

—k t4(K,, —g,, )e " ',
—k t

X (t)e

(2.24)

(2.25)

(2.26)

(2.27)

+) tr(T, XiT~XiT, )y,~ (t)
~ i3

+) tr(T~X2T~) [6p, (t)/t],

A4 = ) tr(T, P„„T,X" T, )[ q,, (t)/t] . —

(2.36)

(2.37)

We have defined

,(t) = ——,
't'e- "

and

ir,„(t)= m (1+ sm t )(e ' —e ")
2t — 2t+-,'m 't(e "+e "),

q,~(t) = —m (1+ sm t )(e ' —e™")
—m2t —m2tim —4t(e —tA~ i + e

—7D i)'
y,, (t) = —-'m t(e "—e™"),

In the limiting cases where i = j,

3 2t 1 2 —m2t

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

Only the part of A4 which remains when 'VXp = 0 has
been included. We will use the same simplification of this
term in the remainder of this paper.

In the case that all of the eigenvalues of Xp are iden-
tical, then the i = j limits (2.32) can be used, and the
results reduce to the usual ones [11,10].

III. FINITE- TEMPERATURE RESULTS

Consider a system in local thermodynamic equilibrium
where the ensemble averages of the Belds vary over space.
We define ensemble averages by path integrals on the
Riemannian manifold B x S, and chemical potentials p
are replaced by potentials Ap = ip, coupled to the corre-
sponding charges [22—24]. The momentum space measure
becomes

Integration over k now gives

A2' = ) tr(T, Xp „"T,)p, (t)
dp, (k) = ) d k

(2vr)s
(3.1)

+) tr(T, YP„,,YP" T,)(sit e™')
+ ) tr(T, X&T,) (—te ')

with kP = 27m//3 for periodic fields (bosons) and kP =
2vr(n+ z)/P for antiperiodic fields (fermions).

We will give results for (2(x, 0)' and $4(x, 0)', the parts
of (' which are second order in derivatives and second
order in gauge field strengths, respectively. From the
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definition (2.3), we have

g„(x, s) = dt t' dp(k)tr(Koa„).
1

I'(s) (3 2)

on p:

(3.14)

(~ l(x, s) = ) tr(T, )(,(x, s), (3.3)

Consider first the case when the chemical poten-
tial vanishes, denoting the ( function for this case by
(~ &(x, s). The leading order term in its derivative ex-

pans1on,

& = Z(') —2xe'I V —p'y' (3.15)

As before, a lower index is added to denote the number
of spatial derivatives.

It is necessary to extend the calculations in Sec. II to
include this background gauge field. This is achieved by
replacing the matrix Z (2.9) with

is the term from which the effective potential is derived
[4, 3]. For the next term, Eqs. (3.2), (2.36), and (2.37)
give

The projection matrices T, are now defined by

(3 16)

q2~ l(~, s) = ) tr(T, "D„'D"XcT~)p, (s)

+) tr(T, V&XOT~'0" XcT,) rhea {s)
~ 'i3

+) tr(T~XiT, XiT, )y,, (s),

(4~'~(~, s) = ) tr(T, E„T,E" T,)(,, (s),

where

&(1)T(0) &(0)&(~)T(0)
2 (3.17)

and also

where the leading order contribution to A is A~ ~ = m, .
We will allow for the possibility that the Y matrices split
the degeneracy of the eigenvalues of Xo, and therefore
some of the masses can be equal, but T,YT& ——0 if m, =
m~ andi g j.

Standard perturbation theory can now be used on the
(degenerate) eigenvalue problem (3.16). To first order we
have

1 -k'g
i7,, (s) = dtt' ' dp(k)g, ,eI'(s) (3.5) &(0)&(1)&(0)

2 Z

(3.18)

S,(0)'

y, {0)' — (m, +m )8+
4(m,'+ m,')

n* (o)'-,
92 (' +'

)

T 4(3m,'+4m, m, +3m,')
96vr 5(m, + m~)s

(;~ (0)'

(3.7)

(3 8)

similarly for y,~ and (,z (defined as above, but with g,~
~

ill,~). All of the Lorentz indices are spatial.
This result is valid for all temperatures, but if we are

satisfied with a high temperature expansion the results
of Appendix A can be used. These give

The next order gives

~(2}T(0) T(0)+(2}T(0)
2 4 2

T(0)~(1)~(0)Z(1)T(o)
+ ) m m3

(3.19)

—(k +A;)g (3.20)

and so on.
These chemical potential expansions can be used in the

derivative expansion of the heat kernel. To leading order
in derivatives,

for periodic fields. In the antiperiodic case,

C'(0) -—,»(CBRIT)

1
X,, (0) -,6, »(S RIT)

1
(,~ (0)' ~ — 1n(pR/T),

n'~(o)' - 768,T, (R(3)
7

(3.10)

(3.11)
(o~ l(x, s) = ) tr(T, YT~YT~)p, , (s) (3.21)

where
3.12

(3.13)
~.&(s) = —,'X'*(1 s) + (&(1 s)l

Pm [(,(0, s) —g~(0, s)], (3.22)

When expanded in powers of p, , the quadratic term in
the ( function becomes (supressing the 0 in T, )

If the chemical potential is nonzero, then the path in-
tegral has to be modified to include a timelike gauge-
potential component Y = pY, for a axed matrix Y. The
previous results have to be modified by terms dependent ,, (s) = -P (,(1,s). (3.23)

and m2 = mz —m2. (,(p, s) is defined in Appendix A.
For the degenerate case,
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In the high temperature limit,

sT —
s (mi + mr )T bosorls,

—T—
12 fermions, (3.24) for periodic fields.

(3.32)

(2~ l(x, s) = —) tr(T, X~'2lT)(, (l, s)

+ ) tr(T, X2T, Xo~'lT~)X,, (s)

[with the (0) superscripts on T, suppressed].
At the next order in derivatives we make the same

substitution into Eq. (2.23):

(3.25)

(2:, s) = ) tr(T, XrT~X2TkXO T, )y,~g(s) (3.26)

where

s, (m2 —m2k) r log(pR/T), m, P mr„
r2s~4 ~R(3)T

—2 mi =mk

The term $0 contributes to the effective potential, and
has a bearing on phase transitions in systems with con-
served particle numbers. It is possible to describe Bose-
Einstein condensation in this way, and our results agree
with the literature on electrically charged bosons [24] (in
which case Y = o2, the Pauli matrix).

It is possible to proceed further with the derivative ex-
pansion. The next gauge invariant term involves two
derivatives, but topological terms in three dimensions
which are first order in the field strength may also be
of interest. Terms such as this do not arise explicitly in
the derivative expansion, but from derivative terms in X
(as, for an example, with the chiral fermions in the next
section). We let Z~ l = X~ l —2iko Y, and substitute into
Eqs. (2.21) and (3.2). Thus, for the implicit terms,

IV. FKRMION LOOPS

We shall consider the contributions to the effective ac-
tion of a chiral SU(2) fermion, which can be built up into
a quark or lepton in the full electroweak theory. The
Lagrangian reads

Z~ = zgr. p Dr.gr+rgR Y DRQR r fear—pgR r fgR—Q Qr. .

(4.2)

where

f4 —
P & Pr.Dy= f~t D P„P,=

l (4.3)

The determinant of the fermion operator Dy is not
yet defined, because the operator Dy maps left-chirality
fermions into right-chirality ones. We can, however, de-
fine the determinant of L = D&Dy, where D& is the
Hermitian conjugate of Dy. (When acting on the space
of Dirac spinors, D&

——p5Dyp5 and it follows that Dt
has the same nonzero spectrum as DJ.) We shall take

(4.1)
The gauge derivative D = 7' —igA. There is a dou-
blet Higgs field P, a doublet fermion QL„and a singlet
fermion gR. The chiral projector PL, = 2(l —ps), and
the Riemannian p matrices are taken to be Hermitian,
with Q = Qt.

The one-loop contribution to the effective action of the
Higgs and gauge fields is obtained by expanding the La-
grangian about background fields P and A:

I'~ ~ = ln detDy

(3.27) I"~'~ = —,'ln detZ (4.4)
for antiperiodic fields in the high temperature limit.

Finally, we give results for two derivatives and two
powers of the chemical potential, but with the fields con-
stant over space. These terms are relevant for situations
where the number density of particles is inhomogenous,
but local thermodynamic equilibrium still holds. They
are also needed to calculate the rate of quantum tuneling
between phases of different density. From Eqs. (2.23)
and (3.2),

(2~ l(z, s)p, = ) tr(T, YT~YT, )[8,,V' p +u, , (V'p, ) ],
6 7$

where

(
D —go„F~—+ f2ggt

f(~ D4)" D2 + f2$$$ l
c'

(' —g F" +f'4'4' fV D4'~
f(V D4)' f'4'4 ) (4.6)

(4.5)
We have set o~ = —

2 [p„,p ].
The operator (4.5) is in a form in which we can use the

general results of the previous section. We have

where
(3.28)

igA 0
ll ~~ gF& 0-& 0 0&

=
0 0 (4.7)

0.,() = —,', K'(2, )+&,(2 )]--,'~ &~"(),

~ ( ) = 2 &[-X' ( ) —6 ( )].

(3.29) If we set

(3.30)
then

P m1+1 + m2+2 + m3T3,
2 . 2 2 (4.8)

In the high temperature limit,

96m m, m
(3.31) (4.9)
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where P~~ and P~ are projections along and perpendicular to p, and m1 = m2 ——f p p, ms ——0.
The traces read

) tr(T, 'D&'D"XpTi)p, = 2D (m1)p1+ 2f tr(P~~D pp )p2+ 2f tr(P~D pp )p3, (4.10)

) tr(T, V„XpT&.'0 XpT)rj &= '2D&m1D m1(i711+i722)+4f m1(D~Q) P&(D p)7/23, (4.11)

) tr(TiX1T&X1T,)z;z ——2f tr(PI&"p )[(D&p) P~~(Dvp)&12+ (D&p) P&(D„Q)&13],
~73

) tr(TiX2Tj X2Ti)Xij = g tr(PL&yv&np)(F )a(+ )b(g1~ X22 + gJ X33 + g~~ X23)
~)2

) tr(T, P„T~P T,)(,~ = 2g (F„) (E"")b(g1 (22+ g~~ (23+ g+ (33).

(4.12)

(4.is)

(4.i4)

Group metrics g
~ are defined in Appendix B.

The high temperature approximation to the one-loop
effective action can now be read off Eq. (S.1S), using

( 0 YRP' (4.18)

The fluctuation operator is modifled by the addition of

p(l) l
2 du(*)(.'(~ o). (4.i5) X(1) 0 fP() (Y—l.P + PYR) l

f~p(4-'Y. + YR4')

I'(')- d~( )( Z'(+ -).(&" )o

where

+Z2 ep p(E ) (P )i) (4.i6)

We will only give the result explicitly for the gauge fields
(and we will leave out terms with two or more powers of
Fpv).

(4.19)

) tr(T, X2T~Xp( )T,)y,~
= 0 (4.20)

and

We will take Y to be the hypercharge, and let it com-
mute with the SU(2) generators. The relevant traces are
then

ab 2Zrb = g2in(pR/T)g ~,

1
Z2~ = — g21n(pR/T)g ~.

(4.17)

The metric g
b is defined in Appendix B.

Results for the electroweak SU(2) x U(1) are obtained
by adding the results (4.17) to similar results for the U(1),
in which the SU(2) coupling g is replaced by g'Yl. or g'YR,
where YL, and Y~ are the hypercharges of the left- and
right-chirality fermions. (The g YR contribution to Z2
also has a factor —1.)

The first term in the result is related simply to the
charge renormalization and could have been obtained
from a simple Feynman graph calculation. This is due to
the fact that the mass has dropped out of the result, an
effect which does not occur for bosonic loops as we shall
see in the next section. The second term in the result is
a total divergence of a Chem-Simons term. It becomes
important in a slowly evolving system, for example in the
expanding universe.

Terms in the effective action which arise when there
is a nonvanishing chemical potential p, can also be found
using results from the previous section. If p is a (con-
stant) Lagrange multiplier for the charge Ql.ppIg@L, +
gl. pp YRQR, then the fermion derivative Df is replaced
by Dy+ ppoY, where

) tr(T, X1T~X2TgXp T,)y,~i,

= —2ig f2(YI, + YR)tr(Pl. oppcr~p)

X —Q F (P~~ +221 + PJ X231)D (j5

+(D P) (P~~X122+ Pgy132)F (4.21)

From Eq. (S.26), we have

d.(*)" .((D ~)'Z.F'~ ~'F'Z. D'~)

(4.22)

where

Z3- —,2(R(S)pgf (Yl +YR).
7i 2 (4.2s)

This term seems to be analogous to the Chem-Simons
term that has been discussed before for chiral fermions
at finite temperatures [17]. Here, and with the result
for the one-loop action at p, = 0, the derivative expan-
sion fails when one of the masses vanishes. This problem
can be removed by including corrections from ring dia-
grams. To leading order these affect the masses m, , but
the above result is independent of these masses and is
therefore unchanged. However, the inclusion of ring dia-
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grams prevents a rigorous comparison between this result
and those for massless fields cited in the literature. 0)'

(5.is)
V. BOSON LOOPS

2(D—„C) (D"4 ) —U(4 )

with a potential

(5.1)

Now we turn to contributions to the effective action
from a vector or Higgs scalar loop. The calculations
are presented for vector representations of O(N), but the
generalizations to other groups are also indicated.

The Higgs field 4 has a Lagrangian density

o o
l~ T7 I&a~ ol~

II)' 4 o )
The projection matrices onto the broken and unbroken
subgroups of the gauge group are defined in Appendix
B. The mass m5 is the vector mass, m6 is the Higgs
boson mass, and m4 is the mass of the longitudinal vector
component:

ms= 2g gFQ, ms = —p, +3AQ

U(C) = —qp 4 4 + 4A(4 4) . (5 2)
g

m4 ——2g gap+ A(th) —p, m7 ——0.
(5.14)

= —4g (F„) (F" )b. (5.s}

The gauge field A = A T, where the T are Hermi-
tian generators of the Lie algebra. Indices will be raised
with the group metric g

b = tr(T Tb). The Lagrangian
density for the gauge fields is taken to be

In the vacuum state, m4 = ms t Apart from Eqs. (5.14),
the form of the operator is also valid for other represen-
tations of simple groups, and the results given below will
be widely applicable.

For the ghosts,

We use the 't Hooft gauge-fixing term, with back-
ground fields A and P and perturbations A, ((((: and

Xs"=gP TTP (5.15)

gGF 1 ~~aa (5.4) g tr(F„„[—T„Tb]). (5.16)
where D = 7' —igA, and

P = D„A" +ia.ggFT PT.

The ghost field c Lagrangian density reads

(5.5)

We have X6 = msT6 + m7T7 (no vector indices), with
the masses defined above.

The kinetic terms in the one-loop effective action are
given by

l 2 = c [ D. (D —ig—A)b + ag qFT T"4]cb (5.6). r~'l = dp(x) I
—

—,'(„'(x,0) + („'(x,0)'"j (5.i7)
If we write q = (A, P), then the total Lagrangian den-

sity becomes

2 gh (5.7)

t X~ + tgtr(T, F„'Tt) 2tgD„t(~T )—2igTbD P X& (5.8)

where

X~ = g2(FT T Pb„,

X~=g T PP T —p, +A/ P+2AgqF,

(5.9)

(5.10)

We can write

g tr(F'„„[T,Tb]) 0
0 gF~„p (5.11)

Xo = m4T4+ m5TG+ m6T6+ m7T7
2

where

(5.12)

where Z and Ash are the fiuctuation operators. They
take the form of Eq. (5.1) in Feynman gauge n = 1,
which we use throughout.

For the vector and Higgs fields,

(5.18)

where

C C~ C~ l b+ — gg
2mb 2mb 2m7)

g I g(46 + (67 +
64 gII64vr m5+ m7

T 1 b
g g

ab
192vr m4

(5.19)

The metrics g&, g~~" and the Casimir constants C', C'~

are defined in Appendix B, ( in Eq. (3.9).
This result, and also the one-loop correction to the

Higgs field gradient terms [8], has an infrared divergence
due to the vanishing of one of the masses (m7). This di-

vergence can be removed by including ring-diagram cor-
rections, which have the effect of replacing the masses
m, by temperature-dependent masses m, (T). The terms
that are of order g T/m, become, for m, = 0 or for very
high temperatures, of order g. This means that, except
for specially chosen models, they are subdominant but
larger than the fermion loop terms.

with the high temperature limits („'(x,o) calculated us-
ing Eq. (3.13). The contribution which depends on the
square of the Geld strength is
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VI. RING DIAGRAMS

It is a well established fact that the one-loop approxi-
mation fails to give all of the leading order terms at high

temperatures. Some indication of the problems with the
one-loop calculation are seen in the infrared divergences
of the previous section. The leading corrections come
from summing ring diagrams, which are obtained by re-
placing the one-loop result with

I ~""&' = -'tr in(Z + ~)2 (6.1)

where 7r is the vacuum polarization tensor [3, 4]. (At the
phase transition temperature, even this approximation
is likely to break down. It can be argued that the ap-
proximation works if we avoid coming too close to the
transition temperature [25].) The ring diagram correc-
tions are calculated in this section, for convenience rather
than originality.

The leading terms in the Feynman diagram expansion
for 7r are shown in Figs. 1 and 2. The vertices are con-
structed from the interaction Lagrangian density

L g L g L f R f L

FIG. 2. Leading order Feynman graph contributions to
the fermion vacuum polarization tensor.

We will denote the gauge-field interaction contribution
to the vacuum polarization by sr~ and the self-interaction
contribution by vrp. From Fig. 1,

7rg ——g ( (1 —4')0"Gp(x, x)O„
—(3 —s

2)O'Gp (z, x)0,)b(x —x'), (6 7)

(6.9)

7rp = A (2AGp(x, x)A + Atr[AGp(z, z)]}$(z —z ). (6 8)

New matrices have been introduced merely to keep the
indices tidy:

gjllt gjnt + pint + gjnt
g A gh&

where the relevant terms are

(6 2) and

(6.10)
l:g"' ——2g gFA„A"p+ 4g tr([A, A] )

+ig(V'~qF) A"P —ig tr(V'„A [A",A"]),
2'"„' = g tr(c[A", 7'„c]),
pint 1 p(yTy)2

(6.3)

(6.4)

(6.5)

Some terms which are not proportional to 6(x, z') are
also present, but these are relatively small in the high
temperature limit. Inserting the coincident limits of the
propagators gives

The propagator lines represent the background field
propagator G(x, x'). This has an expansion in powers of
derivatives, from which we use the leading term Gp (z, x').
The coincidence limit Gp(x, x) = (p(x, 1) (taken as a ma-
trix and untraced); hence,

Gp(x, z) = ) T,(, (0, 1) - —,', T' —
—,
' ) T,m, T. (6.6)

The asymptotic expansion is from Appendix B.

4'sg T2(3A„—202)b(x —x'),
7rg s AT A(l + z trA) 6(x —x').

(6.11)

(6.12)

When substituted into Eq. (6.1), these terms replace
the original masses with temperature-dependent masses:

m,'(T) = m,'+ —,', (3+ 2C)g'T',
m7(T) = m7 + 4s (3 + 2C)g T

(6.13)
m4(T) = m4+ 4cg T + s (1+ —,'trA)AT',

ms(T) = ms+ 4cg T + s(1+ ztrA)AT .

Here, c is defined by T T = cl and C is the
quadratic Casimir constant defined in Appendix B. The
temperature-dependent Higgs boson masses agree with
the masses in the finite-temperature efI'ective potential
[4]

The ring corrections to the ferrnion loop have a slightly
difI'erent form,

I'~""sl = 2tr 1n(E+ Dft7r), (6.14)

because the fermion propagator S = L Df. We label
the gauge interaction term by az and the Yukawa inter-
action term by ~f.

FIG. 1. Leading order Feynman graph contributions to
the boson vacuum polarization tensor.

7r~(x, z') = 2g tr[Y„Sp(x, x')T Gp(x, x')], (6.15)

7rf(x, x') = f'tr[O„S,—(x, x')0 G, (x, x')]. (6.16)
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where

(p„(Ta),„01 60 0 )
o o (6»)

We can use recurrence relations

(,(p+ l, s) = — 2(,(p, s) ( 6)

The leading high temperature term comes only from the
parts of this expression which are quadratically divergent,
and, for these,

Dft7rs ———g tr[T„GO(x, x)T ]6(x —x'),

Dft7rf = —f tr[O„Go(x, x)O ]6(x —x').

The fermion masses become

(6.18)

(6.19)

mi(T) =mi + s f T,
m (T) —m + 'g T +-' f T—

m (T) =m + 'g T +-' f T—
(6.20)

These masses replace the original masses in the results
for the efFective action, Eqs. (4.17) and (5.19), removing
the infrared problems.

Further improvements can be made by solving for the
masses self-consistently, which is equivalent to summing
"superdaisy" contributions to the effective action and
gives results valid when g2Tz is large. Another possibil-
ity is to sum ring diagram contributions to the effective
potential, using higher terms in the derivative expansion
of the propagators to obtain O(g4F2) corrections.

to relate (,(p, s) to j,(0, s).
The high temperature expansion of (!(0,0), which en-

ters the effective action, is well known from the free en-
ergy of a free field [4]. For bosons,

+ is', log(p~/T) —„,' ~(R(3)m,'/T', (A7)

where gR is the Riemann g function. The renormalization
scale p,~ enters in the logarithmic term and the coeFicient
of this term is related to a renormalization P function.
For fermions,

+ is, log(p~/T) —ss4, (~(3)m, /T . (A8)

Tha absence of a term proportional to T is significant in
the derivative expansion of the effective action.

Another quantity of interest is (,(p, 1) (regulated by
removing poles) which determines the size of the vacuum
Huctuations. The high temperature expansion gives

1T2 1m T(.(0 1) ~ 12 2m ~ '
(A9)——T24 fermions.
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The finite-temperature measure was given in Eq. (3.1).
We define

—(A: +m,, )it (Al)

Integration by parts can. be used to show that

dp(k)k"k e ~" + * ' = K,(t)2t

and also

(A2)
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APPENDIX 8: GROUP THEORY

The generators of the Lie algebra of the gauge group
are represented by matrices T . These define a metric
g = tr(T T ), which we have taken to be nondegen-
erate, with inverse g b The . structure constants f b,
are defined by [T,T"] = i f b,T', and we also define
a quadratic Casimir constant G by f 'd fb", = —Cg b.

The background Higgs fields P are used to define a
projection &~~, by P PP~~ = PP, and an orthogonal pro-
jection P~ = j. —P~~. The matrices P~T P~ generate a
Lie algebra, and the matrices P)~T P~~ generate another
Abelian Lie algebra. We define

g~ ——tr(PgT PgT Pg), (Bl)
(B2)

(B3)

4tp(pupa p)
d~(k)k"k k ki' K, (t)4t~ (A3)

These are not independent, because g
" = g& +g&" +g~~ .

We also define operators

for spatially directed k. In the timelike case,

dp(k)kokoe-&'™ &t = —
[
1+P Z;(t).

1 ( 8
2t q &P

(A4)

The efFective action can be expressed in terms of (
functions,

P&a = gac(Qi gi ) ~ P)(a = gac(g[j + 2gi ) ~

The vector mass g P T T P = zg P
more,

f fb P cfP b Q b

(B4)

(B5)
2(i(p) S) =

~( )
I R dt t"+' K, (t). (A5)

The value at s = 0 is defined by analytic continuation.
defines a quadratic Casimir constant C~ on the reduced
symmetry group.
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For the fundamental representation of the gauge group
O(N), grab = 0 and P~ is a projection onto the Lie
algebra of the reduced symmetry subgroup consisting of
rotations about the background Higgs 6.eld. We have
Casimir constants C = N —2 and C~ = K —3.

For the fundamental representation of SU(2), with
= (0 4'o)

gz =9'i =
(0

0)
(B6)

The vector masses are 2g PtT Tbg for a complex repre-
sentation. The quadratic Casimir constants are t = 1
and Ci ——0.
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