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Perturbation theory in two-dimensional open string field theory
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We develop the covariant string field theory approach to open two-dimensional strings. Upon con-
structing the vertices, we apply the formalism to calculate the lowest-order contributions to the four-
and five-point tachyon-tachyon tree amplitudes. Our results are shown to match the "bulk" amplitude
calculations of Bershadsky and Kutasov. In the present approach, the pole structure of the amplitudes
becomes manifest, and their origin from the higher string modes becomes transparent.

PACS number(s): 11.17.+y

I. INTRODUCTION

In the last couple of years there has been a Aurry of ac-
tivity in the (d ~ 2)-dimensional string theory. To a large
extent, the excitement was prompted by the significant
success of the matrix model approach [1,2]. The matrix
model in d =2 has been shown to be equivalent to the
simple scalar &collectiue) field theory with the cubic in-
teraction only [3]. The amplitudes and the S matrix have
been calculated exactly for the closed strings [4—10].

Part of the motivation for studying the matrix models
is the hope that they can provide us with some insight
about string field theory (SFT) in higher and critical di-
mensions. Originally, SFT was formulated for critical
strings [11—17]. The covariant formulation of Witten
uses the Becchi-Rouet-Stora-Tyutin (BRST) approach. It
is, therefore, very important to establish the relation be-
tween the matrix models and BRST approaches. It has
partially been accomplished for the first-quantized BRST
formulation ("Liouville theory" ). The S-matrix elements
have been calculated, with discrete states and their sym-
metry 8' revealed [18—23]. Progress has been made for
open strings as well. In their paper [24], Bershadsky and
Kutasov calculated the bulk tree level tachyon ampli-
tudes. They found the pole structure much more intrigu-
ing than in the closed string case. It is important to note
that, at present, there is no satisfactory matrix model for
open two-dimensional (2D) strings.

The first-quantized BRST approach corresponds to the
free field theory. It is very interesting to study the in-
teraction theory as well. Subcritical SFT has been dis-
cussed [25]. Some work has been done in the d =2 case
[26—28]. One would like to (a) solidify our knowledge of
open SFT in 2D, (b) check, by explicit calculation, that
such a theory indeed reproduces the results of Ref. [24],
(c) establish the precise connection between the covariant
formulation and the simple scalar formulation in 20, and
(d) after gaining some insight dealing with the relatively
simple open SFT, try to implement it to closed SFT,
which has recently been put on firm ground [29], al-
though admittedly a more complicated one. In this pa-
per, we deal with (a) and (b) leaving the rest of the pro-
gram to future investigation.

The paper is organized as follows. After the summary

of our notation and conventions (Sec. II), we discuss some
general properties of Witten's formulation and establish
the vertices for the SFT in d =2 (Sec. III). Section IV is
devoted to the component analysis of the classical and
quantum open SFT. In Sec. V we calculate the four- and
five-point correlation functions using perturbative SFT,
and compare the results with [24]. Finally, we outline
some open problems and possible directions of future
work (Sec. VI).

II. NOTATIONS AND CONVENTIONS

In this section we summarize the notation and conven-
tions. The matter field X(z) and the Liouville field y(z)
are denoted as a 2D vector P"(z), where @=1,2 corre-
sponds to the matter and the Liouville sector, respective-
ly. Also,

(P"(z)P (w) ) ——5"'In(z —w) . (2.1)

The stress-energy tensor for the matter-Liouville system
is given by

( g pp )2 $2pp
T~(z) = — i Q" —(z),

2 2
(2.2)

( c (z)b (w) ) = ( b (z)c (w) ) —I /(z —w),

T '(z)= 2b B,c+c B,b—.
(2.3)

In constructing the field theory vertices it is useful to
bosonize ghosts. One introduces a scalar field o.(z) whose
two-point function and stress-energy tensor read

(cr(z)cr(w)) -ln(z —w),

(B,cr ) B,o.
T (z)= +3

2 2

(2.4)

Then, one can identify c (z)~e ",b (z)~e ".We will
often state both the bosonized and the nonbosonized for-
mulas.

A conformal field of weight h, Oi, (z), has the mode ex-
pansion

where Q"= (0, —i 2v'2 ) = (0, —i Q). The reparametriza-
tion ghosts are as in the critical string case:
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Oi, (z)—:g O„z (2.5) &O~c, c,c, ~0& =1 . (2.13)

with the coefficients 0„:

O O n+h —1 dz
2&l

(2 6)

From (2.5) one can read off the mode expansions for the
conformal fields B,P", B,o., c (z), and b (z), making use of
the fact that their conformal weights are h&=h =1,
h, = —1, and hb =+2. Their expansion coefficients are
denoted, respectively, as —ia"„, 0.„, c„, and b„. They
satisfy the (anti)commutation relations

[a"„,a" ]=n5" 5„+ 0,
[cr„,cr ]= n 5„+ 0,
[c„,b ] = Ib„,c ] =5„+

(2.7)

The coefficients in the expansion of the stress-energy ten-
sor T(z) are the Virasoro operators L„and they satisfy
the Virasoro algebra

~L„,L ~

= (n —m )L„+ + (c/12)n (n —1)5„+

(2.8)

The coefficient c in (2.8) is the central charge and its value
for the conformal fields we are interested in is

c =1, c =1+3Q, csh= —26 . (2.9)

L tot —I —I ',t'+I gh
n n n n (2.10)

the total central charge is c"'=c=0 precisely when

Q =2&2. This specific value of Q will appear over and
over again as a consistency condition for the theory.

We define a Fock-space vacuum to be the SL(2,R )-
invariant vacuum. This means that for conformal field

OI, with weight h, the modes O„satisfy

0„~0)=0 when n ~ 1 —h,
&0~0 „=0 when n ~ 1 —h .

(2.11)

We introduce the Hermitian conjugation as follows (here
and below in this section we closely follow the Ref. [18]):

(a"„)t=a"„, n&0,
(a) = —o „, n&0,

(c„) =c
(b„)'=b „,
(ai0) =aai'+Qi'

(o0) = cra+3 . —

(2.12)

From (2.11) it follows that the SL(2,R ) generators
[L i, LQ, Li] annihilate both ~0) and &0~ (thus the name
for the vacuum). On the other hand, neither of the vacua
is annihilated by c &, c0, or c, so we define

From (2.9) it follows that if one defines the total Virasoro
operator,

g ) .eiP~+(0)e xa(0)
~() ) (2.14)

[:: denotes the normal ordering with respect to the
SL(2,R)-invariant vacuum]. For such a state,

ag~p, A, ) =pp~p, X),
cr, ~p, A&=k,~p, A. &,

&p, ~~ay= &p, X~p~,

&p, k(o, =&p, X(A, ,

(2.15)

and the basic scalar product is defined as (note that &p, A,
~

is not the Hermitian conjugate of ~p, A, ) )

&pi ~illp2 ~2& 5(P1 p2)5(~1 ~2) . (2.16)

Here, p"—=(p, iq), a—nd p, q&R. In the special case
when A, =1, we get tachyon. To simplify the notation we
use ~p, 1 )—:~p ), unless otherwise stated. In Sec. IV and
below, p refers to the general off-shell state, while k is
reserved for the on-shell states.

An important g = 1 operator is the BRST charge Q:

Tb, c

Q = f:c(z) T&+
2

dz
2&l

(2.17)

Making use of (2.12) one easily verifies that Q is Hermi-
tian, i.e., that Q =Q. Also, the BRST charge is nilpotent
provided that the Liouville background charge is
Q =2v'2. If one denotes by F the one-string Fock space
built on the physical vacuum ~Q), then Q and g endow F
with the structure of the differential complex. Namely, g
provides for the grading on the complex: F=F'"',
where n is the ghost number of F'"', and Q is the
differential. Corresponding cohomologies of Q, H'"I are
the physical states of 2D theory [18—23]. These two
operators play the crucial role in the construction of the
gauge-invariant string field theory, as well.

III. WITTEN'S OPEN STRING
FIELD THEORY IN d =2

In the Sec. II we mentioned that the physical states of
the first-quantized strings are given by the BRST coho-
mology classes of F. Transition from the first-quantized

This equation is the remainder of the fact that the ghost
system has the background charge —3 and that one
therefore needs three zero modes to saturate it. It is use-
ful to introduce yet another vacuum which we refer to as
physical vacuum

~
Q ), where

~
A ) =c, ~0 ) . We postulate

that ~0) has the ghost number g zero, so that ~Q) has
g =1. Physical vacuum is annihilated by all positive
moded oscillators. Thus it is the state of the lowest L0
("energy") value. Expressed in the bosonized language:

~n) =c, ~0) =e'"~0) .

Since [era, o(z)]=+cr(z), one infers that o0 is nothing
but the bosonized version of the ghost number operator
g. More generally, one can define a state:
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to the gauge-invariant field theory formulation of the
critical SFT is well known. Namely, physical states in
the first-quantized approach are the classical solutions of
the free field theory (see, e.g., Ref. [16]). In Ref. [11] a
covariant formulation of the interacting SFT in d =26 is
proposed. The present section applies the construction to
the d =2 case.

A generic string geld
l
A ) is, by definition, an arbitrary

linear combination:

and the gauge invariance ( Ao ——A)

bA, =QA+A, eA —A+A, . (3.5)

Witten's proposal can be realized by rephrasing the ax-
ioms in terms of the Fock-space oscillators [12,13].
Namely, the operations f and the string functional mul-

tiplication e may be represented through the multipoint
vertex operators „& Vl HF, „:

lA)=g ls)a, , (3.1) f A=, (vllA&',
(3.6)

where ls ) HF and a, are the coefficient functions, which
can be either even or odd with respect to Grassmann par-
ity (basically, we follow the conventions in Ref. [14] with
the shift in g by +—', ). The coefficient functions depend
on the center-of-mass coordinates only. Grading in the
string field space is induced by the F =eF'"' decomposi-
tion, so a generic string field

l
A ) can be decomposed into

g eigenstates:

lA &=+ lA &(„),

(3.2)
glA )(„)——nlA &(„)

———nlA )„.
In particular, it is convenient to declare that Grassmann
odd coefficient functions a, anticommute with a ket

l
l ) if

g(.gll ) =g(ll ) is odd and that they commute otherwise.

The total parity (
—) '( —

)
' of the string field lA ) is

denoted as ( —)".
Next one considers multistring states which are simply

the elements of the

and the derivative operator Q is the first-quantized BRST
operator (2.17). Then, in the bosonic string case, the clas-
sical action (3.4) reads

lv. )
= -,'(2& VIIA &(Ql A &i+-,')23& VIIA &( A &(I A &),

(3.7)

where, 2( Vl =,23( Vll V) is the two-string vertex which
is nothing but the inner product on the string field space.

To find, 2. . . „(Vl is the main problem in the construc-
tion of the theory. This can be done by solving the oUer-

Iap equations or, equivalently, using the Neumann func-
tion method [12]. The overlap equations for a conformal
field Oh(z) with the conformal dimension h are given by

F(3F(3 ~ ~ ~ (3F=F" „.. . „& Vl[z"O„"(z)—z-'O,"-'(—z-')]=0, (3.8)

Q(A eB)=(QA)eB+( —)"A e(QB),
A~a= —"' a~A,

(3.3)

QA=O.

Using the axioms (3.3) it is easy to construct a gauge-
invariant theory of string fields, the classical action being

A space dual to F" we denote as F,n, where F,„:F"~C.
More notation: a mode O„corresponding to the rth string
we denote as 0„";vacua are labeled as lQ)"; an element
from F,„we generically denote as, 2. . . „(Vl =„(Vl. As
an example, l

A )"„ is the rth string of ghost number n.
Multistring states describe the processes of splitting

and &oining of strings, that is, the string interactions. The
simplest nontrivial operation is integral f which maps
F~R and carries g = —3. Another operation is the
string multiplication e. The star operation carries g =0
and maps F ~F so that given the two string fields A and
B, A eB is again a string field. The operations f and e,
together with BRST charge Q should satisfy Witten's ax-
ioms [11]:

(A eB)e C = A )((B+C),

„.. . „(vl( '"+(—) "" ')=o,
„.. . „& Vl( " +( —

)
" )=0,

„.. . „& Vl( "+(—)
" )=0,

„.. . „«l(b." —( —)-b":.') =0,

(3.9)

where mXO in all four equations (3.9). Zero modes are
treated separately. We require that

n„.. . „(vl y ag"+Q~

=». . . „(Vlfi"' y p~"+Q~ =0
'
(3.10)

n n

( Vl g (70 3 =)2. . . ( Vl5 g A. 3:0
r=1 r=1

where r =1, . . . , n, and if r —1 =0 we identify r —1 =n.
This leads, in particular, to the following identities for
the modes of the conformal fields in question (see Sec. II):

8',
1
=— A 1 + A, +—A, + A, *A

1 2
(3.4) The information above is sufficient, using the results

and methods of the critical SFT, to figure out, almost
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without further ado, 2D SFT vertices. They are of the
generic form

(3.1 1)

where iz. . . „(V~~ is the matter and, z. . . „(V~ is the
ghost part of the vertex. Then, for the one-string vertex
one gets (here (p~ does not contain any ghost dependence
and should not be confused with (p, 1

~ )

co
( )n co

( )n
, ( V~~= f d p 5' '(p" +Q")(p~exp —g a"„a"„exp —Q" g aiz'„

2n " " „ , 2n

)n co
( )n

, ( V =f dA5(A, ,
—3)(A~exp —g o„o„exp 3 g oz„

2n n=& 2n

(3.12)

For the two-string vertex we get

co
( )n

z, ( V~~= fd p, d pz5' '(p", +p~z+Q")z(pz~, (p&~exp —g a"„'a"„
n=1

co
( )n

zi( V~ =fdl, idAz5(A, i+Az —3)z(Az~i(k&~exp —g g„az
n=j

It is useful to express the ghost part of the vertex in the fermionic form as well:

(3.13)

z, ( V~"'=z(A~, (Q~(co+co)exp g ( —)"(b„'c„+b„c„')
n=1

(3.14)

The three-string vertex is

3 oo

uzi( Vl~= f d'p, d'pzd'p, 5'"(p", +pz+p~3+Q")z~p3lz&pz li ~pi lexp g g N„"' ag"a"—'
r s=1 n, m =0

3 co
( )n 3 3 00

Xexp Q"l3 g g a~z„" exp Q"l2 g No'oag" exp Q"l3 g g N„"oa"„" e
r=1 n =1 r, s =1 rs=1 n=1

3 oo

3z&~ Vl =f dkidkzdk35(Ai+Az+A3 3)z(A3lz(~z i~kilexp g g N„"' o„"er'—
r s=1 n, m =0

(3.15)

3 co
( )n

X exp —g g o z„exp
r=1 n=1 r, s =1 r, s=1 n=1

3/2N~
(3.16)

The explicit expressions for the Neumann coefFicients
N„" which appear in (3.15) and (3.16) can be found in
Ref. [17].

Note that the structure of the matter and bosonized
ghosts vertices is the same, only the values for the inser-
tions are different. More importantly, insertions are
given, in accordance to the geometric considerations in
Ref. [11], by the background charge of the conformal
fields in question. For the matter field P" it is
Q"=(0,—i2&2), and for the ghosts, it is —3. These are
the values for which the matter field c-number anomalies
cancel their ghost counterparts (this can be shown in a
straightforward fashion, just as it was done in Ref. [12]
for the critical strings), and for which the first-quantized
BRST charge is nilpotent.

Now that we have completed the construction of the
vertices, a comment is in order. The Liouville
(non)conservation law is explicitly enforced on the ver-

tices by its very construction. So, the correlation func-
tions, calculated by means of the Feynman rules (see Sec.
V), are necessarily "bulk. " In other words, the cosmolog-
ical constant in the theory is taken to vanish. It is intri-
guing to wonder whether this condition can be relaxed
and the space-time gauge invariance preserved. An at-
tempt in that direction was made in Ref. [26] in which
the effect of the Liouville wall was simulated by the
"semifree" field boundary conditions. The correlation
functions calculated in that paper are, however, bulk.
Much better understanding of the cosmological constant
role in the theory is needed and will be the subject of fur-
ther investigations.

IV. THK COMPONENT ANALYSIS IN 2D SFT

The purpose of this section is to set the groundwork
for the explicit calculations of the amplitudes in Sec. V.
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It is also instructive to see how component fields enter
the classical action (Sec. IV A) in order to better under-
stand what happens to them upon quantization (Sec.
IV 8).

Before moving on, let us introduce another piece of no-
tation. Let us define, for a string field

~
A &, the refiected

field
~
A &" [17,29]:

(4.1)

A string field
~
A & is real if

~

A &'=
~
A &, where the

dagger denotes the Hermitian conjugation [see Eq.
(2.12)]. From now on we restrict ourselves to the real

string fields (this is necessary for the proper counting of
the string degrees of freedom).

A. Classical field theory in D =2

A string field can be represented, in general, as

~x=o~+ & &~+=i'+~& &i+=a~+. . .

where the ellipsis denotes the contributions of the levels
3. In this subsection we are interested in the classical

SFT, so the field
~
A & has g = 1. For such a field,

~

g &(N=0) —q)(p)
~

~»'"="=[a„(p)a,~p &
—e(p)b, , ~p &], (4.2)

~
A &' '= ——H„„(p)a" ia' i~p &

—iG„(p)a" z p &+S(p)b ic i ~p &+8 (p)b ~co~p &

ia„(p—)a,b, co ~ p &

It is straightforward, although tedious, to calculate the
free field action —,

' f A e QA, which can be rewritten as
one sees that tachyon in 2D is indeed massless. Note that
if one defines

1 1

2 2
(4.3) f, = f d'—p id'pzfi"'(p i+p~+ Q), (4.5)

On the X =0 level there is only one field, the tachyon:

Wf' '= —f d p, d pz5' '(p, +pz+Q)P(p, )
(N =0)

& [(p2 ~2) '(p2+ Q) 1]4(p2 ) (4.4)

j.nside the integral,

pi = —(pp+Q)~,

Since

—(p+Q) —1=—p+-=1
2 2 2

2

then —,'(p +Q/2) is invariant under the partial integra-
tion. On the next level, %=1, there are two fields 3„
and 4, the second one being an auxiliary nondynamical
field.

2

Wf —— Ap p1 —p+ +1 Ap p2 / Ap pl pp2q'p2 + ~'pl q'p2 (4.6)

Finally, let us state the X =2 action:
2 ' 2

~f "=— H .p&
—p+ — +2 H„p2 —— S p&

—p +— +2 S p2

2

+ G„p) —p +— +2 G„p2 +2 G„p) B„p2 + Bp p& B„p2
1

+i Bp p, p2S p2 +i Bp p2 p2Hpv p) +2 B p, B p2
—— Hp p, B p2

1

I I I 2

+2i G„p& p2
—— B p2 +3 B p& S p2 (4.7)
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For all levels N~ 1 one can check that the auxiliary
fields are annihilated (and only them) by the co operator.
They play the role of the Lagrange multipliers. The rest
of the fields are dynamical. Among them are the Stueck-
elberg fields which appear as the coeKcient functions cor-
responding to the "dynamical" ghost excitations, i.e., the
ghost excitations annihilated by the bp operator. Such
fields are essential for the construction of the local
gauge-invariant theory. For the first time in our con-
struction they appear on the second level, namely, the
field S (p). They are present on all of the higher levels.

As a final comment, note that the physical spectrum of
the 2D string theory (the tachyon and the discrete states)
can be naturally reproduced in the second-quantized
language [27]. This boils down to solving the classical
equation of motion (EOM) for the free theory Q A =0
modulo gauge invariance QA. The tachyon survives in-
tact, since there are no gauge transformations associated
with that field. All higher-order fields are subject to
gauge fixing which kills all but the discrete degrees of
freedom (naive counting of the 2D photon degrees of
freedom, e.g. , gives 2 —2=0). That the states obtained
that way are precisely the same as the ones obtained in
the first-quantized approach is not surprising, of course,
since we are solving the same set of equations. What is
less obvious, however, is the question of what happens to
the discrete states upon including the interaction. This
will be discussed elsewhere. From that end, let us just
note that in the field theoretical formalism, such a ques-
tion is a perfectly well-defined one.

B. Gauge fixing and the Feynman rules

In Sec. IVA we were discussing the classical SFT.
Now, the time has come to quantize it. That is to say, we
want to calculate the path integral

8'GF =— A e 3 +—3 e A e A —2 b p

1 2

(4.8)

—f A eQA =—f A eQbocoA

—bp cpA
1

+— Heep Lp —1 A
1

ApA 8 cpA + 3 Qcp Lp 1
1 1

2 ecp Lp —1
1

(4.9)

One can rewrite (4.9) in terms of the components fields:

3 eco(LO —1)A =—QE,(a(a, ,
1

s, l

where
(4.10)

K,t
—

2, ( Vlls &,co(LO l)li &2 .

where the field 2 is now the sum of the input field A;„„
and all of the ghost fields. It contains fields of the all pos-
sible ghost numbers. The fact that

I
3 & is odd means

that if g, is even, the corresponding coefficient function
a, should be Grassman odd and vice versa. The field P is
a Lagrange multiplier (it also contains all possible ghost
numbers) which enforces the gauge condition.

In order to get the Feynman rules, let us integrate over
the p fields. We get ho I 2 & =0, or, using (3.1), bols & =0.
The kinetic term becomes

cl s

where 8'
&

is discussed in detail in the previous section.
Such an integral is an ill-defined object [due to the gauge
invariance (3.5)], so it cannot serve as a starting point for
the perturbation theory. The standard way out in the
gauge theories is to fix the gauge. We choose Siegel's
gauge bolA &=0. After performing the Faddeev-Popov
trick once we are left, in general, with some gauge
condition(s) imposed on the quantum fields and with the
Jacobian (Faddeev-Popov determinant) which can be
represented as a path integral over ghosts. In an irreduc-
ible theory, such as the Yang-Mills theory, that proves to
be enough, and from such an effective action one can read
off the propagators and the vertices. In the case of the
string theory, which is an infinitely reducible theory, such
a gauge-fixed action has additional gauge invariances. So
we have to gauge fix again. By doing so, we introduce
ghosts of ghosts. This procedure continues ad infinitum
[14]. It is convenient, following Thorn, to take the input
(classical) field and all ghosts to be odd. Then, the proper
gauge-fixed action is

To add more "meat" to this rather abstract looking ex-
pression let us analyze its content on the first couple of
levels. One naive guess would be to just exclude from the
input action all of the auxiliary fields (or, in other words,
to set 4, B, B„,etc., equal to zero). Although this is not
the complete answer, as one may guess, such "short"
gauge-fixed action contains all the information necessary
for the tree amplitude calculations. Nevertheless, it is in-
structive to see the whole structure. In fact,

I
A &

=
I
A &;„~+ I

A & sh, where, to the second level,

I
A &sh= ib

~ Ip &p(p)+—b 2lp &5(p) ia",b, Ip
—

&p~

ic —2 lp &p+~" &c —,Ip &r„

Here, in line with our conventions, the coefficient func-
tions corresponding to the ghost numbers g =0 and 2 are
Grassinann odd. One sees that the g =0 fields (ghosts)
are of the form AO where 0 is a Grassmann number and
A is a gauge parameter field. Ghost number 2 fields cor-
respond to the antighosts. The kinetic part of the action
becomes
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2 '2 2
Amoco

Lo 1 A = 4 p+1 1 1 Q
2 2 I 2 2

N+ — A —p+ — +1 A — S —p+ — +2 S1 1 Q 1 Q
2 I " 2 2 2 2

2 '2 2
1 1+— H —p+—
4 I " 2 2

+2 H + 6 —p+ — +2 6 —l —p+ — +11 Q . 1 Q
2 2 2 2

i P—„—P+ — +2 y„i—fP —P+ — +2 5—:W„+W20 . (4.1 1)

In the last line we denoted the matter and the ghost con-
tributions, respectively, as 8'» and 8'2o.

Let us proceed to the interactions. Taking into ac-
count the signs convention, one has

V,I a aIa, —1 al

s, l, m

where the vertex functions are given by

V 1 321& Vlls &, Il &21m &3

(4.12)

(4.13)

Inserting the coupling constant g in front of the interac-
tion term, we get the final expression that we have been
looking for:

=1 g alWzF= —QK, ianna, + —g V,i a a&g, ( —)
' . (4.14)

It is important to note that g =n&l fields always couple
to g = 1 in pairs with g =2 —n. This means that they can
enter the amplitude only in the form of the closed ghost
loops. Hence, they do not contribute to the tree ampli-
tudes. This proves that our naive guess of the gauge-fixed
action is indeed correct at the tree level. In the next sec-
tion, we implement these results to get the leading contri-
butions to the four- and five-point tachyon scattering am-
plitudes.

Vale(k2 P ki)DII(P P')Vela, (k4,P', k3) . (5.2)

Here, DII(p, p') is a propagator of an intermediate (off-
shell) state I and the vertices Vcl@(k2,p, k, ) are the cou-
plings of the two on-shell tachyons coupled to an inter-
mediate state I. There are infinitely many intermediate
states which contribute to the amplitude (5.2), so the total
amplitude is the sum over all of them. Instead of calcu-
lating the whole sum (after all, this can be more efficiently
done by the conformal mapping method [26]), we are in-
terested in the pole structure itself. The method is
designed precisely to give that structure. As a check, we
have to compare the residues read off from (5.2) with the
ones calculated from the total amplitude [24]. We
confine ourselves to the first three poles. In that case the
propagators are

1

—,
' (p + Q /2)', &(P 1+P2+Q»

QPv(, )=AA P 1 &P2 1( +g/2)2+ 1
Pl P2 Q5( + +Q),

2

QPv
DGG(P 1~P2 ) 2 5(P, +P2+ Q), (5.3)

2 —,'(p +Q/2)'+2

V. THE CALCULATION
OF THE OPEN STRING AMPLITUDES IN d =2

Now we can proceed to the calculation of the lowest
order contributions to the tachyon four- and five-point
on-shell bulk amplitudes. An advantage of the com-
ponent perturbation theory is its straightforwardness.
The calculations of the correlation functions are very
similar to those of the ordinary cubic scalar field theory.
Let us consider four-point calculations in more detail. In
that case, apart from an overall multiplicative numerical
factor (which we will be often sloppy about), one has, to
leading order,

g (@(ki )
. Q(k4)V ikgkaiG, V„„„~„g,a„(—)

'

(5.1)

Dss(Pi P2)=—

Omitting the common factor of

(4/33/3)'1'+ ' 5(k +k +p+Q)
the vertices V+I+ are

V~qq, (k„P,k2)=1

qV, „(ckP, k)2=N', 0(k12 —k", ),
VqG~(k„P, k2) =2N20(P~+ —,'Q") —

—,'Q",

5(P, +P2+ ),
—,'(p+Q/2) +2

QPKQA. V + /PA. QKV

D (, )=— 5( + +Q) .HH Pl P2 4 1( +g/2)2+2 1 2 Q
2

(5.4)

Using the Wick's theorem, chopping the external ta-
chyonic legs, and concentrating on one particular contri-
bution corresponding to the s channel (other contribu-
tions are related to this one by the label permutations)
one gets

VC&HC&(k1 &P&k2) 11~ +(N10 ) (k2 kl ) (k2 kl )

Vase(ki P k2)= l+ —,'Nii .

Plugging (5.3) and (5.4) into (5.2) and integrating out the
5 functions, one gets
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(k1 +k2+Q/2} /2

g (4) ~
27

—,', (k, —k2)(k3 —k4)

—,'(k, +k2+Q/2) —,'(k, +k2+Q/2) +1

—,', (k, +k2) ~ (k, +k2+Q)+ —'[(k, —k2)(k3 —k4)]

—,'(k, +k2+Q/2) +2
—'"——"[(k —k2) +(k3 —k4) ]

'
4

729 729

—,'(k1+k~+Q/2) +2
(5.5)

~+++—
m3

—,', (mz —m, )

m3+1

2

m3+2

+ ~ ~ ~ (5.6)

We see that, indeed, four-point amplitudes exhibit poles
for the discrete values of the individual momenta only.
Calculating the residues [here we use the kinematic rela-
tions (5.14) for n =3, m = 1] one finally obtains

Written in the form (5.5) the amplitude seems to have
multiparticle poles (poles in more than one variable).
This is not, however, the case. The reason for this is the
5 function in (5.5). In fact, upon introducing the "mass-
like" variables m, = —

—,'k;, and, for definiteness, choosing
the kinematic region to be (+ + + —), (5.3) becomes

m2
~g +—

1 —m )m21

+ ~ ~ ~

m3+2
(5.7)

mon factors of (4/3&3 )
X, =1

+k+Q)]:
Voce(P1 k Pz) =1
V@4&A (P 1 k P2 ) +10(P1 (5.8)

VA@ A (p „k,p2 ) =N I, 5" + (X',0 ) (k —
p2 )"(p, —k)

In the kinematic region (4.1) the amplitude reads

Five particle amplitudes can be calculated in the similar
fashion. They are proportional to

g ~ g V&rq, (kz,p, k1)Drr(P1~P1) Vied(p l, k»pz)
X Dr&(P 2 ~p 2 ) Vera ( ks&p 2 « k4) .

Thus, to calculate five-point amplitudes, one also needs to
know the couplings of an on-shell tachyon to two inter-
mediate off-shell particles, Vr~z [we again omit the com-

(1r;+Q&21 &&1~
& X,'=1P;

1 —(m)+m~) 2m4
16 16

++++— 27

1 3(m3 —m, —mz)+1 —m4 2(m2 —m, )

1 —(m, +m2) 2m4
' [1—(m, +mz)](2m4+1) 2m4[2 —(m, +mz)]

m —m

(2m +1)[2—(m, +m )]
(5.9)

Note that the kinematic constraints (5.14) in this case are
not powerful enough to eliminate the two-particle poles,
as was the case for the four-point amplitude. It is easy to
see that it is a generic trait, for all N =n +m ~ 5.
Another interesting property of the amplitude (5.9) is the
presence of the fake poles in it. The point is that apart
from the poles which we expect, there are also, on the
first sight, poles for the half integer values of m4. As one
can easily check, however, their residues vanish. This fol-
lows from the kinematics as well as from the properties of
the Neumann functions. As an example let us state that
%11—4(%10) =0 so that the fourth-term in (5.9) van-
ishes even before taking the residue. The second pole,

3~++++—
1 1

1 —(m, +mz) m4

1 m2 m)+- + 0 0 ~

2 m4[2 —(m, +m2)]

(5.10)

however, vanishes only after the residue is taken. One
can check that generically, both types of cancellations ap-
pear for the higher intermediate states. After taking the
residues, one gets
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k+ =(k, —Q/2+k) . (5.1 1)

Let us now brieAy summarize the relevant results of
Bershadsky and Kutasov [24]. One denotes a tachyon
on-shell vertex operator as Tk

—', Tk '=—f sd ge
where

The plus and minus signs in (5.11) correspond to the
di6'erent chiralities. Correlation functions for the finite
boundary and bulk cosmological constant are not known.
The bulk amplitudes, which satisfy the condition
g+ i kt'+Q"=0, can be calculated explicitly, however.
Namely, one finds that, in that case,

A,„,„(k„.. . , k~)= ~ f d(~ ) f . . f dg, (T„(0}T„(1)T„(g,) . Tk (g~, )Tk (~)) . (5.12)

Upon performing the integrations (5.12) one sees that the
result depends on the kinematics of the tachyons. The
only, in principle, nonvanishing amplitudes are of the
type

g(n, m) —(T(+). . . T(+)T(—
) . . . T( —

) )
1 n n+1 n+rn

n+m

XF (k+„.. . , k+ ),
where m's satisfy the kinematic constraints

(5.13)

m, =2—m,
i=1

n+m
m;=2 n, —

i =n+1
(5.14)

and the form factors F„are

n —1 l

F„=Q sin~g m;
1=1 i=1

(5.15)

To be able to compare (5.13) with (5.7), let us state the ex-
plicit form of A ' '":

1 1 1

i I (1—m, ) sinvrm i sinir(m i + m2 )

1 (m, )I (m3)
I (1—mz)

(5.16)

(1—m, ) =(m2 —m, )/2

(here we have used m, +mz=2). The next pole has the
residue —,'(1—mz)(2 —mz), which can be rewritten as
(1 —m im2/2). One sees that the residues exactly match
the ones in (5.7). It is indeed amusing to see how the
messy coefficients in (5.5) all end up giving the simple
(and correct) final answer (5.7). Of course, such a good
agreement is not a coincidence, since the full answer, for
the four-point amplitude, was obtained in the second-
quantized framework using a different method [26]. Nev-
ertheless, it is also instructive to check the agreement for

The poles in m3 originate from the I (m3). Residue in
m3=0 is equal to 1. The residue in m3= —1 is

the five-point functions.
The five-point amplitude A ' ' "is

(4 i) + 1 1 1 1

i I (1—m;) sinvrmi sinvr(m) +mz) sinirm4

(5.17)

Once again, one can see that the five-point amplitudes ex-
hibit multiparticle, along with the single particle
(discrete), poles. The inspection shows that (5.17) has the
poles in two independent sets of variables, e.g. , m4 and
m) +mz, for the negative (positive) integer values, re-
spectively. Taking the corresponding residues in (5.17) it
is easy to confirm that they give exactly the same pole
structure as (5.10). This, together with the cancellation
of the fake poles in (5.10) clearly indicates that the results
obtained from the perturbation field theory agree with
the first-quantized ones.

To conclude, let us outline the relationship between the
method used in the calculations of the correlation func-
tions in this paper and the one used in Ref. [26]. Basical-
ly, the conformal mapping method developed in Ref.
[15], and used for 2D strings in Ref. [26] calculates the
amplitude by transforming the field theoretic answer for
the four-point on-shell amplitude into an integral which
exactly matches the first-quantized expression. In that
sense, it is by construction clear that it reproduces the
first-quantized results in a, therefore, somewhat trivial
fashion. On the other hand, the field theory written in
components does not give, as we have seen, closed expres-
sions for the amplitudes. To get them, one would have to
sum over the perturbation series. What the method does
provide for, however, is the manifest pole structure of the
amplitudes. Origin of poles as coming from the higher
string modes becomes transparent. It is a nontrivial
check of the formalism that the residues exactly match
ones obtained from Ref. [24].

VI. CONCLUDING REMARKS

There are several open questions and directions of pos-
sible future investigations. Let us mention three of them
here. First, the natural question arises about the destiny
of the discrete states upon including the interactions (on
the classical and the quantum levels). Second is the im-
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portant question of constructing the effective tachyonic
action starting from Witten's SFT for the open strings
and, possibly, connecting it to the collective field theory.
Finally, there is the important problem of how (if at all)
the cosmological constant can "arise" from the SFT.
These are just some of many interesting questions one can
ask. We hope, and this was the principal aim of this
work, that we have established here the firm ground for
these, and other, future investigations.
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