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Classical and quantum production of cornucopions at energies below 10' Gev
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We argue that the paradoxes associated with infinitely degenerate states, which plague relic particle
scenarios for the end point of black hole evaporation, may be absent when the relics are horned particles.
Most of our arguments are based on simple observations about the classical geometry of extremal dilaton
black holes, but at a crucial point we are forced to speculate about classical solutions to string theory in

which the infinite coupling singularity of the extremal dilaton solution is shielded by a condensate of
massless modes propagating in its infinite horn. We use the nonsingular c=1 solution of (1+1)-
dimensional string theory as a crude model for the properties of the condensate. We also present a brief
discussion of more general relic scenarios based on large relics of low mass.

PACS number(s): 04.60.+n, 11.17.+y, 97.60.Lf

In a previous paper in collaboration with two of our
colleagues [1], we proposed a novel solution to the puz-
zles of Hawking evaporation of black holes. Our work
was based on the seminal paper of Callan, Giddings, Har-
vey, and Strominger (CGHS) [2], which was in turn in-
spired by a number of papers on charged black holes in
dilaton gravity and string theory [3]. The essential new
conceptual idea in all of these papers was the observation
that many of the charged black hole solutions in these
theories had a geometric structure quite different from
that of the Schwarzschild black hole of general relativity.

In a theory involving both a metric and one or more
scalar fields, one is at liberty to make Brans-Dicke trans-
formations [4] in which the metric is Weyl transformed
by some positive function of the scalars. From the point
of view of Lagrangian mechanics this is a point transfor-
mation and no physics can depend upon it' but the
geometry of spacetime can change radically under such
transformations. Consequently, the physics may be more
transparent in one Brans-Dicke (BD) frame rather than
another. In particular, when dealing with effective low-
energy Lagrangians derived from string theory, a natural
BD frame is picked out by choosing the metric along
whose geodesics strings propagate. This is the a.-
model metric used by Garfinkle, Horowitz, and Strom-
minger [3]. With this choice, the spatial geometry out-
side the horizon of a charged black hole is shown in Fig.

1. Typically, there will be a large region (which we call
the horn of the black hole) with the geometry of IXS,
where I is a real interval and S is the round two sphere.
Most of the degrees of freedom of string theory propa-
gate as massive particles in this region, with only a few
massless two-dimensional fields. In particular, the ex-
tremal charged black hole has a completely static metric,
with no horizon, no singularity, and an infinite horn.

It was suggested in the paper of CGHS and explained
in our previous paper [1] that the novel geometry of dila-
ton black holes could provide an intuitive resolution of
most of the puzzles of Hawking evaporation. Although
the black hole appears to an outside observer to be a
rather small object, confined to a bounded region in
space, in reality its horn contains a potentially infinite
volume, which can serve as a repository of information
and conserved quantum numbers. In particular,
Bekenstein's upper bound [6] on the amount of informa-
tion that can be hidden behind the horizon of a black
hole of mass M is evaded by black holes with horny
geometry. Bekenstein's argument relied on the notion
that only particles with Compton wavelength smaller
than the radius of the horizon could "fit in" to the black
hole. But this is untrue for the infinite volume cornu-
copion [1]. Thus we are no longer faced with the dilemma
of having to explain how all the information contained in
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'However, as we pointed out in [5], one must be careful to in-

sist that the transformation be single valued and preserve posi-
tivity of the conforrnal factor. Some recent work in (1+1)-
dimensional gravity ignores these restrictions. We believe that
such transformations change the physics of the original model
in an essential way if they are used as more than a mathematical
trick to obtain exact solutions to the classical equations of
motion. FIG. 1. The static cornucopion geometry at fixed polar angle.
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a large mass black hole is emitted in the process of
Hawking evaporation down to a smaller mass hole.

In the present paper, we wish to present more details of
the arguments which led us to believe that cornucopions
resolve the coherence loss problem of black holes. We
begin with a short discussion of the cornucopion solution
in string theory, arguing that the Gibbons-Maeda-
Garfinkle-Horowitz-Strominger (GMGHS) solution is
singular in this context. We then suggest that results on
c =1 string theory imply that the GMGHS solution is
part of a one-parameter family of solutions, all the other
members of which have a nonzero condensate of massless
fermion pair modes. Since the effective string coupling
for scattering within the horn of the cornucopion is in-
versely proportional to the strength of this condensate,
quantum corrections to the bare dilaton black hole are
large, but the solutions with large condensate can be de-
scribed semiclassically. We take this dilaton black hole
with a large condensate as a paradigm for the cornu-
copion.

In Sec. III we describe the classical formation of near
extremal charged black holes in dilaton gravity coupled
to electromagnetism. We argue that the cornucopion be-
gins life as a finite volume dimple on Aat space time,
whose tip grows without bound. The static cornucopion
solution is the asymptotic limit of this growing solution.
This leads us to the concept of finite volume cornu-
copions, which represent the instantaneous
configurations of the near extremal black hole a finite
time after its formation. These are approximately static
solutions of the equations of motion whose only time
dependence is in the rapidly receding tip. In Sec. IV we
review various scenarios for the end point of black hole
evaporation, concentrating on the difficulties of scenarios
which invoke the existence of relic particles.

The problems with relic particle scenarios are all a
consequence of the infinite number of approximately de-
generate states that must be present if the relics are to
possess the information content of the large black holes
from which they were formed. In the case of cornu-
copions this infinite number of states is associated with
the infinite volume of the horn. We begin Sec. V by ex-
panding on the arguments made in [I] about the difficulty
of bringing cornucopions into thermal equilibrium with

It is crucial to this argument that our theory have modes
which propagate as free particles in the two-dimensional horn
of the cornucopion. Information stored in other modes of the
field can be transferred into these waves by interactions near the
horn of the cornucopion.

Most resummations of the perturbation series in the e =1
model give a finite limit for the S matrix as the tachyon conden-
sate goes to zero [7]. Thus, in the quantum theory the solution
is nonsingular, but it is not amenable to semiclassical investiga-
tion.
4It is likely that extremal charged matter does not collapse

classically, because of magnetostatic repulsion. Our discussion
can be taken as a description of near extremal collapse. The
cornucopion is hypothesized to be the remnant of Hawking eva-
poration of this near extremal object.

an external heat bath. We argue that the combination of
these arguments with those given below, which suggest
small amplitudes for cornucopion pair production, re-
move the problems posed for thermodynamics by an
infinite set of degenerate states. We then study the con-
tribution of finite volume cornucopion configurations to
virtual loops by heuristic semiclassical techniques, and
argue that the amplitude for this virtual process is of or-

—V/goder e where V is the cornucopion volume and go is
related to the value of the dilaton field at infinity in the
usual manner. We argue that the sum over the large but
finite number of states in the cornucopion corrects this by
a factor e' where c is a positive constant independent of
go. Thus, if the coupling is small enough, the sum over
cornucopion volumes and internal states converges and
cornucopions give only small finite corrections to low-
energy scattering processes. We show that this argument
is consistent with crossing symmetry by drawing an anal-
ogy with the scattering and production of solitons in
weakly coupled field theories. Order-one scattering am-
plitudes for elementary particles scattering off solitons
are consistent with exponentially small production cross
sections because the production cross section is related by
crossing to a large momentum transfer scattering ampli-
tude. The particle-soliton scattering amplitude can be
large for small momentum transfers but falls exponential-
ly with the momentum transfer because the soliton form
factor is the Fourier transform of a smooth classical field.
By analogy, we argue that virtual production of pairs of
large volume cornucopia is related by crossing to process-
es in which the cornucopion volume is changed by a large
amount due to scattering from an elementary particle.
These processes are extremely improbable, and there is
no inconsistency with our estimate for the contribution of
cornucopions to virtual loops.

Unfortunately, these semiclassical arguments are not
valid for the model of cornucopions given by the ex-
tremal black hole of four-dimensional Einstein-Maxwell-
dilaton gravity. For this solution, the effective coupling
grows as one proceeds down the horn of the cornucopion,
and one finds a finite production probability by naive
semiclassical estimation. Of course, the semiclassical ap-
proximation breaks down in this case and one must un-
derstand strong coupling physics. We cannot do this at
present for real cornucopions, but some progress can be
made by studying an analogous problem in (1+1)-
dimensional string theory where the strong-coupling
singularity is shielded by a condensate of massless modes.
In that model we argue that the classical Euclidean ac-
tion is indeed of order the volume. However, we must
then inquire whether the effective volume of the system is
truly infinite. This turns out to depend on how one
resums the semiclassical perturbation expansion, and at
the present time there do not exist reliable criteria for de-
ciding which resummation is correct. Thus, although the
case against cornucopia as remnants of black hole eva-
poration is unproven, the resolution of the argument may
depend on strong-coupling physics. We will show that if
one takes the pessimistic point of view that strong-
coupling effects cut off the horn of the cornucopion, then
its residual entropy is of order its mass, in parametric
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agreement with the Bekenstein-Hawking formula.
We end Sec. V with a discussion of the real pair pro-

duction of cornucopia in weak static magnetic fields. It
has been argued, that in the weak field limit, the calcula-
tions of Aflleck and Manton for solitons [8] and/or
Garfinkle and Strominger for Wheeler wormholes [9] in-
dicate that cornucopions will be produced at the same
rate as elementary particles of the same mass in such
background fields. We give a critical discussion of these
arguments, and explain an alternative semiclassical pic-
ture of cornucopion pair production, which makes the
AfBeck-Manton estimate of the amplitude for production
of the cornucopion geometry consistent with finite total
cross sections. We argue that the tunneling process
which gives rise to cornucopion pairs produces cornu-
copions with a size of the order of the characteristic
Schwinger length for production of elementary particles
of the same mass as the cornucopion. These relatively
small cornucopions then grow classically to arbitrarily
large size. In this method of pair production, the exter-
nal field cannot create most of the states of the infinite
cornucopion geometry. It creates only those that can
arise from initial conditions which "fit in" to the original
small volume. As in the inflationary universe, this is a
small subset of the total number of cornucopion states.

In the conclusions we note that cornucopions may be
only one of a number of classes of objects that look like
small black holes from the outside, but conceal a large in-
terior world. We stress that black holes whose singulari-
ty is replaced by an interior de Sitter space (which appear
in the work of Farhi and Guth [10],Frolov, Markov, and
Mukhanov [11],Morgan [12], and Strominger [13]) may
represent a particularly attractive end point for black
hole evaporation.

I. IS THE EXTERNAL DILATION BLACK HOLE
SINGULAR?

4p
2p g2 o+ 2Me '

/x[
(1.2)

Taking geodesic distance as a predictor of physical
evolution is dangerous in theories which involve scalar
fields. One can always perform Brans-Dicke transforma-
tions in which the metric is Weyl transformed by a posi-
tive function of the scalars. This is a point transforma-
tion on the configuration space of fields, and cannot
change the physics. However it does change geodesic dis-
tance, in a way that can be singular if the scalar fields de-
velop singularities. The physics of the model depends on
how all the fields in the theory are coupled not only to
the metric, but also to the dilaton and other scalars.
GHS argued that, since the world sheet Lagrangian of
string theory describes geodesic motion in the stringy
metric, this was the appropriate physical measure of dis-

Garfinkle, Horowitz, and Strominger argued that the
extremal dilaton black hole was nonsingular. The basis
of their argument was that the apparent singularity was
an infinite distance away in the "stringy metric":

ds = —dt +e ~dx

tance in string theory. However, once we begin to calcu-
late scattering amplitudes, the dilaton field begins to play
an important role. In string theory, each vertex operator
carries a factor of the string coupling constant, which be-
comes infinite at the end of the infinite horn of the GHS
solution.

There is as yet no known exact conformal field theory
representation of the extremal dilaton black hole solution
of heterotic string theory. However, if we concentrate on
physics in the horn of the cornucopion we can make a
plausible guess at some of the features of this conformal
field theory. The world sheet Lagrangian describing
scattering within the horn should be the world sheet su-
persymmetric completion of a Lagrangian of the form

X„,=Byway dr'dr —QR' —'y+X„~„,. (1.3)

Here y =lnx, r is the time coordinate, and X„„,de-
scribes a unitarity conformal field theory with a discrete
positive spectrum of conformal dimensions. It represents
the angular degrees of freedom of three-dimensional
space, as well as the six compactified dimensions. We do
not know the right and left central charges of the La-
grangian X„~„„butthey cannot be equal to zero. The
spectrum of the theory then contains potential tachyons,
which (it is to be hoped) are eliminated by the physical
state conditions.

As a consequence of the discrete spectrum of dimen-
sions ofX„„,most of the particles in this theory prop-
agate with large effective masses in the horn. The low-
energy field theoretic description of the system implies
that there are exceptions to this rule, which are related to
charged fermion zero modes around the monopole.
These states were discussed in [14] and [1]. They propa-
gate as massless two-dimensional fermions. The vertex
operators for these states have the form e' +'"'~+' '6,
where 8 is constructed from the degrees of freedom of
the X„„,theory. On-shell vertex operators satisfy
E = —(a+ik —Q/2) +(Q /4)+b —2, where 6 is the
dimension of 6. In order that the states have real ener-
gies we must have a =Q /2, and in order that they be
massless, b, = —Q /4+2.

Inserted into the y path integral, these operators gener-
ically cause divergences in the integral over the zero
mode of y. This is analogous to the divergences of ta-
chyon amplitudes in the c =1 matrix model when the
cosmological constant is equal to zero. In that case, the
cure for the disease is well known. The zero energy ta-
chyon vertex operator can be added to the Lagrangian
without destroying conformal invariance. This tachyon
condensate is a new classical solution of c =1 string
theory and the perturbation expansion around it is com-
putable and finite. Study of that expansion shows that
the effective expansion parameter is g„/p where p is the
coefficient of the tachyon condensate in the world sheet
Lagrangian (the two-dimensional cosmological constant).
The singularity of the p=0 solution is seen as a failure of
the semiclassical expansion. Various nonperturbative
resummations of the expansion give a perfectly sensible S
matrix at p=0.

It seems rather hopeless to try to find an analogous
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nonperturbative solution of the string theory associated
with the horn of the cornucopion. We do not even have
an exact conformal field theory to start from. Rather we
should look for the analog of the solution with finite p. It
does not seem to make sense to simply put the vertex
operators of the massless modes into the world sheet La-
grangian, for they are spacetime fermions. From a space-
time point of view, we would expect a condensate of these
zero modes to be described by the bosonized fermion
current. We have no idea how to represent these scalar
fields in terms of vertex operators in string theory. Al-
though the bosons are two fermion states, it is not entire-
ly outlandish to expect to find them in the one string Hil-
bert space. The two to two fermion scattering matrix
should have a pole corresponding to exchange of these
bosons. Since they are derivatively coupled, it should
show up as a 0/0 contribution to the zero energy scatter-
ing amplitudes. Such structures in spacetime often have
signatures in the behavior of vertex operator correlation
functions near the boundary of moduli space which can
be associated with other vertex operators.

We hope to return to these fascinating issues at some
future time, for they are crucial to a semiclassical under-
standing of the GMGHS solution. For the purposes of
the present paper we will make the optimistic assumption
that an analog of the nonsingular pAO solutions exists,
and that its properties are similar to those of the c =1
model. It is this hypothetical nonsingular solution that
we want to use as a model for the cornucopion. The
careful reader will note that there is only one point below
in which we make use of the nonzero value of the conden-
sate. Most of the properties of the cornucopion follow
from its geometrical structure, and would be valid for
other sorts of black hole remnants which conceal a large
internal space behind their apparent horizons.

Before closing this section we should draw attention to
a possible problem with the idea of using the c = 1 string
theory as a model for a cornucopion. Shenker [16] has
pointed out to us that if, as one expects in the cornu-
copion, the string coupling goes to a finite constant in the
throat region, the e6'ective volume of the c =1 world ap-
pears in perturbation theory to be finite and of order the
logarithm of the string coupling. In the extrernal dilaton
black hole, the volume over which the two-dimensional
world is weakly coupled is also proportional to the mass
of the black hole. Thus if we make the pessimistic as-
sumption that the strong-coupling region is really inac-
cessible, the cornucopion will be capable of storing an
amount of information that is bounded by a constant of
order its mass. This bound is parametrically the same as
that given by the Bekenstein-Hawking formula. Note
however that in many nonperturbative resummations of
the c = 1 perturbation series, the barrier that prevents ta-
chyons from penetrating the strong-coupling region is
finite, and there is another weakly coupled region on the

other side of it which contains an infinite number of
states. Thus, the question of whether a nonsingular cor-
nucopion can have an infinite number of states is bound
up with nonperturbative physics.

II. COLLAPSING CORNUCOPIONS

2+Q2 2(T] (2.1)

We have chosen coordinates in which the exterior metric
1s

ds = —dt+ 1 2+ 2o(t, r)d ~2
h(t, r)

(2.2)

where h (t, r) =(1 Qir) and cr =—ln(r), for the static
GMGHS solution.

Now suppose that this is the solution outside a collaps-
ing shell of magnetically charged matter with two-
dimensional world line (t, r)=[T(r),R (r)], where r is
the proper distance along the world line. To obtain the
solution inside the collapsing shell we use the dilaton
gravity action with zero magnetic field. The latter condi-
tion is a consequence of our assumption of spherical sym-
metry. Inside the shell, there are no magnetic sources
and the field equation for the magnetic field is

V„(e ~F„)=0. (2.3)

Since P does not depend on the angular variables, and
only the angular components of the field are nonzero, the
field must be constant inside the shell. Continuity of the
solution at the origin restricts this constant to be zero.

Introduce coordinates using the proper time of the
shell, so that ds =—d~ +dn, along the world line of
the collapsing matter. We will use these coordinates to
expand the solution for P and cr in powers of n toward
the interior of the shell, with coeKcients of the power
series being functions of ~. We will further simplify the
equations by making a change of variables:

In this section we describe the classical collapse pro-
cesses that could lead to near extremal black holes. Con-
sider a collapsing shell of magnetically charged matter, in
dilaton-Einstein-Maxwell theory. One can attempt to
construct a solution representing collapse by g1uing the
four-dimensional exterior solution of GHS onto a smooth
interior vacuum solution of the equations with the topol-
ogy and symmetry of a three-hemisphere. The spherical-
ly symmetric geometry is a two sphere with time and ra-
dial coordinate dependent radius cross a two-dimensional
spacetime geometry for the r-t submanifold. We call the
radius of the two sphere e ~"" and use synchronous
coordinates. The Lagrangian for the most general solu-
tion of this form is

S = f&—ge ~Ie [ —R 2(d—cr) —4(c)p) +gc)pc)cr]

5We are thinking of the Dine-Seiberg vertex operators [15] for
the auxiliary components of superfields. These are also compos-
ite operators from the spacetime point of view.

The structure is reminiscent of the other world in the Kruskal
extension of the Schwarzschild solution. The major difFerence is
that in the c =1 model there is no singularity or horizon divid-

ing the two worlds, and they can communicate with each other.
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u (r, n }=e (2.4)

In terms of these fields the Lagrangian is

S=f&—g [
—u R+2u (Ba) —4(Bu) —2u e

+Que (2.5)

The equations of motion for this Lagrangian are given in

Appendix A. Of course, to find interior solutions with
zero magnetic field to match onto the exterior extremal
dilaton solution, we set Q =0 in the above equation.

The power series for the fields o and (t, expanding
from the shell towards the interior, is

2

u (r, n) =R (~) 1—
R (~)

[1+f, (r)n +f2(r)n ~

+f3(r)n + ],

o (r, n ) = [ln(R (r) }+d,(r)n +d2(~)n

+d3(~)n + ],

(2.6)

(2.7)

h(r, n)=1+h&(r)n+h2(r)n +h3(r)n +
g(r, n)=1+g, (r)n+g2(r)n +g3(r)n +

(2.8)

(2.9)

The equations that we have to describe this system now
consist of the equations for u and o. , and the stress tensor
equation. At the boundary of the collapsing shell there is
a nontrivial matching equation for the stress tensor com-
ponent Too.

We will assume that the classical Lagrangian for the
matter that constitutes the shell is of the form

S = f & gu'[ —(a~)—' —m'~'+ ]. (2.10)

That is, the matter in the collapsing shell couples to the
dilaton like some massive mode of the string. In the rest
frame of the collapsing shell, the matching equation
reads

Mu(r, 0) = f Tor, dn
E

which becomes
2 1/2

(2.11)

where the coefficients of the leading terms are determined
by continuity of P and cr across the shell. The metric is

g& =diag[ —h (r, n), g(r, n) ], and the coefficients have
the expansion,

tion, but here the dilaton dynamics gives rise to an
infinite set of spherically symmetric solutions of the
source free field equations in a finite region. We have
tried to restrict the solution by assuming a cosmological
form for the metric ds = —dH+a(r) (dr +r dQ ) in-
side the shell, but this is inconsistent with the field equa-
tions. Similarly, an attempt to keep the three-
dimensionally conformally Oat form of the metric, with
conformal factor tied to the dilaton, is inconsistent. We
have not been able to come up with a natural ansatz.
Nonetheless, we believe that smooth solutions exist.
There are many smooth solutions of the vacuum field
equations restricted to a manifold with the topology of a
hemi-three-sphere cross time. Our matching conditions
fix only the values of the metric functions and dilaton
along the timelike world line of the collapsing shell, leav-
ing their normal derivatives undetermined. Thus there
seems to be plenty of room for patching in a nonsingular
vacuum solution.

To obtain some feeling for the motion of the collapsing
shell we have made the fairly arbitrary assumption that

afi(r)— (2.13)

This gives us a single first-order ordinary differential
equation for R (r). The solution so obtained behaves
like R(r)=Q+e r', as ~~oo. We can then use this
solution to check that the other coefficient functions, to
leading order, are well behaved for all finite values of ~.
We can continue this procedure perturbatively, to verify
that the coefficients in the expansion in powers of n are
smooth functions of ~. Of course, this demonstration of a
smooth perturbation expansion around the shell, does not
guarantee the existence of an everywhere smooth solu-
tion. We continue to search for a sensible ansatz that will
enable us to demonstrate explicitly the existence of a
smooth collapsing solution, but we feel confident that
such a solution exists.

The collapsing solution that we have described, begins
as a dimple on Aat space. At any finite time after its for-
mation, it will have the geometry shown in Fig. 2. We
will refer to such an object as a finite volume cornu-
copion. It is a solution of the field equations that is static
over most of space. The time dependence occurs only in
the tip of the horn.

Mu (r, 0) =R 1—
2R

R + 1 ——
R

(2.12)

At this point we must be more specific about the fields
on the interior of the shell. In Einstein s theory, there is
a unique spherically symmetric nonsingular vacuum solu-

FIG. 2. Instantaneous snapshot of a collapsing cornucopion.

7See Appendix 8 for details.
8The full details of the derivation are in Appendix B. 9Appendix C.
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III. THE PROBLEM OF STABLE RELICS

Since the publication of Hawking's seminal papers on
black hole evaporation 18 years ago [17], there have been
many attempts to resolve the puzzle of information loss
that is apparently implied by the Hawking process. In
broad terms, these attempts fall into three classes. ' In
the first, essentially that originally advocated by Hawk-
ing, one accepts the information loss at face value and at-
tempts to describe processes in which pure states can
transform into mixed states. This idea raises a number of
paradoxes [19], and it is not clear" that it can lead to a
sensible physical theory.

Advocates of the second approach, including Page, 't
Hooft, Wilczek, and Susskind and their collaborators [20]
insist that the information loss is a consequence of an im-
proper treatment of the quantum mechanics of the gravi-
tational field. They argue that in a more careful analysis,
which goes beyond the semiclassical approximation,
Hawking radiation will be shown to carry information,
encoded in subtle nonlocal correlations, much like those
in the "thermal" radiation emitted from any hot body.
These authors face the challenge of understanding the en-
tropy produced in Hawking's calculation of the decay of
a large classical black hole into one of half the mass. Ac-
cording to the "subtle correlation" viewpoint, and con-
sistent with the Hawking-Bekenstein formula for black
hole entropy, the Hawking radiation in this process car-
ries a huge amount of information -(M/M~) . Accord-
ing to Hawking's calculation, it carries none. Thus there
must be a large correction to Hawking's calculation of
the density matrix of the emitted radiation, despite the
fact that the entire process takes place within what ap-
pears to be the domain of validity of the semiclassical ap-
proximation. If one takes the semiclassical calculation
seriously in regions inside the horizon but away from
points of high curvature, one is led to serious problems of
causality. The information carried by the infalling
matter is still localized behind the horizon on a spacelike
surface on which most of the mass of the black hole has
been radiated away. In addition to this, the subtle corre-
lation approach can never account for the global quan-
tum numbers that appear to be lost in black hole decay.
One is led to claim that black hole physics can only make
sense in the context of a theory in which there are no
conserved global quantum numbers.

The final approach to the problem of Hawking radia-
tion is to postulate the existence of an infinite number of
stable remnant objects, all of whose masses are
sufficiently small that the Hawking calculation breaks
down near the corresponding Schwarzschild radii. These
objects can store any global quantum numbers that have
fallen down the black hole, and the infinity of degenerate
states is a repository for the information lost in the
Hawking process. A recent critical discussion of this
scenario can be found in [21].

The problems of the stable relic scenario are all caused
by the infinity of degenerate relic states that it requires.
All formulas of statistical mechanics are formally infinite
(even in the microcanonical ensemble) if we assume that
these states have come into equilibrium with the rest of
the world. The same can be said for all formulas in quan-
tum field theory, when loops of virtual relic particles are
taken into account (at least if we treat the relics as ele-
mentary particles). Furthermore, if the probability of
pair production of a single relic state in an external envi-
ronment (say, a weak slowly varying electromagnetic or
gravitational field) is bounded from below by a positive
number e, no matter how small, then the total production
probability is infinite. Typical pair production cross sec-
tions for elementary magnetically charged particles, or
monopole solitons, in static magnetic fields go like

—M /Be where M is the mass of the state being produced.
If the infinite set of black hole relics can all be produced
at rates of this order of magnitude, then everything in the
world will decay into black hole relics in a microscopic
time. Given these striking conclusions, it is not surpris-
ing that many authors prefer the scenario in which infor-
mation is emitted with the Hawking radiation to the relic
particle scenario.

IV. AND ITS RESOLUTIONP

We have just outlined the obstacles faced by any at-
tempt to identify stable relics as the end point of Hawk-
ing evaporation. In this section we would like to show
how cornucopia overcome these obstacles. A brief dis-
cussion of the thermodynamic equilibration of cornu-
copia has already appeared in [1], so let us begin by ex-
panding on it. Imagine that we have created a single cor-
nucopion in one of its many degenerate quantum states,
and that we have filled the universe outside it with a gas
of particles at temperature T. Let us ask how long it
takes for some subset of states of the cornucopion to
come into thermal equilibrium with the external gas. To
begin with, let us imagine that interactions of the gas
near the mouth of the horn can excite states inside the—

EADM /kT
cornucopion with probability —e " where E~DM
is the Arnowitt-Deser-Misner energy measured by an ob-
server in the asymptotically Aat region of spacetime.
From causality alone we have a restriction that in time t
we can at most excite states of the horn within a distance

tMp
t of its mouth. The number of such states is of order e
and their contribution to the partition function is at least

tM~ —Mp/T .
e if we assume that typical splitting in ADM
energy between these states is of order the Planck mass. '

Since the time t over which one can imagine thermaliza-
tion to take place in an expanding universe is always
bounded from above by the inverse of the expansion rate
H ' we never have to think about a strictly infinite num-
ber of states.

'oS. Giddings [18] has recently presented a discussion of
scenarios for the end point of black hole evaporation which
overlaps with this section.

At least to the present authors.
2If most of the states have zero ADM energy, the

temperature-dependent factor is absent.
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In fact it is highly unlikely that all of the states within
a distance Mz/H of the cornucopion throat will be
thermally distributed. There are two basic reasons for
this. First, there are large repulsive potential barriers lo-
cated near the cornucopion throat for most modes of the
fields in the external universe. ' In string theory this can
be understood from the statement that the effective world
sheet theory which describes the horn of the cornucopion
is the tensor product of the Liouville theory and a com-
pact conformal field theory. Thus, apart from the small
number of massless modes described above, all states
have effective masses in the cornucopion horn that are of
order the string scale. The probability for an external
particle to penetrate the throat and produce an ingoing
wave of these massless modes is very small; at least pro-
portional to inverse powers of the Planck scale. ' Thus
the thermalization of the cornucopion proceeds at a very
slow rate, likely to be slower than the expansion rate of
the universe at most epochs of interest.

Our second reason for believing that corn ucopion
states will not come into conventional thermal equilibri-
um is more diIIicult to explain because we do not fully un-
derstand it. Imagine that some process in the external
world has succeeded in injecting a pulse of tachyons into
the horn of the cornucopion. Our analogy between the
horn of the cornucopion and the c = I model tells us that
(at least to all orders in the string loop expansion) the dy-
namics of this pulse is describable by a two-dimensional
field theory of interacting massless particles. The ques-
tion of which states of this field theory are occupied
seems to have little to do with the ADM energy mea-
sured by an observer in the asymptotic four-dimensional
region of space time. Its dynamics are governed by an
effective Hamiltonian % whose connection with ADM
energy is far from clear. One might expect that after
enough time, the state of the system interior to the horn
would be well described by a density matrix of the form—&/T~
e " where T& is an internal temperature whose rela-
tion to the temperature of the external universe is less
than obvious. However, if a finite pulse of massless parti-
cles (i.e., the analog of a distribution of tachyons that can
be described by a finite perturbation of the Fermi surface
in Polchinski's [22] description of the tachyon field
theory of the c = 1 model) was injected, this temperature
will be finite. This is not a thermal distribution in ADM
energy.

We do not pretend to fully understand these arguments
(particularly the latter) so it is fortunate that even if the
states of the cornucopion had come into thermal equilib-
rium they would have little effect on the thermodynamics
of the external world. The effect of the extra states of the
cornucopion is to endow each of the states of the world

3This is shown, for example, in the paper of Holzhey and
Wilczek cited in [20], and was also apparently known to GHS.

~40ne should avoid being confused by the strong Callan-
Rubakov interaction of external particles with a magnetically
charged cornucopion. This describes processes going on very
far (in Planck units) from the cornucopion throat.

external to the black hole with an enormous degeneracy.
Let us use the letter o. to label this degeneracy. Now con-
sider any operator 0, localized in a region R of spacetime
external to the cornucopion. We claim that 6 is essen-
tially the unit operator as far as the a label is concerned.
This argument can be stated more precisely. In [1]we ar-
gued that the degeneracy in ADM energy of states of the
cornucopion was a consequence of the existence of states
concentrated in regions far down the horn. The energy
difference between two states labeled a and a' goes to
zero exponentially as the difference between the two
states is taken to be a state localized further and further
down the horn. But in the same limit, the difference be-
tween the expectation values of 8 in these two states van-
ishes, as does its off diagonal matrix element between
them. Thus

N, a a N

(4.1)

The sum over a factors out when we compute expecta-
tion values. Thus for local quantities located far enough
from the cornucopion, thermal averages do not probe the
presence of its large number of degenerate states. We
emphasize that there is nothing exotic about this argu-
ment, and that it depends principally on the fact that the
interior of the cornucopion is far away from the external
observer. If someone increases the local density of states
on the moon, it effects thermodynamics on the moon, but
not on Earth.

The effect of cornucopia on thermodynamics in regions
far from the throat of the black hole is thus seen to be
rather innocuous. We believe that the widespread belief
that infinite numbers of black hole remnants, degenerate
in ADM energy, contradict thermodynamics is based on
the misconception that these remnants could be described
as particles, and that one should be able to produce them
all in the laboratory. The fundamental problem of ther-
modynamics in the stable relic scenario is thus intimately
related to the estimate that we made in the previous sec-
tion of production of a stable relic, thought of as an ele-
mentary particle.

We are thus led to investigate the fundamental prob-
lem of any relic scenario, the pair production of cornu-
copia, and their contribution to virtual loops. The most
serious sounding argument against the existence of stable
relics of the black holes is based on crossing symmetry.
The scattering of low-energy photons and gravitons from
a cornucopion is completely determined by the object's
mass and charge, and the scattering amplitudes are not
small. Crossing symmetry, it is argued, should relate
these amplitudes to cornucopion production amplitudes,
and (by unitarity) to their contributions to virtual loops.
If each state of the cornucopion is produced with finite
amplitude, and/or gives a finite contribution in loops, the
sum over the infinite number of virtual relic states will
give rise to infinite production cross sections and infinite
renormalizations of all low-energy amplitudes.

We will argue in a moment that this argument does not
take sufBcient account of the infinitely extended nature of
the cornucopion geometry. However, it is worth pointing
out that such arguments from crossing symmetry can be
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&p+ql jlp & =r(q') (4.2)

at small spacelike momentum transfers q . The mono-
pole production cross section, on the other hand, is, by
crossing symmetry, related to the analytic continuation
of the same function F to large timelike q of order the
monopole mass -m~/o, . A better crossing symmetry
estimate of the production cross section would be to re-
late it to the behavior of the monopole form factor at
large spacelike q where it falls exponentially (it is essen-
tially the Fourier transform of the smooth monopole field
configuration). '

We have introduced this example not only because it il-
lustrates how a naive application of crossing symmetry
can grossly overestimate the production rate of an ex-
tended semiclassical object, but because we believe that it
provides a good analogy to cornucopion production, with
the cornucopion volume playing the role that momentum
plays in the monopole form factor. The conventional pic-
torial argument for crossing symmetry is shown in Fig. 3.
In the left half of this figure, a particle is produced by
some classical apparatus, scatters off a photon, and is ab-
sorbed by another classical machine. The amplitude is
nonzero even when the emission, absorption, and scatter-
ing events are in spacelike relation. Thus, some Lorentz
observers can see the scattering occur before the emission
or absorption, and interpret the amplitude as a produc-
tion process.

Even this estimate is suspect, though it gives a more plausi-
ble answer. One could encounter Stokes lines in the analytic
continuation from large spacelike to large timelike q . However
there is an intuitive connection between this estimate and the
Drukier-Nussinov argument. The smoothness of the high-
energy monopole configuration is a consequence of the fact that
it contains a large number of soft quanta.

misleading even for extended objects of finite extent,
namely, solitons in ordinary weakly coupled loca1 field
theories. In particular, naive application of crossing sym-
metry would lead us from the finite Thompson cross sec-
tion for low-energy photon scattering off a 't Hooft Po-
lyakov monopole, to the conclusion that the production
cross section for such monopoles above threshold in elec-
tron positron annihilation was of order one. From uni-
tarity we would then conclude that monopoles contribut-
ed to photon vacuum polarization at some finite order in
perturbation theory (some inverse power of the monopole
mass). In fact, as argued long ago by Drukier and Nussi-
nov [23] the monopole production cross section is of or-
der e ' . The essence of their argument was that in a
weakly coupled theory, it costs a power of a in probabili-
ty to create a quantum of the bare fields from the vacu-
um. The coherent monopole state contains of order 1/a
quanta.

To understand where the crossing symmetry argument
went wrong, we note that the Thompson crossing section
is related to the form factor of the electromagnetic
current (we suppress irrelevant Lorentz indices and kine-
matic factor)

FIG. 3. A pictorial argument for crossing symmetry.

In [I] we associated a particlelike coordinate variable
x"(r) to a single cornucopion. The dynamics of the sys-
tem involved a conventional functional integral over this
variable, and so it is still presumably true that the photon
cornucopion scattering amplitude is nonvanishing when
the events A, B, and C are in a spacelike relation. How-
ever, the meaning of this picture is quite different for cor-
nucopia and for particles. Even 3 is a classical cornu-
copion production event. We can imagine creating it by
letting some matter collapse into a black hole, possibly
followed by Hawking radiation to produce a cornucopion
with Planck sized throat. It is thus a violent classical
process, not a microscopic event. Event B is an interac-
tion of the photon with the throat of the cornucopion, it
is presumably much more complicated than the corre-
sponding interaction with a point particle, but involves
no new issues of principle. However, event C has a drast-
ically different interpretation for cornucopia and elemen-
tary particles. Event C is pictured as occurring at a point
in spacetime. However, it symbolizes the destruction of
the cornucopion, which involves the shrinking of its horn
back to Aat space. The tip of the horn is however a finite
and presumably very large spacelike distance away from
event B. Given the initial conditions in which the cornu-
copion was formed by gravitational collapse, we find it
unlikely that its classical motion will ever shrink the horn
back to zero size to agree with the configuration assumed
in event C. Even if this could happen, it must take a long
time. Thus, in order for the cornucopion to classically
disappear at event C, C must be far in the future of B,
and there is no confusion about the time ordering. The
alternative is, that between points 8 and C, a quantum
tunneling event occurred in which the volume of the cor-
nucopion shrank to zero.

Thus crossing symmetry relates photon pair produc-
tion of cornucopia not to simple scattering processes in
which the cornucopion's horn is unaffected, but to pro-
cesses in which the volume of the horn changes drastical-
ly. In the analogy to monopole production discussed
above, we would say that ordinary scattering measures
the cornucopion "form factor at small volume change, "
while the production process is obviously related to
scattering with large volume change. To estimate the
probability of such large changes in the geometry we will
first attempt to use semiclassical ideas.

We will first discuss the contribution of cornucopia to
virtual loops. The positive energy theorem assures us of
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the semiclassical stability of Aat space in quantum gravi-
ty. There should be no exact instantons describing the
decay of Hat space into another geometry. What we must
do is try to estimate the probability for a virtual process,
rather than a tunneling process which terminates in
motion through an allowed classical region. Thus we
want to calculate the Euclidean action for a virtual tran-
sition from Aat space to a specified configuration of the
geometry, which then subsides into Aat space. We will
take the intermediate configuration to be the finite
volume cornucopion discussed in Sec. III, and treat the
volume of the horn as a collective coordinate. The full
amplitude for this virtual process will then take the form

(4.3)

where S ( V) is the Euclidean action for the pro-
+2Do

cess, gp =e is the coupling constant written in terms
of the value of the dilaton in the asymptotically Hat re-
gion of spacetime, and Z( V) is the partition function for
small fluctuations around the instanton. To all orders in

NM Vthe loop expansion, Z( V) will behave as e, for large
V, where M is the cutoff scale (the string tension scale in
string theory) and N is the number that goes to a constant
as gp~O. We are assuming that the theory is weakly
coupled at all length scales, and in particular that (as in
string theory) the cutoff is smaller than the Planck Mass
by a factor of go. In the weak-coupling limit, Z(V)
counts the number of states of the cornucopion of volume
V. Its logarithm is extensive in the volume.

In this way of organizing the calculation we see how
the infinite number of states of the cornucopion can sum
up to give a finite result in virtual loops. The static cor-
nucopion is an idealization. Its infinite number of states
come from its infinite volume. Any cornucopion that was
created a finite time in the past will only have expanded
to a finite but enormously large volume. It will have a
finite number of states that grows exponentially with its
volume. In virtual loops we sum over these finite volume
cornucopions. An infinite contribution will be avoided if
the integral of V converges. This will occur if the cou-
pling gp is small enough, and if the cost in Euclidean ac-
tion to create a cornucopion of volume V grows at least
as fast as V for large volumes. In an ordinary quantum
field theory, it would be essentially obvious that the ac-
tion for creating a configuration which differs from the
vacuum over a volume V will be of order V. In string
theory, or the low-energy dilaton gravity theory which it
gives rise to, the dilaton field whose exponential multi-
plies the classical action density, varies linearly along the
cornucopion. Regions far from the cornucopion throat
give exponentially small contributions to the static solu-
tion. Thus, for the external black hole solution of GHS it
is not clear that the action for the virtual cornucopion
creation process is proportional to V for large volume.
However, we have argued above that the GHS black hole
is not a good model for the generic cornucopion solution
of string theory. In that context it is singular, and we ar-
gued that the nonsingular solutions have a condensate
which prevents the massless modes in the horn from
reaching the strong-coupling region. In order for this to

work, the condensate vertex operator (which is the field
that appears in the spacetime action) must grow in the
strong-coupling region. For example, in the low-energy
effective action for two-dimensional string theory, the ta-
chyon appears as

(4.4)

The tachyon condensate increases precisely like e as we
proceed down the horn of the cornucopion, so its contri-
bution to the action is proportional to the volume of the
horn. Although we have no reason to trust the detailed
predictions of the low-energy action, they should be valid
in the bulk of the cornucopion where tachyon interac-
tions are unimportant. Thus in the c =1 model, the
spacetime action of the condensate fields is proportional
to the volume of the cornucopion. If we assume that the
same is true for the hypothetical nonsingular cornu-
copion solutions described above, we may conclude that
for sufficiently small coupling, Hat space is stable against
decay into cornucopia, and their contribution to virtual
loops is finite.

Note that in the above argument we have assumed that
the Euclidean action density for the process of cornu-
copion production is positive. This is of course untrue in
the naive definition of Euclidean quantum gravity. It is
our belief that a correct treatment of tunneling in quan-
tum gravity requires one to analytically continue the
fields in the Euclidean action, perhaps in the manner ad-
vocated by Gibbons, Hawking, and Perry, in such a way
that the action is positive and tunneling amplitudes al-
ways correspond to suppression. Such a continuation
would also explain the apparent discrepancy between the
fact that the infinite cornucopion has finite mass and our
contention that Euclidean processes which create it as an
intermediate state have infinite action. The energy densi-
ty in a theory of gravity is not positive and bulk contribu-
tions to the energy cancel.

We would like to emphasize that the result of the fore-
going calculation is of great interest in string theory even
if our contention that cornucopions resolve the Hawking
puzzle is incorrect. There is little doubt that string
theory has classical solutions that are highly charged
magnetic black holes with the geometry of a cornu-
copion. The above calculation can be viewed as a weak-
coupling estimate of the probability for spontaneous pro-
duction of a pair of such objects from the vacuum. Our
result indicates that Oat space is stable against decay into
such objects for sufficiently weak coupling. Its failure to
show such stability would at least mean the breakdown of
the semiclassical argument for the stability of Aat space,
and might indicate a true instability. Indeed, the calcula-
tions suggest a potential instability at larger values of the
coupling, but this cannot be verified without more de-
tailed knowledge of the function N(go). Known results
in the c =1 model suggest that there may be a constant
contribution to X and that it will not vanish as gp gets
large. The only degrees of freedom that are massless in
the horn of the cornucopion are free throughout most of
its volume and give a coupling constant independent con-
tribution to the free energy density. It seems unlikely that
this will be precisely cancelled by massive degrees of free-
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dom, so a strong-coupling instability of the Aat vacuum
seems like a definite possibility. Perhaps the dynamics of
virtual cornucopion production contributes to the mecha-
nism by which the string-coupling constant is fixed.

We now come to what is probably the most vexing
problem for the cornucopion scenario, real cornucopion
production in external magnetic fields. The conventional
wisdom on this subject goes back to a paper [8] by
AfBeck and Manton on the pair production of 't Hooft-
Polyakov monopoles. Their argument may be carica-
tured as follows. The pair production of point magnetic
monopoles in a constant magnetic field is described by an
instanton in the one particle quantum mechanics which
describes single particle motion. If the field points in the
x 3 direction, the instanton is a circle in the x 3 -x 4 plane in
Euclidean space. The radius of the circle is determined
by the tunneling condition RB =2m, where m is the par-
ticle mass and B the strength of the magnetic field.

Affieck and Manton show that there is a field theory
instanton which is better and better approximated by this
quantum mechanical instanton in the limit that the mag-
netic radius R is larger than all length scales describing
the structure of the monopole soliton. The basic idea is
that if po(x„x2,x3) represents the static soliton solution,
then it is also a solution of the Euclidean equations of
motion representing a soliton that exists for some length
of Euclidean time. Now consider P(x)

Ijt 0( x 'i x p Qx 3 +x 4 R ) which represents a soliton
moving around an Euclidean circle of radius R. This
configuration is not an exact solution of the Euclidean
equations, but the leading correction to the equations of
motion is canceled in the presence of the background
field if R is chosen to take on the Schwinger value 2m /B
(where I is given by the soliton mass). Thus P can be
chosen to be the first term in an expansion of an exact
solution in powers of L /R, where L is a characteristic di-
mension of the soliton. AfBeck and Manton show that in
the limit I./R ~0, the action for the solution is given by
the usual Schwinger formula for point particles, plus a
correction coming from the Coulomb interaction which
is negligible for weak coupling.

While it is tempting to conclude that the same pro-
cedure is immediately applicable to cornucopions, and
that they are consequently produced (when we sum over
states) at infinite rates, there are several objections to
such a conclusion. The first, as we have emphasized, is
that purely semiclassical considerations, applied to the
GMGHS soliton, are invalid, and the L dependence of
the amplitude that we have predicted is only expected to
arise semiclassically for a truly nonsingular classical
configuration.

Second, the Affieck-Manton calculation gives us the
leading behavior in an expansion of the instanton action
in powers of the external field multiplied by length scales
associated with the structure of the object. In order B
the structure dependence is all encoded in the soliton
mass, and the soliton behaves like an elementary particle.
In general we might expect a structure-dependent term of
order B . Structure dependence would appear as a
dependence of this coefticient on the ratio of scalar and
gauge couplings which was not a simple function of the

monopole mass. This term is absent for 't Hooft-
Polyakov monopoles because of the symmetry of the in-
stanton configuration. ' The Garfinkle-Strominger [9]
calculation of Wheeler wormhole production reveals a
term of this order proportional to the Euler character. If
other curvature squared terms were added to the action,
modifying the structure of the instanton without modify-
ing the behavior expected for point monopoles, we would
obtain other corrections to the action of the same order.
These corrections could be interpreted as dependence on
the monopole structure. It seems to us that the term in
the action proportional to cornucopion length, which we
have suggested would be present, will show up in the
coeKcient of this order zero term in the Affieck-Manton
expansion, if it shows up at all. The Affieck-Manton ex-
pansion assumes that all length scales characterizing the
soliton are smaller than the magnetic length 2m /B,
which is surely not valid for infinitely long cornucopions.
Thus, the question of whether the action has a term pro-
portional to L can be reliably studied in this expansion
only for L much smaller than the magnetic length. As we
study the production of cornucopions of various sizes,
the extensive term should first appear as L dependence of
the coefficient of B . Then, when this term begins to
dominate, the expansion breaks down. Thus we believe
that the Affieck-Manton approximation is invalid for es-
timating the probability of tunneling to a virtual
geometry of size larger than the magnetic length. How-
ever, we can imagine a process of tunneling to a cornu-
copion of a size within the domain of validity of the
Affieck-Manon calculation, which then expands classical-
ly to become infinitely long. We will discuss this process
in a moment.

Our final objection to the conclusion that the AfBeck-
Manton argument is applicable to cornucopia is much
less clearly formulated. The Affieck-Manton instanton is
topologically trivial (relative to the constant background
field), while its analog for cornucopions is not. The cor-
responding Euclidean space time has an extra boundary.
Thus there is no clean argument that such instantons
should be included in the path integral. ' By contrast,
the sort of instanton depicted in Fig. 5, is a smooth defor-
mation of fiat Euclidean space. We have depicted this in-

' There is a term of order B in the monopole production rate,
but it comes from Coulomb interactions and is structure in-
dependent.

And of course, no clean argument that they should not.
Note that while the Garfinkle-Strominger instanton is also topo-
logically nontrivial, it can be made to look more and more like a
Melvin universe by increasing the external field. The topologi-
cally nontrivial part of the manifold (the maximal size of the
wormhole neck), becomes metrically smaller and smaller. With
a little bit of coarse graining we can make it disappear. Thus
there is a sense in which this configuration is nearly continuous-
ly connected to the Melvin background. There is no corre-
sponding coarse grained sense in which the circular deforma-
tion of the static cornucopion is continuously connected to the
vacuum.
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stanton as a sequence of time slices in which virtual cor-
nucopion production proceeds by dimple formation and
growth much as real formation by gravitational collapse
does. Note that, in keeping with our prejudices about the
dependence of Euclidean action on cornucopion length,
we have imagined that the cornucopion configuration
produced by the external field will have a finite length I.
at the point when the virtual state "pops into existence. "
We believe that t. will be of order the magnetic length
2m /B.

The cornucopions produced by the above process have
finite volume but can now evolve classically into infinite
volume objects. Classical evolution involves no further
suppression of the amplitude, so we must inquire whether
we have demonstrated a method of generating an infinite
number of states with a fixed amplitude per state. We be-
lieve that we have not. The initial classical configuration
of the cornucopion produced by an instanton like that
shown in Fig. 5 is of finite volume. Even if we assume
equal amplitudes for producing all of the excited states in
this volume, the number of available initial states is finite
and of order e .' This is much smaller than the essential-
ly infinite number of states of the fina cornucopion.
Thus, we agree with the claim that cornucopia will be
pair produced in an external field with about the ampli-
tude suggested by the Aleck-Manton calculation. How-
ever, the method of production will be to tunnel to a cor-
nucopion whose length is of order the magnetic length,
and then inflate classically. The set of initial data for this
classical evolution is too small to populate the large and
ever growing set of states of the final geometry.

Our argument here is reminiscent of the argument that
inflation solves the homogeneity problem of the Big
Bang. In an inflationary universe, an initial microscopic
domain becomes much bigger than the currently observ-
able universe. Any state of the initial universe becomes
essentially homogeneous in the final geometry. Thus the
full space of possible initial states of the domain are in

Euclidean
Time

~ ~

I I
I

U

FIG. 5. Time slices of a Euclidean trajectory for pair-
producing cornucopions.

one to one correspondence with the very small subspace
of the possible states of the inflated universe, namely,
those which are homogeneous. This sort of expansion of
the Hilbert space would seem to be an essential in-
gredient of a quantum theory of geometry.

We make no pretense that the above arguments are
conclusive or rigorous. We believe however that the knee
jerk reaction that cornucopions behave in every way like
particles because they look like particles to an external
observer are on no more a solid footing. This is a true
statement for solitons in an ordinary I.orentz-invariant

quantum field theory, but we believe that it is much less
than obviously true in a theory in which geometry is
dynamical. Unfortunately, the GMGHS solution does
not lend itself to semiclassical analysis that would enable
us to settle this question by a simple computation.

V. CONCLUSIONS

FIG. 4. Trajectory of the collapsing shell.

Here, as always, we assume an ultraviolet cutoff on the num-
ber of states in finite volume.

There are a number of pressing issues which must be
addressed in order to satisfy ourselves that cornucopions
are really a solution of the Hawking problem. First, it is
imperative to find a way to establish the existence of the
nonsingular solution with condensate upon which our
considerations were based. This is not so much a prob-
lem of finding an exact conformal field theory for the
GMGHS solution, as one of understanding spacetime bo-
sonization in a string theoretic language. Are there ver-
tex operators which represent the bosonic particle states
formed by two parallel massless fermions? Is there a clas-
sical solution of string theory which corresponds to a
nontrivial static background of these bose fields, and are
its physical properties similar to those of the c = 1 model?
Or is the formation of the fermion condensate not
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describable in classical language? Classical or not, what
are the properties of the condensate? Most particularly,
does the resulting state of the full theory have infinite
volume like the classical solution, or finite effective
volume like the linear dilaton electrodynamics of [24]7
The latter scenario would solve the problem of infinite
numbers of degenerate states in string theory, but would
eliminate cornucopia as candidates for black hole rem-
nants. The resulting object would have finite volume, of
order its Schwarzchild radius and information content
consistent with the Bekenstein-Hawking bound. Cornu-
copia will resolve the black hole information paradox
only if, like the "symmetric" solution of the c =1 matrix
model, they are truly infinite spaces.

We should note that the extremal dilaton black hole is
not the only example of a possible remnant object with
infinite volume hidden behind an apparently particulate
facade. In their discussion of creation of a universe in the
laboratory, Farhi and Guth [10]noted that a small patch
of inflating universe looks to an outside observer like a
black hole. If the neck that connects the inflating bubble
to external flat space remains of finite extent, this would
be a remnant object with an infinite number of states. '

Strominger's "decoupled ghost" model [13], of semiclas-
sical two-dimensional gravity seems to contain remnants
of this type. Perhaps if one could find a four-dimensional
model with remnants of this type, reliable semiclassical
computations of production amplitude could be per-
formed. It seems plausible that the relevant instanton
would be a piece of Euclidean four sphere of finite radius
(determined perhaps by the total ADM mass) attached to
flat space. This would correspond to the nucleation of a
finite size universe which would then undergo classical
inflation. As in our discussion of the previous section the
nucleation process could create only a small number of
the states of the final de Sitter universe. However, if the
singularity of a black hole were replaced with such an
internal de Sitter universe, it could serve as a repository
for the information that is apparently lost in the Hawk-
ing process. This is perhaps a more general and attrac-
tive scenario for the end point of black hole evaporation
than that employing extremal dilaton black holes. It is
based on the same general principle: in a theory of
dynamical geometry, things can be larger on the inside
than they are on the outside. We remain convinced that
the most plausible scenario for pair production of such
large extended objects is via nucleation of a small
geometry which then expands classically. As in the
inflationary universe, such a process is not able to access
most of the states that can be accommodated in the even-
tual large geometry. Correspondingly, virtual processes
will all involve the temporary appearance of finite volume
geometries, which then subside into the vacuum. The in-
termediate set of states will always be finite (given an ul-
traviolet cutoS. These observations reconcile the ex-
istence of essentially infinite repositories of information,

The idea that such objects could be the end point of black
hole evaporation was first presented to us by Michael Douglas.
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APPENDIX A: FIELD EQUATIONS FOR THE
LAGRANGIAN OF (2.5)

Given the Lagrangian written in terms of the fields u
and o, we can derive the following Euler-Lagrange equa-
tions

2ug e —2uR +4u (Bo ) +88„(&—gg" B„u )

—4ue =0, (A 1 )

u 2e —2u g (u 2Q ggPvp o ) u 2g2e 4n 0— (A2)

—(V„V —g„„V )u —2u B„oBsr+48„uB,u

—g„[u e +2(Bu) —u (Ocr)

I g2 2e —4o
]
—() (A3)

and in particular

=g g iip2g 2 —2g 20 2+4/

=goo[u e +2(Bu) —u (Bo.)

1 g2u 2e —4o'] —() (A4)

APPENDIX B: THE MATCHING EQUATIONS

To carry out the expansion in powers of n towards the
interior of the shell we will express all functions in terms
of ~ and n. In particular, we will need the derivative in
the direction orthogonal to the shell, and so need 8/Bn in
terms of 8/Bt and 8/Br.

with the absence of observable production amplitudes for
these exotic states in ordinary processes.

In our view, the version of the remnant scenario that
we have presented is the most conservative resolution of
the paradox of Hawking radiation that has been pro-
posed. The apparently conservative idea that "all the in-
formation comes out in subtle correlations" seems to re-
quire us to envisage large quantum corrections to classi-
cal geometries in regions in which the classical descrip-
tion shows no sign of breakdown, while Hawking s origi-
nal proposal of nonunitary evolution of density matrices
seems to resist incorporation into a local effective theory
of low-energy processes [19]. In the horned particle
scenario, the physics of dynamical geometry turns out to
be stranger than we had imagined, but not stranger than
we are capable of imagining.
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Consider the general coordinate transformation given
by (r, t)~(t(r, n)r(r, n)). Using the known forms of the
metric inside and outside the shell we find the following
equations:

—1=g

MR 1 ——=R 1—2 Q Q
R 2R

R(r) + 1 ——
R

So we have the final form of the matching condition;

2
at

=go
+Rf 1 —— (810)

'2
at

2
ar

2 a7
(81)

Finally, we note that the parameter M in the above
equations is the ADM mass of the extremal dilaton black
hole: M=Qe '/2.

—
4p

and
1=g„„=—at

an

ar

Q
8ll

1 ——
r

2

(82) APPENDIX C: AN ANSATZ FOR THE MOTION
OF THE SHELL

and

at at

L

Now put (Br/Br)~„O=R(r).
Then (Bl) gives

1/2

ar
an

(83)
a7

As in the text we assume that f, (r)=a/R (r), which
gives an ordinary difFerential equation for R (r). Let us
first analyze this equation for 7~0O, by assuming that
R(w)=Q+E(r) with e«Q. Then E= pE, and thus
R (r) behaves for r~~ in the manner asserted in the
text.

Let us now plug the ansatz into the matching equa-
tion and solve for R (r). This gives,

at
a7

1 ——
R

and using (82) and (83)

.2R (r)

2 1/2

(84) R(r)=— 'tt/4(f, R —MR )
—(2R —Q)R (2R —Q)

+4(aR —MR ) —(2R —Q) .
(R —Q) 2 2 2

R (2R —Q)

(Cl)

R(r) + 1 ——
an R

L

(85)

For a thin shell of matter that acts as a source for the
stress tensor of the theory with Lagrangian (2.10), we

have

(87)

n= —e,

z ~&o QuB„u=f, ( )Rr(v. ) e ' 1 —— (88)

and at n =e,
—2'uB u=e 'R 1—

2R
R(r) + 1 ——

R

2 1/2

(89)

p(~) = f Toodn, (86)
E'

where!M(r) is the energy density of the shell in the (r, n)
coordinates. Only the singular part of Too will contribute
to (86) and by looking at the expression for Too, we see

that (as a consequence of the continuity of U and cr

across the boundary of the shell)

Mu (r, 0) = f goog
"7 (u )dn =2uB„u ~',.

E'

Using the results of Appendix A, we find that at

This can be integrated numerically to obtain the solu-
tion for a choice of R (0) and R (0).

For R (0)=0 at R (0)=5, and with a = 109.10, we find
the solution displayed in Fig. 4—a smooth collapse from
R =5 to R =1. If we then look at the remaining equa-
tions, expanded to the lowest order in n, then we have
five equations for the five functions, d, (r), hi(r), g, (r),
d2(r), and f2(r), with all coeKcients going to zero or a
finite number as 7~ ~. So this provides a regular col-
lapse situation for this ansatz. We could now proceed to
solve for higher-order terms in the power series expan-
sion around the shell, finding smooth solutions for all 7.
Of course, this procedure does not guarantee a solution
which is everywhere smooth.

To analyze the collapse situation completely, one
should first find a time-dependent solution to the field
equations (ignoring for the moment the matching equa-
tions) arising from some smooth initial data on a Cauchy
hypersurface, which has a dilaton field that is an increas-
ing function of time which approaches infinity asymptoti-
cally. One then uses the matching equations to join this
solution onto the GMGHS solution along the collapsing
shell. As indicated in the text, we believe that there is a
great deal of freedom in this procedure, and we have not
yet been able to find a simple ansatz which gives explicit
solutions for the interior of the shell.
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