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Two-vierbein formalism for string-inspired axionic gravity
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Using independent left and right vierbeins to describe a graviton plus axion as suggested by string
mechanics, O(d, d) duality is realized linearly.

PACS number(s): 11.17.+y, 04.50.+h

I. INTRODUCTION

If the massless fields of the closed string are chosen to
be independent of d of the D spacetime coordinates (as in
dimensional reduction), the string mechanics action in
this background has a global O(d, d, Z) invariance [1—6].
This group is realized nonlinearly on the metric and ax-
ion field (two-form); in particular, the nontrivial element
of the "diagonal" O(1, 1,Z) subgroup replaces the metric
+ two-form for the d-dimensional subspace with the in-
verse ("8~1/R duality" ). This has sometimes been in-
terpreted as illustrating the relationship between the
long- and short-distance behavior of string theory; how-
ever, the fact that it is also a symmetry of the long-
distance limit of closed string theory (a'~0) [2] demon-
strates that it is not only unrelated to short-distance
behavior, but also not unique to string theory. It is there-
fore useful to better understand this symmetry as a sym-
metry of massless fields to directly construct "string-
inspired" theories.

The string mechanics action in background metric and
axion fields can be written as

S= f(a+X )(a X")e „(X), e „=g „+b „,
where 8+ are the usual lightlike derivatives with respect
to the world-sheet coordinates (partial derivatives in the
conformal gauge, or dressed up with world-sheet
zweibeins more generally), which pick out the left- and
right-handed modes of X. Normally the metric formula-
tion of gravity can be simplified (especially in the pres-
ence of spinors) by factoring the metric as the square of
the vierbein; however, the fact that g and b appear here
only in the combination e suggests that all of e should be
factored:

e „=e,e„' -'S= f (e,8+X )(e„'8 X") .

Thus e, is the "left-handed" vierbein while e ' is the
"right-handed'* one. Here e, and e ' are unrelated; the
a indices are not to be regarded as flat indices, and there
is no flat-space metric g,& to raise and lower them. As a
result, the local invariance on these indices is GL(D)
rather than SO(D —1, 1):

e ~(A e +X)(Ce+2) )

A 0
0 1

0
0 0

C 0
0 0

0
0 0

where each vector has been divided into its d-dimensional
and (D —d)-dimensional parts, respectively, and

0 1
OgO

is an element of O(d, d). This resembles the nonlinear
transformations in O(n) nonlinear cr models, where the
fields are represented as ratios of fields that transform
linearly. In this case, e „ is the ratio of e, to e, , where
e, is the inverse of e ' (and e™the inverse of e, ). We
thus consider e, and e, as the basic fields, rather than
e, and e '. The result is that the following objects
transform linearly under O(d, d), as the fundamental (vec-
tor) representation ( V~OV):

ema P

for arbitrary A.
This new set of fields can be used to describe any

theory of gravity coupled to the axion, since the original
fields can always be separated out as the symmetric and
antisymmetric parts of e „, but the usefulness of the
two-vierbein formalism is expected only for string
theories, or theories with some of the properties of string
theory [such as ten-dimensional (10D) supergravity].
One property of string theory which survives the low-
energy limit is O(d, d) duality. In this limit the restric-
tion of the group elements to be integral can be dropped.
The O(d, d) transformations are represented on e „by
fractional linear transformations [6]; in matrix notation,

m
a

Xm
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where m is the restriction of I to run over just the d
trivial dimensions. (In particular, the transformation
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0 1

1 0

just switches the two halves. ) For the other values of m,
all these objects are invariant under O(d, d). We have in-
cluded X' =BX/Bo. and P =6/6X for the discussion
below of these transformations for string mechanics
within the Hamiltonian framework [3], where duality in-
variance is manifest, in contrast with the usual Lagrang-
ian framework, which has half as many string variables.
[The O(d, d) transformations are canonical, preserving
the commutation relations of P and X'. ]

The symmetry b ~ b(o —~ cr—) means we should be
able to work equally well with e instead of e. In fact,—e transforms under the same fractional linear trans-
formation as e:

( —e )'=[A( —e )+%][C(—e )+2)]
follows upon using 0 go =g to relate A, X,C,Xl. The
fundamental O(d, d) representations would then be

—e ' P
am ' X~m

The resulting duality transformations for the vierbeins
are related to the earlier choice by a field-dependent
GL(D) transformation; the combination of duality and
GL(D) transformations on the new choice of fundamen-
tal O(d, d) representations gives the same transformation
as just duality on the old choice if we pick A as

b —(e ~ m+e m~ )(~S ebP pVe-
ma 8 a &m p p

Pnm +e m~n )(Q e bP" ~ Pe b)
ma a m Ap 8 p

From now on we will mostly stick with the former
choice, occasionally stating results for the latter choice
for comparison.

This is similar to an idea of Maharana and Schwarz
[7]: They gauged just GL(d). In their interpretation,
fixing the dependence on d of the coordinates to be trivial
was just the usual scheme for dimensional reduction, as
commonly used in supergravity [8], resulting in a non-
linear cr model which could be simplified by introducing
a local internal symmetry. (Nonlinear symmetries in di-
mensionally reduced super gravities have long been
known, but only for special D, because of the restrictions
of supersymmetry. ) Thus, their siinplification involved
treating only the scalars differently, after the usual non-
linear field redefinitions used in dimensional reduction of
supergravity. (In supergravity the full global symmetry
of the scalars generally does not appear until after the di-
rnensional reduction, because of replacement of forms
with dual forms, such as two-forms with scalars in
D —d =4.) Here we take a different viewpoint: The
larger local GL(D) symmetry is a symmetry of a grauita
tional theory, and provides a way of unifying the metric
with the axion, in a way similar to some unified theories
proposed by Einstein [9] (who did not have a symmetry
to relate g and b). It is a symmetry of gauge fields, not
just scalars: This symmetry is there even if dimensional
reduction is not performed. Choosing d coordinates to be

II. STRING HAMILTONIAN FORMALISM

In the Hamiltonian approach one works directly with
the Virasoro operators. Not only do they contain all the
information in the string mechanics Lagrangian (the X
equations of motion are irrelevant, since their time devel-
opment is given by one of the Virasoro operators), but
duality transformations are much simpler. The back-
ground field dependence of the Virasoro operators fol-
lows from the above Lagrangian [3]:

L+= —,'g "II+ Il+„, II+ =P +( g „b„)X'". —

(Use of string "covariant derivatives" II with background
b has also been discussed in [11]for the generalization to
Green-Schwarz strings. ) General coordinate and axionic
gauge transformations of the background fields are gen-
erated respectively by the two independent transforma-
tions

b, = Jdo. [A, (X)P +A, (X)X™]

acting on the Virasoro operators (either as commutators
or exponential for finite unitary transformations). The
Virasoro operators can be expressed in a form which is
manifestly duality invariant; in matrix notation,

0 6"
L~= —,'Z „(M+i))rIZ,

n

Z=
P

[Z(cr ),Z(~)] =i5'(r cr )g, —

mn ~mpg qn ~mpg
=M =gMmn—g pb„

A gZ, A=
gm

trivial is then not interpreted as dimensional reduction,
since those coordinates can still be finite, but as looking
at particular types of solutions of the gravitational field
theory (such as cosmological). Thus, we introduce the
two-vierbein formalism for the complete fields even if no
restriction on the coordinates is imposed, rather than for
just the scalars after dimensional reduction. This addi-
tional local invariance of the two-vierbein formalism may
simplify the nonlinear field redefinitions of dimensional
reduction (by choice of a triangular GL gauge for both
vierbeins), just as the use of a single vierbein avoids con-
sidering the redefinitions of the metric (since it is quadra-
tic in the unredefined vierbein) but not of b

These methods should also apply to supergravity
theories resulting from the low-energy limit of super-
strings. An enlarged vierbein was also suggested by Duff
[4], but this vierbein was nonlinear, representing the
fields of the nonlinear o model O(d, d)/O(d)O(d), and
does not generalize in an obvious way to all D coordi-
nates and to the gauge fields. The idea of local syrn-
metries for scalars being introduced before dimensional
reduction was also used by de Wit and Nicolai for
eleven-dimensional supergravity by making Lorentz in-
variance nonmanifest [10].
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When the external fields are independent of d coordinates
[so the O(d, d) transformations act only on their indices
and not their arguments], we then have invariance under

not just L+, transforms as 5IId —[b„II,]: They can be
written in duality covariant form as

6E. =W"a E. +E."a, ~„, ,

Z'=8Z, M'=GMG, Ggg

where 8 acts on just the d trivial coordinates:
a

~M 0
' 6gab + ~Mgab

in the notation used earlier. [M is usually used only for
the scalar fields in the d trivial dimensions, but this larger
M gives a convenient method for expressing the O(d, d)
transformations of all the fields without fractional hnear
transformations, and generalizes more easily to the
heterotic case.]

Since M is both symmetric and an element of O(D, D),
it can be written as [4]

r

mn 0
M = VgV, VgV =g, 0 'Qmn

in terms of another element V of O(D, D). These two re-
lations are covariant under the transformations

V'=OVH, HgH =1, HgH

Thus, H gives an O(D —1, 1)O(D —1, 1) gauge invari-
ance, making V an element of the coset space
O(D, D) /O(D —1, 1)sO(D —1, 1). Then the two
O(D —1, 1) vectors which are linear combinations of
V gZ [one vector for each of the two local O(D —1, 1)'s]
are the two "chiral" mornenta of the string, whose
squares ( =2L+ ) separately vanish. By choosing a
nonorthonormal basis, and noting that g+g [appearing
in M+g= V(g+g)V ] has D nonzero eigenvalues, M
can be expressed in the form [7]

where M, X are O(D, D) indices, raised and lowered with
the O(D, D) metric pe, implicit in the matrix notation
used earlier. These gauge transformations generate a lo-
cal O(D, D) transformation with infinitesimal parameter
B(~A~), as expected from the fact that the O(D, D) ele-
ment M is itself a representation of the gauge transforma-
tions. The separate vierbeins then transform as

5e, =(A,"B„e,+e„,B A,")+e,"8( A, „),
5e, = (A,"B„e, —e, "B„A, )

in addition to the GL(D) transformations described
above.

Because of b ~—b symmetry, we could also make the
choice of opposite string chirality for expressing duality
transformations:

M=Eag bE +g ga = —jE' gE E
—e

earn

& e(arne b) —e arne bng ~g ab L ~ gaTg IIb
2 m mn ab

L+ =L +Z+gZ,

The form of E follows [up to a GL(D) transformation]
from the fact that the consistency of these two forms of
M requires E' gEb =0.

where g' is the inverse of g,b and E, is a set of O(D, D)
vectors which can be identified with our two vierbeins:

ema
m m n

m gab 2 (a mb) a b gmn
ea

and M is invariant under the local GL(D) transforma-
tions introduced earlier:

+g ab+b L =L+ —Z +gZ,

II, =E ~gZ =e, P +e,L' =e, II+

where II also is duality invariant. The gauge transforma-
tion laws for the fields follow from requiring that II, and

Thus, the two-vierbein formalism also follows from solv-
ing the constraints on M in terms of unconstrained ob-
jects (rather than elements of a group or coset space).

Using the original expressions for g n and 6 „ in terms
of the two vierbeins (or the expression of M in terms of
them), the Virasoro operators can be written as

III. GL(D) IN ORDINARY GRAVITY

Now that we have seen how duality (and gauge invari-
ance) is manifest in the two-vierbein formalism for the
background fields in string theory, we consider duality in
field theory in general. Since we are considering a (gravi-
tational) gauge theory, this analysis is simplified by the
construction of covariant derivatives.

One way to define covariant derivatives is by slightly
reinterpreting the approach of Cartan, who used the usu-
al single vierbein but in a curved tangent space [12]. A
convenient way to write his formalism (which he stated in
the language of forms) in terms of covariant derivatives is
to gauge GL(D) as above, while requiring that an in-
dependent tangent-space metric be covariantly constant:

a b
agbc agbc +~a(bc) ~ gmn m m gab

[V„Vb ]= Tab'V, +Rab, Gd', [ea eb ] e b ec

ab ab [ab]

where G, are the generators of the local GL(D) transfor-
mations and act on a indices. (Thus, V, Vb



S456 W. SIEGEL 47

=e, Vb+~ab'V„etc. We freely raise and lower tangent-
space indices with the tangent-space metric. ) The in-
dependent gravitational fields are the vierbein e and the
tangent-space metric g. The GL(D) connection co is
determined by Vg =0 and the constraint that the torsion
T be a specified function of "matter" fields (or vanishing
in the absence of matter):

—1 1
~abc 2 ( bca Ca [bc] ) 2 ( ecgab (agb)c )

~abc ~abc ~abc

These covariant derivatives transform in the Yang-
Mills way under general coordinate and local GL(D)
transformations:

Va Vae ~ + ~ ~ +~a Gb ~ gab gab

(We could introduce a Christoffel term I „i'G " and
determine it by the extra condition V, eb =0, but this

condition is not covariant in this Yang-Mills sense, and
would require a A. "6„ term in K with 1, " dependent
on A. .) In the GL(D) gauge g,b =rj,b, the tangent-space
gauge invariance is reduced to SO(D —1, 1), and the usu-
al vierbein-formalism covariant derivatives are obtained.
[So g,b is like a Higgs field which spontaneously breaks
GL(D) —+SO(D —1, 1). ] On the other hand, in the
GL(D) gauge e, =5, , g, b becomes the usual metric and
cu becomes the usual Christo6'el symbols, and we obtain
the usual metric formalism. This new interpretation of
Cartan's formalism (in terms of covariant derivatives
with a tangent-space gauge group) requires the use of
GL(D) as the gauge group of the covariant derivatives,
since the usual SO(D —1, 1) Lorentz gauge group does
not allow for a tangent-space connection which is asym-
metric in its indices.

The curvature, and in particular the curvature scalar
8 —=A,b', of any such covariant derivative V can be ex-
pressed in terms of the corresponding torsion-free covari-
ant derivative V ( T —=0) by comparing [V,V] with [V,V]:

V, =V, +b,,b'G, (b,, (b,)=0) C —Q C

ab [ab]

d=' d d e d ]
Rabc Rabc +V [a ~b]c +~[a(c ~(b]e abc z( +a [bc] bca )

—R =R —2V'T —( T" ) +—'( T ) 'T'"'T——
ah ab 4 abc bca

We also have the usual identities

V', J'= 8 (&—gJ ), c,b
= —eB (e 'e, ),1

where g = det g „(not det g,b ) and e = det e,

IV. AXIONIC GRAVITY

This interpretation of Cartan's approach lends itself directly to the two-vierbein formalism: We choose e, to be
Cartan s vierbein and g, b as the tangent-space metric, which has now become a composite field in terms of the vierbein
e, and the "matter" field e, .

The field theory action for the low-energy limit of the closed, oriented, bosonic string can be written as [13,14]

S= jd x& gl. , L =P (R——
,', g "g~~g"'H „„—H„,)+4g "(3 P)(&„P),

where we have absorbed the gravitational coupling into the metric, as can be done for any gravitational theory. (It then
appears only through the metric s vacuum value, just as the second string coupling, which appears for the massive
states, can be absorbed by the dilaton as its vacuum value. ) We could make the usual rescaling g „—+P ~( 'g „ to
rewrite the action in the form in which it appears in the bosonic sector of 10D supergravity:

but then duality transformations become more complicated (although the P kinetic term now has the right sign for uni-
tarity). We now consider O(d, d) duality invariance of the (unscaled) low-energy action [2,5,7].

In addition to g,b, e, is duality invariant when operating on a field (with trivial dependence on x ). There is then the
corresponding duality invariant 1 e, —=8 e, . We will also find useful the duality invariants f,b, and f,b,d..

T (bc) bcf.bc= zFc '9ea+b fa(bc) eagbc& fa eag

fabcd = z(ea b ) 7(ected ) f(ab][cd] ( ab f(cd]e + cd f [ab]e ) ab cde

e~
e[afb]cd cab J ecd f[a(d b]c

This gives a useful expression for the axion field strength:
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mnp Y ~[m enp] 2 ~[m ~np] abc 2
C [abc] f[abc]

Although general coordinate and two-form gauge invariances A, and A, are not manifest in these duality invariant
objects, GL(D) covariance can easily be made manifest. We first note that the GL transformation law for f,b, allows it
to be interpreted as a GL connection:

5f,b'=e, Ab'+usual Af terms= co,b.'= f,b—', ,'E, —r)V,Eb =0 .

Then the previous duality invariants are replaced with the following GL(D) covariant object:

Fab,d
= ,'(V—.E—b )rl(VcEd ) = ,'(e—aE—b )r)(M r))r—l(e, Ed ) =f.b,d fab'f—,d, F(—.b](,d]

= (&ab'—f(.b]—')(&cde f(,d],
—) .

The M version of F (similar to the string mechanics expression for L ) is GL covariant because (M r))gE—=0 kills the
noncovariant pieces of the transformation. Using the e(,fb],d identity, we also have

Rabcd F[aldlb]c
——R =F

fa

[The identity [7] F„b =
—, tr(e, M)(ebM ) also is useful for special gauges considered in dimensional reduction. ] Final-

ly, we have the GL(D) covariantized version of 1 e, :

1 V, =cj e, fb, , V,—J'=c) J —(1 V', )J'.
To express the action in terms of these duality invariant and GL(D) covariant objects, we first use the identities of the

previous section to relate the curvature scalars:
—1 ~

abc abc & fab]c ~~abc 2 [abc]

eF[ah) f cd] Tab Tcde
I H2 Fa b +F b+2VaT b+(7 b)2 7 b= 1'V e in+ g

Note that T, unlike R„b,d, is not duality invariant unless contracted with a derivative as T,b V', as it appears in [V', V'],
since V' is invariant only when it acts on a field. However, T is invariant in the combination F[ b][,d]. Furthermore, al-
though this covariant derivative is not covariant with respect to general coordinate and b gauge transformations, its co-
variance with respect to duality and GL(D) transformations will prove sufficient to give a simple expression for the ac-
tion. (There is also a covariant derivative with rb, =H,b, implied by string mechanics [2], but it turns out not to be
useful in discussing duality. )

In addition to the fact that the last two, relatively simple terms in R &pH are not duality invariant, the factor of
&—g in the integration measure is also noninvariant; the dilaton compensates for this noninvariance. (In the string
quantum mechanics, it does the same for the functional integration measure for x, which is essentially the same thing,
although in the field theory this occurs already classically. ) For manifest duality and GL invariance, we define
4&=( —g)' P to absorb the measure, since g is not duality invariant. We then apply the identity

4(ue, u 'N) =4(e, @) +8 ( —2N e, e'lnu )+4 [(e, lnu ) +8 (2e, e'lnu )]

for the case u = ( —g )
' . Then we find

[2V'T,b +(T,b") ]+[(e, lnu ) +8 (2e, e'lnu )]=(1.V, ) +() [
—2e, (1 V')]

=(1 V, ) —2(1 V'V, ) .

After an integration by parts, the action can finally be
written in the simple form

S = Jd x {4[V@+—(1'V)@] +@ (F [ b]+F ( b])]

The —,'(1 V) added to V on 4& is related to the fact @ is

the integration measure, and suggests that there should
be a generalization of V' which automatically treats + as
a density of weight —,'. This action closely resembles the
original one: It has a dilaton kinetic term, an R =F'[,"b]
curvature term, and a term —

—,
' T,b, =F' [,b]

=
—,'(V'(, Eb]) analogous to the H term. As in nonlinear

o models, the action can be written in first-order form by
making m in V an independent field [7]. After making

this substitution in the V's appearing in the definition of
F, we find, for the new F,

Fabcd (fabcd fab fcde
—)+ (~ab +fab )(~cde +fcde )

so the extra terms just fix co= f. (There are some add—i-
tional minor modifications if an independent cu is also in-
troduced into the dilaton kinetic term. )

V. HKTERGTIC STRING

In the Hamiltonian formalism, the background formal-
ism for the heterotic string [3] is very similar to that for
the usual closed string, except that the left- and right-
handed variables differ in number. (Here we consider just
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mn 0
0

0 0

P
X(m

(pm ~~m)
V'2

where the new entry for Z represents the chiral bosons.
Now V gZ for the string consists of an O(D —1, 1) vec-
tor and an O(D+n —1, 1) vector (D =10,D+n =26)

the bosonic sector. As usual, for representing duality we
consider trivial dimensional reduction for the extra 16 di-
mensions, so that the gauge vectors are Abelian, or we
consider just a Cartan subgroup of a non-Abelian group
resulting from the usual compactification. ) The relevant
coset space is now O(D, D + n ) /O(D —1, 1 )

O(D +n —1, 1):

0 1 0
M=VIV, VgV =g, g= 1 0 0

0 0 —1

for the left- and right-handed string momenta. By choos-
ing a (nonorthonormal) basis, the solution to these condi-
tions can again be expressed as

~ma

e,

[There is also an opposite chirality solution E, where A
is now a GL(D+n) index. These two choices again cor-
respond to the number of nonvanishing eigenvalues of
g+g, as seen by performing the transformation V ' on
M. For simplicity we will stick to just the GL(D) chirali-
ty given above, but similar expressions exist for the
GL(D + n ) chirality. The resulting local GL(D) or
GL(D + n ) invariance then leaves the appropriate
D (D +n ) components in both cases. ]

The definitions of the usual gauge fields follow from
their gauge transformation laws:

a

6E,br =A B~E,M+E, d[MA~], BM= 0, Abr = A, ==5e, =(A,"B„e,+e„,d A")+e,, "d[ A„] e,."d—A", ,

0 gm

ge m (gag„e m e a() gm)

em gngem

engram

a n a a n

g
mn

g aha m& n g n
& ae ~ b =—'e e a

a b ~ m m a ~ mn 2, [ma n]

(For the other chirality E, g "has a similar expression, but it is not so easily inverted because of the larger range of the
GL indices, so the other expressions are a little more complicated. )

The construction of the action goes as before. The original action [14] now has an additional F term for the Abelian
vectors, and the b field strength is modified because of its altered gauge transformation law:

L =P (R —
,', H ,'g ~g "—~F „"—F—")+4g "(d P)(B„Q),

~mnp p [m ~np]+ 4 ~ [m np] ~ Fmn [m ~n]

The only identity for the duality invariant objects f and Fwhich differs from that for the ordinary closed string is

eg eg ef[ab][cd] (Cab & [cd]e +Ccd f[ab]e ) Cab cde 2~ah cd [ab][cd] ab ~cde 2~ ab cd

s a result, the final expression for the manifestly duality and GL invariant action is the same as before, since the F
term which before contained just the T term now contains also the new gauge vector kinetic term, and H as defined in
terms of c and f already includes the AF term:

S = jd x [4[V'@+—,'(1 V)4] +N (F'[, b]+F'"[,b])]

This form is therefore simpler than the usual form, since duality has automatically included all dependence on the
gauge vectors without the addition of any new terms.
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