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Entropy and action of dilaton black holes
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We present a detailed calculation of the entropy and action of U(l) dilaton black holes and show
that both quantities coincide with one quarter of the area of the event horizon. Our methods of
calculation make it possible to find an explanation of the rule S = A/4 for all static, spherically
symmetric four-dimensional black holes studied so far. We show that the only contribution to the
entropy comes from the extrinsic curvature term at the horizon, which gives S = A/4 independently
of the charge(s) of the black hole, presence of scalar fields, etc. Previously, this result did not have
a general explanation, but was established on a case-by-case basis. The on-shell Lagrangian for
maximally supersymmetric extreme dilaton black holes is also calculated and shown to vanish, in
agreement with the result obtained by taking the limit of the expression obtained for black holes
with regular horizon. The physical meaning of the entropy is discussed in relation to the issue of
splitting of extreme black holes.

PACS number(s): 04.60.+n, 04.65.+e, 11.17.+y, 97.60.Lf

I. INTRODUCTION

It has been known for some time that the area of the
event horizon of a black hole behaves like the entropy
of a thermodynamic system [1,2]. After Hawking found
that the temperature T of the black-hole thermal radia-
tion was related to the surface gravity e as T = 2", it
became clear that the analogy could be made more pre-
cise by identifying the entropy with one quarter of the
area of the horizon. However, the physical origin of this
identification was obscure.

Gibbons and Hawking gave more support to this iden-
tification, by performing a direct calculation of the parti-
tion function in the saddle-point approximation, obtain-
ing the same result for the black holes known at that
time (the Kerr-Newmann family) [3]. A more recent cal-
culation for rotating black holes may be found in [4].
The result is to be interpreted as the intrinsic entropy
of the gravitational field, even in the absence of ther-
mal gravitons. The thermodynamics of two-dimensional
black holes was studied recently in [5].

However, a general proof of the relation S = A/4
was absent. Each time when a new class of black holes
was discussed, it was necessary to perform rather com-
plicated calculations anew, and, surprisingly enough, all
results obtained so far always supported the simple rule
S = A/4. In particular, in one of our previous papers
we presented the results of our calculation of the action
and entropy for the recently discovered family of stringy
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dilaton black holes [6]. We again found that the entropy
is given by one quarter of the area of the event horizon
[7]. The purpose of this paper is twofold. First of all, we
present all the explicit calculations for the stringy dila-
ton black holes, making a careful distinction between the
entropy and the action. On the other hand, we are giv-
ing a general explanation of the rule S = A/4, which is
applicable to all static, spherically symmetric black holes
studied so far. We will use the conventions given in Ref.
P].

In Sec. II we calculate the entropy of a general static
spherically symmetric black holes. We generalize Hawk-
ing's treatment of Schwarzschild black hole [8] and see
that there is no need to calculate the action to get the
entropy. In fact, one has to calculate only the contri-
bution of the surface term (the integral of the extrinsic
curvature K) on the horizon. All the gauge terms are
shown to drop out. We then calculate this term for gen-
eral static spherically symmetric black holes with regular
horizon, and find that it always gives us one quarter of
the area of the horizon.

In Sec. III we calculate the Euclidean action for U(1)2
dilaton black holes. First we show that the on-shell
bosonic action of dimensionally reduced string theory is
a total derivative. Even though the gauge terms do con-
tribute and the extrinsic curvature surface term is cal-
culated at infinity, we get the same result: action equals
entropy.

In Sec. IV we calculate the Lagrangian for the N = 2
supersymmetric black holes directly as the integrand of
the volume integral, keeping all total derivative terms.
This calculation explains, from the point of view of re-
stored O(2) symmetry between the two central charges,
why the entropy of the maximally supersymmetric black
holes vanishes.

The last section contains some discussion of the puzzle
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surrounding the physical meaning of the entropy of ex-
treme dilaton black holes and a possible relation to the
issue of splitting of them.

II. ENTROPY

The starting point in the thermodynamic study of a
statistical system is the calculation of a thermodynamic
function or potential. In the presence of a set of conserved
charges C, and their related potentials p, it is convenient
to work in the grand canonical ensemble, where the fun-
damental object is the grand partition function

and the thermodynamic potential

W =E —TS —p, C, ,

is related to the grand partition function by

faces of Euclidean time 7i and w2 with given boundary
conditions:

To justify this equation one should remember the stan-
dard quantum-mechanical relation lti) = e '~" "&~lt2),
which yields

(t its) =(tile "' "'"lti) . (8)

(t lt ) e
—i(t& —t&)(Ei (9)

Let us assume that the state lti) describes a thermody-
namic system with the mean energy (E) = (ti]H]ti). If
the system is large and the Huetuations of its energy are

(~)'-(~')relatively small, so that ~&~, && 1, then one may
expand Eq. (8) neglecting these fluctuations. This gives

Once Z is known, all thermodynamic properties of the
system can be obtained; for example, the entropy is given
by

S = P(E —p, C, ) + in Z . (4)

Gibbons and Hawking [3] discovered that the Eu-
clidean partition function of quantum gravity, when eval-
uated in the saddle-point approximation expanded about
one of the black-hole metrics known at that time, can be
interpreted as an approximation to the thermal grand
partition function of a system of temperature equal to
the black-hole temperature. In this semiclassical approx-
imation, and from the path integral representation of the
partition function, we have PE= I (10)

Equation (7) is the Euclidean version of (9) with E —=

(&)
The dominant contribution to the path integral corre-

sponding to a black hole comes from the stationary phase
metric, which in this case is the Schwarzschild metric.
Thus to find the energy E we have to calculate the ac-
tion while taking into account the contribution to the
surface term from the horizon as well as that from in-
finity. The reason for needing both surfaces is that, in
the Schwarzschild geometry, the time translation Killing
vector is zero on the horizon, and so the surfaces of
constant r have two boundaries: one at the horizon and
the other at infinity. So we have, for rz —ri = P,

where I~ is the Euclidean on-shell action. An important
observation made in Ref. [3] is that the Euclidean sec-
tions of the complexified metrics studied have only one
boundary, spatial infinity r —+ oo. The reason is that
the region inside the horizon is not present and that the
manifold is regular on the horizon, provided that the Eu-
clidean time r has period P = T i. The extrinsic curva-
ture surface term present in I~ has to be calculated only
at infinity. We stress this fact by using the notation I~,

1nZ = —I (6)

Moreover, it was found that the action of the black-
hole metric was equal to the entropy calculated using
Eq. (4), and both were equal to one quarter of the area
of the event horizon, the value suggested by the first law
of black-hole thermodynamics [2].

The fact that the action coincides with the entropy
was explained by Hawking using scaling arguments in
Ref. [8]. In the same reference he also gave a prescrip-
tion to calculate independently the term PE in the same
approximation for the Schwarzschild case in which there
are no charges involved. To calculate the (mean value of
the) energy one considers the following equation for the
amplitude for imaginary time evolution between two sur-

P(E —p, C, ) = I~ „. (12)

Now, if we substitute Eqs. (6) and (12) into (4) we get

S=I „—I

These two terms are explicitly given by

Again, the notation I „stresses the fact that both
the horizon and the surface at infinity contribute to
the surface term. For the Schwarzschild case E = M,
whgre Af is the mass of the black hole. The condition

~ « 1 is satisfied for large Schwarzschild black

holes with mass M )) M~, since in this case (E)z = M2,

and (E)2 —(E2) = s'.
In the presence of conserved charges, one can consider

constrained imaginary time evolution so that only met-
rics with the prescribed charges are considered in the
path integral. This can be implemented by using La-
grange multipliers p, The generalization of Eqs. (7)
and (10) in our case is

(r lr )
—e

—( ~ —~)(&—~f'c*)
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i coming from the w integration is canceled by the first
K
term in the square brackets by using expression (21) for

the surface gravity, yielding

[K]

(14)
OO 1

( + + ~matter) + [K] 1 A(rh)
Sar h 4

(22)

and finally, substituting Eqs. (14) into (13), we have for
the entropy of a general black hole Thus we have found that the entropy is again one quar-

ter of the area of the event horizon. This result has been
established for the general class of static spherically sym-
metric black holes (in particular, this includes charged
axion-dilaton black holes) with metric given in Eq. (18).

S = — [K]
1

8x (15)

i.e. , simply the extrinsic curuature surface tervn at the
horizon. This is a remarkable fact that emphasizes the
intrinsic gravitational nature of the entropy so calculated.

The next step is to calculate [K] for a sufficiently gen-
eral case. For us it will be the general case of a static,
spherically symmetric asymptotically fiat black hole. Ex-
treme purely electric and magnetic black holes have no
regular horizon and we will treat them in the last section.
Let us start with the definition of K, the trace of the ex-
trinsic curvature of the hypersurface with (spacelike) unit
normal vector n"

III. ACTION
A. The on-shell action for axion-dilaton

black holes is topological

The total (bosonic) action for stringy d = 4 dilaton-
axion black holes is given by the volume integral

g (~grav + ~dil + ~axion + &gauge)

(23)
We will follow the presentation of the gravitational

part of the action as given in [9], but using the notation
of [7]:

(16)
where

Q—g Zs, ——Q—g( —B) + ci„g—g ~",h,„v = g„v+ n„nv (24)
is the induced metric on the hypersurface. The term [K]
in Eq. (15) is the diiference K—Ko, where Ko is obtained
by substituting into K the Bat space metric. An infinite
contribution is subtracted in this way, so that we obtain
finite results for the action. However, were the results
obtained without the subtraction of Ke finite, it would
not be needed.

For a spherically symmetric metric

where the vector w" in the total derivative term in the
gravitational Lagrangian is

P APIP API v
Pp AV

In general, an infinite contribution (as the Ko term of
the previous section) will have to be subtracted from Eq.
(23) in order to obtain finite results.

In the SO(4) version of the action of N = 4, d = 4
supergravity, or dimensionally reduced string theory,d8 = gttdt + grrdr —r dA (1s)

we find that = 20~pcI~Q,
= -'e'&0"aa a,

—2p~n Fn p, v + 2$Gn Gn p, v
PV PV

+ia Ep. *F"P +Gp *G"P

(26)

(»)1 1 Brgtt 2+
v' g'rr 2 gtt

~axion

&gauge
and

for surfaces of constant r. Recalling that the Euclidean
time w is compactified on [0, P], we obtain for the surface
integral calculated with outward-pointing nj'

(28)

where g&, g, a, An&, B„",n = 1, 2, 3, are the metric, dila-
ton, axion, and six vector fields. In order to calculate
the on-shell action we will need the following equations
of motion:

[K]

1 (A(r) I 1 B„gtt 2 gtt
4

~
2 g gg«r —g„„

—R + 20"$0p P + 2 e ~0"aO„a = 0, (29)

(20) 7'„(e ~~F"" —ia*F"" )
where the surface gravity e =

&
is given by

= B„g g(e ~F"" —ia*—F"" ) =0, (30)
r gtt

K =—
2-~—~

—grrgtt
(21) and the corresponding equations for G"~".

If we use Eqs. (29) and (30) in the action (23) we end
up with the following on-shell action, which is a total
derivative:

If the horizon occurs at a finite value of r, which we
denote by rh, , and gtt ——0 = g", we see that the term

ger '
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1
Ion-shell =

16' d x B„(v'—g [w~+A„"(e ~F"" —ia*F"" ) + B"(e+ ~G"""—ia*G"" )]) .

An equivalent form of the on-shell action can be given
in terms of differential forms. The gauge part of the on-
shell action was calculated for Einstein-Maxwell theory
in [10] and found to be an exact difFerential form; we
generalize that procedure here. In addition we will need
the gravitation action as a form. For this purpose one
may start with the gravitational action in terms of tetrad
and spin connection forms

Thus we have shown that the on-shell bosonic part
of the SO(4) supergravity action is an integral over the
exact differential form d:-, where

Tr *w+Ah(e ~*F i aF)+—Bh(e+ ~~G iaG)—16'
(35)

Thus, using Gauss's theorem, we see that

g &grav = e hebh*R —d(e hebh*~' ) .
Ion-shell =

BM

where BM is the boundary of M.

(36)

The on-shell action takes the form

1
Tr d *u+ Ah (e ~*F—iaF)16'

+Bh (e+ ~ * G —iaG)

Tr*~ = (e heh h*~ ) . (34)

where Tr on the vector fields means sum over all vector
fields and

B. Gibbons-Hawking-type calculation of
the Euclidean action

To perform the explicit calculation of the Euclidean
action for the U(1)2 black holes described in Ref. [7] we
only have to evaluate Eq. (31). However, since in general
the answer would be infinite, we have to subtract the Kp
term described in the first section [3]. For convenience
we switch from u to K; the quantity to be evaluated is

I = I~(gauge) + I ([K]) = d x 0„[kg [A„(e 2~F" ) + B (e+ ~G" )]]+ d xvh(K —Kp),

(37)

where the coordinates x", the metric g„, etc. , are now
Euclidean objects and the superscript oo means again
that the only boundary of these spacetimes is at r —+ oo.
The reason is the same as in the Schwarzschild case and
was explained in the first section.

We start by calculating the extrinsic curvature term.
The dilaton black-hole metric is given by [7]

so that

and

T[(T —T+)(T —T )] ~ (T —M)R 1K=
2

+-
B2 T(T —T+) (T —T ) R

(43)

ds =e dt —e dT —R dA

,2U (T —T+)(T —T-)
R2 )

Q2 2 g2

(38)

(39)

(40)

1

8m

r
ds2:(K —Kp)

Vr T(T —T+) (T —T )
K R2

r~ ——M +rp .

For the metric (38) the radius of the local two-sphere is
B, rather than r. The metric may be rearranged as

—2 [(T —T+ ) (T —T )] & (44)

2 2Udt2 —2U
~

dR2 R2dg2
qdR)

(42)
There is no axion, and we have only one I"' and one t field.
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Evaluating the limit of this expression at r ~ oo we
get I~(gauge) = lim

r —+oo

I (K) =+—M.

We now proceed to the evaluation of Is(gauge) . The
gauge and dilaton fields are given by

gr+ Z r++ Zp

dr dA
X

2 4m
(50)

Qe&oF= dthdr,r —Z 2

Pe-&og= dt R, dr,
(r + Z)'

Qe&oA= dt,

Pe-@o „(r+ Z)
(47)

2~ r+Z
e =e

r —E
(48)

A„(r) = A„(r) —A„(rh) .

The gauge integrals become

(49)

There is a subtlety involved in evaluation of the surface
integral of the gauge terms. Gibbons and Hawking argue
in their treatment of the Reissner-Nordstrom black hole
that, since the gauge potentials are singular on the event
horizon rI, = r+ (due to the vanishing of gqq), one must
make a gauge transformation to render them zero there,

In fact, we have found that the prescription (49) may
be thought of in another way, which ends up producing
the same result.

If we do perform the gauge transformation (49), it is
clear that there is no contribution from the horizon to
Is (gauge), since the gauge-transformed vector potentials
and therefore the integrand vanish on it. If, on the other
hand, we do not wish to perform such a gauge transfor-
mation, then we must make a careful consideration of
Gauss's theorem. The surface integral has to be calcu-
lated on the boundary of the region in which the poten-
tials are well behaved and defined. In the case at hand,
this boundary includes the horizon, and the integrand no
longer vanishes there. Nevertheless, it turns out that the
functional dependencies of the gauge and dilaton fields
conspire in such a way as to reproduce the previous re-
sult (50). To see this, consider the surface integral for
the F term:

1

8+ BM
do. n„e 2~F~~A~ dtdn a'

r+Z) (r —Z)' (r —Z)

~ drdQ Q2

2 4vr (r —Z) (51)

A similar thing happens for the G term. Looking a.',
Eq. (51) we see that the result for the surface integral is
simply

Q P
I~(g ugae) = ——

( )
+

(
(52)

which coincides with Eq. (50) obtained by doing the
gauge transformation demanded by Gibbons and Hawk-
1ng.

Finally, putting together Eqs. (45) and (52) for the
extrinsic curvature term at infinity and the gauge terms
we get

I = —ro = ~(r+ —Z ) = —A(rg). (55)

IV. ON-SHELL LAGRANCIAN FOR EXTREME
N = 2 BLACK HOLES

For extreme dilaton black holes, this expression re-
duces to

I (extreme) = 2rr~PQ~. (56)

Thus the method of Gibbons and Hawking, generalized
to dilaton black holes, gives the result that the on-shell
action coincides with the entropy and is one quarter of
the area of the event horizon. 2

r+ —Z

Q2

r++ Z (53)
In Sec. III, the generalization of the Gibbons-Hawking

method of the calculation of the Euclidean action for dila-

ro =M +Z —P —Q, (54)

to give

which may be rearranged using the relations

P2 Q2

2M
For &Q = 0, the result of the calculation of the entropy

was given previously in [llj. It agrees (at a = 1) with our
expression (55) taken in the appropriate limit.
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ton black holes was presented. One starts with nonex-
treme black holes characterized by some finite tempera-
ture and surface gravity, and performs the calculation of
the on-shell action in Euclidean signature by compactify-
ing the Euclidean time coordinate. It turns out that one
can express the total action as a surface integral, and
care has to be taken to evaluate the contribution from
the extrinsic curvature only from spatial infinity. As a
final step, the extremal limit can be considered, and the
result is

Z] Z2 (58)

the action vanishes. This was never possible for classical
extreme Reissner-Nordstrom black holes. Indeed those
black holes are solutions of N = 2 supergravity, which
are characterized by a super-Poincare algebra at infinity
with only one central charge

Se&riugy: 4 A: 7l (M Z ) =
2 sr

~
zi —zz ~, (57)

where zq, z2 are the central charges of extreme black
holes defined in [7). This shows that when N = 2 super-
symmetry is restored, which takes place when the central
charges are equal,

1
cia, (g—gg~") —g"" (Op ln g—g) .

v' —g
(61)

v' —g &dii = V' g2cl'—4'~i 0 . (62)

The gauge part of the Lagrangian for the purely magnetic
solution is

2P pv
g&sauge = V g&magn = V ge & Gpv

and for the purely electric

g ~gauge = V g ~electr V g e F +pv

(64)

The total action is given by the volume integral

For our calculations there will be no need to rewrite the
volume integral for the total derivative part in the La-
grangian [second term in Eq. (24)] as a surface integral
(K term). Also we will not transform the gauge part of
the action to a surface integral as we did in the previous
section. It will be sufhcient to keep all terms in a volume
integral in what follows.

The dilaton part of the Lagrangian is

SRN= 4A=m. M = 2~~z ~. (59)
16vrI = 2' V g (~grav + ~dil + ~gauge) (65)

The stringy black holes are solutions of N = 4 super-
gravity, and the restoration of N = 2 supersymmetry is
the restoration of O(2) internal symmetry, which makes
the two central charges equal and the action (entropy)
vanish in agreement with the fact that the area of the
horizon for these solutions in the canonical geometry is
zero.

Since the presence of the dilaton has radically changed
the properties of extreme black holes, it becomes possible
to address the following problem: Could we calculate the
partition function for the extreme dilatonic black hole
directly, avoiding the intermediate step of introducing the
concept of a temperature at all? The answer is positive
for maximally supersymmetric purely magnetic (electric)
extreme black holes, as we will now show.

Our starting point for the calculation of the on-shell
action will be the Lagrangian in

1I=
16m

d4x g—g —R+ 28"$0„$

e ~F" F„„+e ~G~"G„

The maximum number of central charges is Nj2 for even
N.

(6o)

with the additional K term which removes the second
derivatives of the metric from the Lagrangian. The grav-
itational part of the action is given by Eq. (24) and the
vector wl" in the total derivative term in the Lagrangian
is given by Eq. (25). Equation (25) can be also given in
the form

Before using the field equations let us calculate the to-
tal derivative term in the gravitational part of the La-
grangian for the ansatz (66). We find using Eq. (61)
that

B„(g—gee") = —2B,B,U . (67)

The total gravitational part of the Lagrangian becomes

g—g Zs„——g—g (—R) —2 0,ol, U . (68)

At this stage we may start taking the equations of motion
into account. The dilaton for maximally supersymmetric
extreme black holes is related to the metric as

P= kU, (69)

where (—) is for magnetic and (+) for electric solution.
The first equation of motion which will be used to cal-
culate the on-shell Lagrangian is the one which relates
the scalar curvature to the dilaton contribution, see Eq.
(29). It follows that, on-shell,

g—g (Zs, + Zd;l) = —2ci, cl, U . (7P)

To treat the gauge action we have to use another equation
of motion:

g2y 1 2/~2 + 1&2/~2 —
p2 2

For the electric solution with U = P it leads to

V' —gZ, l„&, ——2 ci,ci,$

The maximally supersymmetric purely magnetic (elec-
tric) extreme black holes are described by the metric [7]

$2 e2U &2 e 2Ud~2
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and the total on-shell Lagrangian becomes

v' —g L = —2 0,0,U + 2 0,Oi $ = 0 .

For the magnetic solution with U = —P

v' —g Z,s„———2 0,0,$

and the total on-shell Lagrangian becomes

g—gZ = —20,B,U —20,0,$ = 0 .

(74)

(75)

Thus the Lagrangian and therefore the action vanishes
for PQ = 0 dilaton black holes, in agreement with Eq.
(55). In other words, we get the same result by evaluating
the action directly as we get by taking the PQ = 0 limit
of the expression for black holes with regular horizons.

Note that, in the process of calculation of the on-shell
Lagrangian for maximally supersymmetric extreme dila-
tonic black holes, we never faced the problem of going
to Euclidean signature, choosing a proper gauge for the
vector potentials, and thinking about boundary surfaces
(the horizon versus infinity). All of those problems were
present in a standard treatment and, as explained in the
previous section, can all be solved in quite satisfactory
ways. It is therefore encouraging that an independent
calculation of the action exists, as given above for the ex-
treme purely magnetic (electric) black holes that is con-
sistent with the general formula that the action is one
quarter of the area of the event horizon.

V. DISCUSSIDN

In this paper we have found that the entropy of general
static spherically symmetric black holes with a regular
event horizon is given by evaluating only the extrinsic
curvature term at the horizon and is one quarter of the
area of the event horizon. This generalizes the corre-
sponding result derived for the Schwarzschild black hole
by Hawking in [8].

For charged dilaton black holes we have performed the
calculation both of the action and of the entropy by fol-
lowing Gibbons and Hawking [3]. In calculating the on-
shell bosonic action for the theory in which the dilaton
black hole is embedded, we have seen that it is topo-
logical and thus may be written as a surface integral.
We have found that the entropy coincides with the on-
shell action, in agreement with what one might expect
from scaling arguments as in [8]. Investigation of the ac-
tion versus entropy of axion-dilaton black holes [12] is in
progress.

A remaining puzzle is the physical origin of the en-
tropy of U(l) 2 dilaton black holes. Extreme dilaton black
holes, which could be the stable end points of the evap-
oration process, may be thought of as "ground states".
In the theory we consider, the charges P and Q are cen-
tral charges [in difFerent U(1) groups], and there are no
elementary charged particles to discharge the black hole.
These black holes also have zero temperature and un-
broken N = 1 supersymmetry [7], but the entropy is
nonzero. For these extreme black holes, the entropy is
given by Eq. (56), 8 = 27rIPQI. In [7] we formulated a

supersymmetric nonrenormalization theorem which says
that the result (56) remains intact to higher-order (per-
turbative) corrections in the supersymmetric theory.

In a quantum-mechanical system, entropy at zero tem-
perature usually corresponds to degeneracy of the ground
state. However, for the charged dilaton black holes the
relation between the entropy and the degeneracy of these
configurations is missing: what kind of "internal" degrees
of freedom does the degeneracy correspond to? Since the
degeneracy of a quantum ground state is an integer, 4 one
may then be tempted to speculate that the entropy of ex-
treme black holes is subject to the quantization rule

S = —= 2~IPQI = 1n(n),
A

(76)

(»Q) (»o) +(o Q) (77)

The extreme electric-magnetic black hole has the fol-
lowing relations between parameters:

IPI + IQI IPI —
IQI

(78)

which gives

We thank L. Susskind for discussions on this point.
Splitting of black holes is closely related to the possibility of

splitting of the universe into many baby universes. A partic-
ularly relevant example is splitting of one Robinson-Bertotti
(RB) universe into many RB universes, as discussed by Brill
[10]. For a recent discussion of splitting of dilaton black holes
with massive dilaton fields see [13].

where n is an integer and the area is measured in Planck
units. The size of the horizon is then not arbitrary, but
restricted by the rule (76). Then purely magnetic or
purely electric black holes have n = 1 and are clearly
allowed; they already have zero entropy and area.

Another possibility is to take seriously the fact that the
quantity e ~ is generically not an integer, and that we
do not know about the existence of any internal degrees
of freedom of the extreme electric-magnetic black holes
responsible for the degeneracy of the state. Therefore, a
possible conclusion is that this state is not a ground state
of a quantum-mechanical system, having noninteger e~.
Then we are led to a resolution of the problem: quantum
mechanically the extreme electric-magnetic black holes
have to be unstable under splitting to another configura-
tion of extreme black holes which is a ground state and
does have an integer value n = 1.

The possibility that black holes may quantum mechan-
ically split into other black holes was proposed in [7]. A
specific example appropriate for the issue of the ground
state would be the splitting of the extreme electric-
magnetic black hole into a purely magnetic and a purely
electric one. Such bifurcation is forbidden classically but
could in principle occur in a quantum-mechanical process
and may be enforced by quantum-mechanical instability
of the zero temperature state with noninteger value of
e~. It can be described by
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M +Z —P —Q (79)

The parameters of the daughter black holes are related
to those of the parent as

M™1+M2 Ml —~1— 2'

Z = Zr + Z2, M2 = —Z2 = IQI

2

After splitting the total entropy is equal to zero, and

M12+&1 —P =0, M2+Z2 —Q =0. (81)

These black holes are in an equilibrium with each other,
since the attractive force between them vanishes due to
supersymmetry [7]. Indeed, let us consider Newtonian,
Coulomb, and dilatonic forces. The force between two
distant objects of masses and charges (M1, Q1, P1, Zr)
and (M2, Q2, P2, Z2) is

M1M2 Q1Q2 P1P2 ~1~2
12 —

2 + 2 + 2 2
12 12 12 12

(82)

The dilatonic force is attractive for charges of the same
sign and repulsive for charges of opposite sign. Using the
relations (80) for the masses and dilaton charges in terms
of the magnetic and electric charges P1 = P, P2 = 0,
Q1 = 0, Q2 = Q, we see that F12 vanishes.

Thus, after splitting a possible ground state of the
quantum-mechanical system is reached which could be

a pure state with 8 = 0. The area of the horizon of
both black holes is now zero. Equation (80) describes
the distribution of masses and charges in a particular
example of the general extreme supersymmetric multi-
black-hole solution, given in [7). Will the purely electric
and purely magnetic black holes continue splitting to the
smallest values of charges? Is the value of the entropy
8 = 2rr[PQ[ responsible for the degeneracy properties of
the ground state'? These and many other questions can
be asked in connection with the calculated value of the
entropy of charged dilatonic black holes.
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Another example of a solution rvith zero entropy, is the
supersymmetric domain wall [14]. The authors argue that it
describes a nondegenerate ground state.
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