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Gravitational radiation from a particle
in circular orbit around a black hole.

III. Stability of circular orbits under radiation reaction
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We use the Teukolsky perturbation formalism to show that (i) a particle in circular motion around
a nonrotating black hole remains in a circular orbit under the influence of radiation reaction, and
(ii) circular orbits are stable only if the orbital radius is greater than a critical radius r, 6.6792M,
where M is the mass of the black hole. A circular orbit is stable if, when slightly perturbed so that it
acquires a small eccentricity, radiation reaction decreases the eccentricity; a circular orbit is unstable
if radiation reaction increases the eccentricity. Our analysis is restricted by four major assumptions:
(i) the black hole is nonrotating, (ii) the eccentricity is always small, (iii) the gravitational pertur-
bations are linear, and (iv) the adiabatic approximation (that radiation reaction takes place over
a time scale much larger than the orbital period) is valid. On the other hand, our analysis is not
limited to weak-field, slow-motion situations; it is valid for particle motion in strong gravitational
fields.
PACS number(s): 04.30.+x; 97.60.Lf

I. INTRODUCTION AND SUMMARY

A. Motivation

A particle of mass p, which interacts with the gravita-
tional field of an isolated object of mass M, does not, in
general, move on a spacetime geodesic. This is due to the
fact that the combined system emits gravitational waves;
the problem of radiation reaction —to determine the in-
Huence of this emission on the motion of the particl" -is
a difBcult one in general relativity.

Gravitational radiation reaction has a well-known elec-
tromagnetic analogue: A charged particle, accelerated by
an electric field, does not move according to the Lorentz
equations of motion, because of the emission of electro-
magnetic waves. There are dificult conceptual problems
associated with radiation reaction in electromagnetism
[1]; however, these conceptual problems are not a serious
impediment to computations, at least. when radiation re-
action is a small efI'ect. The use of half retarded minus
half advanced potentials, together with the rejection of
runaway solutions on physical grounds, provide a well-
defined calculational basis for most applications [2].

In contrast with the electromagnetic case, the problem
of gravitational radiation reaction is plagued with con-
ceptual and calculational difFiculties, which are mostly
due to the nonlocal character of the problem. Nonlo-
cality enters in essentially two diferent ways. (i) As a
consequence of the principle of equivalence, a gravita-
tional wave can be identified as such only in a region
of spacetime larger than several wavelengths [3], which
precludes the construction of a local radiative field. (ii)
Because gravitational waves are in general scattered by
the curvature of spacetime, waves emitted at one time

may inHuence the motion of the particle at some later
time [4]; these tails in the waves can produce noticeable
efI'ects, most especially if the curvature is large.

In order to gain insight into the general problem of
gravitational radiation reaction, it is important to look
at simple special cases for which the above problems can
be addressed. To study such a simple case is the main
purpose of this paper.

The question of radiation reaction is most pressing in
the context of the late evolution of compact binary sys-
tems [5], since the waves generated by such systems are
the most promising for detection by kilometer-size inter-
ferornetric detectors [6]. Extraction of the information
encoded in the waves will require an accurate calculation
of the expected wave forms [7]; these theoretical wave
forms are used as matched filters through which the de-
tected signal is processed [8]. Radiation reaction gov-
erns the rate at which the wave frequency increases with
time, as the compact objects spiral together toward co-
alescence. During the last stages of evolution, when the
waves are most interesting for detection, the wave fre-
quency sweeps from approximately 10 Hz to several hun-
dred Hz in just a few minutes, during which the waves
oscillate about 10 times. It is therefore essential to in-
corporate radiation reaction, to a fractional accuracy of
at least 10 4, into the calculation of the theoretical wave
forms [7]. Thus, the practical importance of radiation
reaction in the evolution of compact binary systems pro-
vides more motivation for the work presented here.

Also of interest are the last stages of evolution, under
radiation reaction, of a solar-mass compact object orbit-
ing a galactic, supermassive black hole. Such a binary
system could be observed with an eventual space-based
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interferometric detector, which would operate between
10 4 Hz and 10 i Hz [9]. Because we consider small
mass ratios (see Sec. I B below), the results presented in
this paper are directly relevant to these sources.

Most of the work devoted so far to gravitational radi-
ation reaction, in particular for the two-body problem,
has been restricted to weak-field, slow-motion situations
[3, 10—13]. Lincoln and Will [12] have calculated, us-
ing post-Newtonian theory, the orbital motion of a bi-
nary system at post / -Newtonian order, which only in-
corporates radiation reaction at leading order. These
calculations are not accurate enough for the purpose
of constructing matched filters for interferometric detec-
tors [7]. Higher-order corrections to the post-Newtonian,
radiation-reaction force have recently been calculated by
Iyer and Will [13].

By comparison, very little has been done for strong-
field situations. Gal'tsov [14] has laid the foundations for
strong-field radiation-reaction calculations in the case of
particle motion in the field of a Kerr black hole. His for-
malism is based on the notion of a local, gauge-dependent
radiation-reaction force. However, Gal'tsov's only ex-
plicit calculation of this force was also restricted to weak-
field, slow-motion situations. Anderson and Ori, Finn,
Ori, and Thorne [15] have studied the strong-field transi-
tion between inspiral and plunge motion in Schwarzchild
(and in the equatorial plane of Kerr); however, their anal-
ysis does not require a detailed knowledge of radiation-
reaction efFects. In this paper we present concrete results
on radiation reaction in strong-field situations.

B. The problem, method of solution,
and approximations

We study the effects of radiation reaction on the bound
motion of a particle of mass p, in the geometry of a
Schwarzschild black hole of mass M. Two quantities are
of fundamental interest: the orbit's averaged radius ro,
and the orbit's eccentricity c. The radius ro denotes the
averaged value of the orbit's Schwarzschild radial coordi-
nate; the maximal value of the orbital radius defines the
eccentricity: r „=ro(1+ E:). More precise definitions
of ro and e will be given in Sec. II. We shall suppose that
both the eccentricity e' and the mass ratio p/M are much
smaller than unity. However, we do not suppose that the
radius ro is large, so our analysis includes strong-field
situations.

We adopt the Teukolsky perturbation formalism [16],
and consider the linear gravitational perturbations asso-
ciated with the motion of the particle. The perturba-
tions are described in terms of the complex Weyl scalar
@4, which becomes radiative at large distances from the
source. The rates of loss of orbital energy E, and orbital
angular momentum I, due to gravitational radiation, can
be calculated by solving the Teukolsky equation.

The secular evolution (the evolution over time scales
much larger than the orbital period) of ro and z can be
determined from the knowledge of E and L, where an
overdot denotes time differentiation followed by an aver-
age over several orbital periods. In particular, the fol-
lowing relations can be derived (Sec. II): To = to(TO, L)

and s = s(E', rp, E, L). We shall use the perturbation
formalism to calculate the rates of loss of energy and an-
gular momentum. These calculations are performed (i)
analytically, for the special case of weak fields and slow
motions, and (ii) numerically, for the general case.

Our calculations are restricted to small eccentricities,
e « 1. The work presented in this paper can therefore
be interpreted as a stability analysis: A circular orbit
with radius ro is slightly perturbed and acquires a small
eccentricity c. The orbit evolves because of radiation
reaction; the sign of i determines whether the perturbed
orbit is driven more circular, or more eccentric, Circular
orbits are thus stable if i ( 0, and are unstable if i &
0. Previous studies have shown that circular orbits are
always stable in weak-field, slow-motion situations [11,
12]; our own study confirms this, and also determines
whether this remains true in strong-field situations.

Recently, and independently of us, Tanaka et al. [17]
numerically calculated the gravitational wave forms, and
the fluxes of energy and angular momentum at infinity,
for orbits with arbitrary eccentricities. The differences
between their analysis and ours are significant. Tanaka
et aLt. are mostly concerned with what can be observed at
infinity, and are not much concerned with radiation re-
action. In particular, they do not calculate the fluxes of
energy and angular momentum at the black-hole horizon,
which we do here, and which is important for radiation
reaction. We have become aware of the work by Tanaka
et al. very shortly before submitting this paper for pub-
lication.

Our calculations are also restricted to small mass ra-
tios. This condition comes from two requirements: (i)
that the gravitational perturbations be small enough to
be linear, which implies p/M « 1 and (ii) that the adi
abatic approximation be valid. The adiabatic approxi-
mation supposes that radiation reaction takes place over
a time scale which is much larger than the orbital pe-
riod. We shall show below (Sec. IV F) that this implies
a restriction on p/M; this restriction is not severe at
large distances, but becomes p, /M « (1 —6M/ro) ~ for
To approaching 6M. The adiabatic approximation must
therefore break down at ro = 6M, where, even without
radiation reaction, circular orbits become unstable.

The adiabatic approximation is a fundamental feature
of our analysis. It allows us to suppose that, over time
scales comparable to the orbital period, the motion of
the particle is, in fact, geodesic; nongeodesic behavior
becomes noticeable only over much larger time scales.
Moreover, the motion is also strictly periodic, and, con-
sequently, the gravitational waves have a well-resolved
frequency spectrum; the waves' frequencies change ap-
preciably only over time scales much larger than the or-
bital period. Our problem is therefore one for which we
first determine the rates of loss of energy and angular
momentum for the slightly eccentric, geodesic motion of
a particle around a Schwarzschild black hole, and then
use these rates to infer the slow evolution of the orbit.

C. The results

Our analysis first allows us to prove that, if the par-
ticle's orbit is strictly circular (z = 0), then radiation
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rpi ding
c rp

r'o 5 d lnro
(1.2)

and which can be interpreted as the ratio of the inspiral
time scale ro/~r'p~ (the time scale over which the orbital
radius rp changes appreciably) over the circularization
time scale s/~s'~ (the time scale over which the eccen-
tricity changes appreciably). Hy virtue of the adiabatic
approximation, both time scales are much larger than the
orbital period. A plot of c(rp), obtained numerically, is
given in Fig. l.

For large rp (weak-field, slow-motion), c(rp) can be
calculated analytically (Sec. V A) and takes the form

~6 )
~ I ~ I I ~ ~ I ~

)
~ 1 ~ I

) ~ I ~ I1.

1.58—

1.56—
0

0
1.54—

reaction produces a strictly circular evolution. In other
words, circular orbi ts remain circular under radiation re-
action. Previous proofs of this statement were restricted
to weak-field, slow-motion situations [11,12]; our proof
is valid both for weak and strong fields.

If the eccentricity is small but not identically zero, our
analysis shows that radiation reaction (i) decreases the
eccentricity if ro is larger than a certain critical value r,
and (ii) increases the eccentricity if rp is smaller than

(This behavior was also discovered in Ref. [17].)
Thus circular orbits are stable if rp ) r„and unstable if
rp K r, . The point ro ——r, corresponds to i changing
sign; we have estimated numerically that

r, /M 6.6792.

Our results are most conveniently presented in terms
of the dimensionless quantity c(rp), defined as

c(rii —+ 6M) —
4 (1 —6M/r p) (1.4)

and therefore grows to arbitrarily large, negative values.
This behavior is a consequence of the fact that circular
orbits, even without radiation reaction, become unstable
at ro ——6M. We recall that the limit ro ~ 6M must be
taken with care, in view of the adiabatic approximation;
orbits arbitrarily close to ro ——6M can be considered at
the price of taking p/M sufficiently small.

Equations (1.3) and (1.4) are derived analytically, and
imply that c(rp) must change sign at some radius rp ——

r, . We have therefore provided an analyticat proof that
circular orbits are stable in the range ro ) r, & 6M only.
However, a numerical calculation is necessary to show
that c(rp) changes sign only once, and to determine the
value of r„Eq. (1.1).

The complete evolution of the eccentricity, so long as it
remains small, can be obtained by integrating Eq. (1.2).
It is most convenient to parametrize the evolution with
ro, and to express the eccentricity in terms of the function
p(rp, r, ), defined as

~(rp) "c(ro')
p(ro, r, ) = ln =, dro',

s(r, ) „, rp'
(1.5)

where r, is some initial radius. If ro and r, are both much
larger than 6M, then Eqs. (1.3) and (1.5) imply

p(ro, r;) = a(rp/M) —n(r, /M),

where

c(ro) = 1 [1 3215v2 + 377 v3 + O(v4)]

where v = (M/rp) / (( 1 acts as a post-Newtonian ex-
pansion parameter. The leading-order term of Eq. (1.3)
corresponds to a Newtonian calculation of the orbit, to-
gether with the use of the quadrupole formula to deter-
mine r'p and i [11]. The first-order correction (at post-
Newtonian, v, order) corresponds to post-Newtonian
corrections to the orbital motion. The second-order cor-
rection (at posts/2-Newtonian, v, order) corresponds to
eKects due to the propagation of the gravitational waves
in the field of the black hol"- "fFects associated with the
tails of the waves.

For values of rp approaching 6M (highly relativistic
situation; Sec. V B), c(rp) behaves according to

19 S215 —1 377 -3//2
( ) 12 + 3192 1288 (1.7)

1.58— If, on the other hand, ro is very close to 6M, but r, ))
6M, then Eqs. (1.4) and (1.5) imply

ll ~ s e i I i e i s I s a ~ i I ~ i a a

1 1.5 8.5
log r /M

FIG. l. A plot of c(rp), as defined in Eq. (1.2), as a func-
tion of logip rp/M. Shown is the range 10 & rp/M ( 1000, in
which c(rp) has the most interesting behavior. For rp/M )
1000, c(rp) is well approximated by Eq. (1.3), and approaches
the value 19/12 1.5833 as rp tends to infinity. The function
c(rp) changes sign at rp = r, 6.6792M, and approaches
minus infinity when ro —+ 6M, in a way well described by
Eq. (1.4).

p(rp, r;) = —
4 ln(rp/6M —1).

The behavior of p(ro, r, ), for r, arbitrarily fixed to 100M,
is depicted in Fig. 2. Prom this curve one can easily infer
the corresponding p(rp, 'r, ) for any r, ( 100M.

As one sees from Fig. 2, during the weak-Beld, slow-
motion phase of the orbital evolution, the eccentricity
is reduced by many orders of magnitud" the orbit be-
comes essentially circular. The eccentricity reaches a
minimum value when ro ——r„and then starts increasing.
Eventually, if the mass ratio p, /M is arbitrarily small and
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C)
Q

0

I I I I I I I I I

1 1.5
iog~o r,/M

FIG. 2. A plot of p(rp, r, ), as defined in Eq. (1.5), for r, =
100M, as a function of logip rp /M. The curve may be contin-
ued, both to the left and to the right, using the analytical es-
timates (1.6)—(1.8). For example, q(1000M; lOOM) 3.6392.
The function p(rp, r, ) has a minimum at rp = r, 6.6792M,
and grows to plus infinity when ro —+ 6M. Horizontal lines in-
tersect the cur~e at two distinct points (Tp = Ti and rp = r2)
for which the eccentricity is equal, e(ri) = e(r2).

the adiabatic approximation holds, the orbit shrinks to a
radius ro for which the eccentricity becomes equal to its
initial value; in general this occurs very close to 6M, as is
indicated on the graph. For reasonable mass ratios, how-
ever, the eccentricity has not increased by much by the
time the adiabatic approximation breaks down. As an
example, consider a solar-mass object spiraling around a
10 Mo galactic black hole; this example is particularly
relevant to space-based gravitational-wave detectors [9].
For p/M = 10 s, the adiabatic approximation becomes
invalid in the vicinity of rp ——ri, where ri/M = 6.002;
our numerical results then imply s(ri)/s(r, ) 4.0. For
such binary systems, the inspiral time from ro ——r, to
rp = ri is of the order of 2 yr. For p/M = 10 s, the
ratio of the eccentricities is only increased by a factor of
2.

D. Organization of the paper

The remainder of this paper is devoted to deriving the
results quoted in the preceding subsection. We begin
with a precise formulation of the problem in Sec. II. We
first provide definitions for the quantities ro and e, and
then derive the evolution equations rp = rp(rp, I), s =
s(s, rp, E,I). Two conditions which ensure that i oc z
are imposed, and are justified in later sections. The first
condition is that, for circular motion, gravitational waves
carry energy and angular momentum in such a way that
E/I = 0 = (M/rp ) ~; the second condition is that
corrections to E and L, due to nonvanishing eccentricity,
are second order in z. The fact that i (x e implies that
circular orbits remain circular under radiation reaction;

the stability of circular orbits depends on the sign of the
proportionality factor.

We present a brief summary of the Teukolsky pertur-
bation formalism [16] in Sec. III. First, the inhomoge-
neous Teukolsky equation, and its formal solution, are
described in detail. Then we explain the method for ex-
tracting, from the solution, the gravitational wave forms,
and the rates at which the waves carry energy and angu-
lar momentum. The section is concluded with a proof,
valid for arbitrarily strong fields, that E/I = 0 for cir-
cular orbits.

The calculations relevant for slightly eccentric motion
are presented in Sec. IV. The first step consists of inte-
grating the radial and azimuthal geodesic equations; the
integration is carried out to second order in the eccentric-
ity. This calculat, ion is presented in Sec. IVA and Sec.
IVB overs an overview of the remaining steps. The form
of the results obtained for r(t) and P(t) allows us, in Sec.
IV C to (i) identify the frequency spectrum of the gravita-
tional waves, (ii) witness important simplifications, and
(iii) prove that corrections to E and I are second order in
the eccentricity. All of this may be achieved without per-
forming detailed calculations; instead, all computations
are kept at a schematic level. These schematic calcula-
tions are pushed even further, in Sec. IVD, to derive
expressions for r'p and pi/s; this allows us to witness
more cancellations, which greatly simplify the problem.
The detail of the remaining calculations are presented in
Sec. IV E. Conditions on p /M, which ensure the validity
of the adiabatic approximation, are formulated in Sec.
IV F.

We present our analytical and numerical results in
Sec. V. We first consider the weak-field, slow-motion
(rp » 6M) limit of our formalism, and derive post-
Newtonian expansions for the quantities of interest. This
analysis yields Eq. (1.3) above. We then consider the
highly relativistic (Tp —+ 6M) limit of the formalism,
which is also tractable analytically. This analysis yields
Eq. (1.4) above. In situations where rp is neither very
large nor very close to 6M, our equations must be inte-
grated numerically, which we describe next. Our numer-
ical analysis yields Eq. (1.1) above, as well as the graphs
presented in the figures.

We conclude in Sec. VI with a recapitulation of our
fundamental results, and a discussion of our approxima-
tions.

Throughout the paper we use geometrized units in
which the speed of light and the gravitational constant
are set equal to unity. Most of the paper is essentially
self-contained, except for Sec. V, which relies heavily on
previous papers in this series. These previous papers
are concerned with purely circular orbits; paper I [18]
is devoted to analytical methods, while paper II [19] is
devoted to numerical methods. Both analytical and nu-
merical methods are utilized in this paper.

II. FORMULATION OF THE PROBLEM
A. De6nition of ro and e

Timelike geodesics in the Schwarzschild geometry obey
the equations
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dt/dr = E/f,
dP/dr = L/r,
(dr/dr) + V(I, r) = E,

(2 1)
Equation (2.3) implies rp = rp(I), while Eq. (2.4) implies
e = e'(L, E).

where r is the particle's proper time; E = E/p and L =
I /p are, respectively, the specific orbital energy and an-
gular momentum. We have also introduced f = 1 2M/—r
and V(L, r) is the efFective potential for radial motion:

V(L, ) =f(1+L'/") (2.2)

We suppose that the motion takes place in the equato-
rial plane, 9 = a/2, and near a minimum of the potential
V(L, r). We define the radius r = rp to be the position
of this minimum; since OV/Br~„« ——0—, we have

I =M v (1 —3v) (2.3)

where v = (M/rp)1~2. Radial motion corresponds to
small oscillations about r = r0.

We define the eccentricity e so that r = rp(1+ e) is

a turning point of the radial motion, at which E
V(I, r) This .equation can be expanded in powers of
e, which yields

B. Radiation reaction —evolution of rp and e

The results of Sec. IIA imply that the knowledge of
the rates of loss of energy and angular momentum, due
to gravitational radiation, is sufBcient to determine the
evolution of both rp and e. We are interested in the
secular evolution of these quantities —the evolution over
time scales much larger than the orbital period. The
secular evolution is well defined, and can be unambigu-
ously calculated. In contrast, the short-term evolution is
not so well defined, because gravitational waves cannot
be localized in a region of spacetime smaller than a few
wavelengths [3]. To perform a time averaging over sev-
eral orbital periods is therefore a fundamental feature of
our calculations. We shall henceforth denote by an over-
dot the operation of time differentiation followed by an
average over several orbital periods; thus Q = (dg/dt),
for any quantity Q.

An evolution equation for r0 is obtained by using
Eq. (2.3) to calculate pr'0 = (drp/dI)L, which yields

(1 —3v )E = (1 —2v ) + v (1 —6v )e
—2v (1 —7v )e +O(e ). (2 4)

~'0 = 2(1 —3v2)s~'v(1 —6v') 'i. (2.5)

Similarly, one may use Eqs. (2.3) and (2.4) to calculate
pe = (Oe/BE)E+ (K/M)L, which yields

1 (1 —2v2) (1 —3v ) ~ v (1 —6v2) 2 s 1 —12v + 18v4
(2.6)

E(GW) E(0) + eE(1) + e2E(2) + O(es) (2 7)

E( ) corresponding to circular motion. Similarly, we
write I = —L(G~) and

L(Gw) L(0) + L(1) + 2L(2) + O( 3)

In Secs. III C and IV C below, we will show that

E(0} gL (0) E(1) L(1) 0

(2.8)

(2 9)

which implies that the lowest-order corrections to E(G~)
and L( ~) are second order in the eccentricity.

Substitution of Eqs. (2.8) and (2.9) into (2.5) implies

p, r'0 = —2M(l —3v ) v (1 —6v ) E
+O(e ); (2.10)

the evolution of r0 is therefore dominated by the circu-
lar limit of Eq. (2.5), and corrections due to the small
eccentricity can be ignored.

Substitution of Eqs. (2.7), (2.8), and (2.9) into (2.6)
yields important cancellations, and the final answer is

where 0 = v/rp = (M/rps) ~ .
The rate of loss of orbital energy is equal to minus the

rate at which gravitational waves carry energy. We there-
fore write E = —E( ), and expand E( ) in powers of
the eccentricity:

pe= —e(l —2v )(1 —3v )'i v (1 —6v )
x Ig(v)E(0) + E(2) —ni(2) + O(e2)

2 —27v' + 72v' —36v'

2(1 —2v2) (1 —6v )
(2.12)

III. THE PEBTUB.BATIQN FQRMALISM

This section contains a brief summary of the relevant
equations. More detail can be found in paper I [18], and
in the references quoted herein.

Thus the calculation of pi requires the computation of
E(G } and L(G ), accurately to second order in the ec-
centricity. Because of the crucial relations (2.9), pe is
itself linear in the eccentricity.

Equations (2.9) are therefore the key to the proof that
circular orbits remain circular under radiation reaction,
since Eq. (2.11) implies e(e = 0) = 0. The problem of
determining the evolution of r0 and e is now equivalent to
that of calculating E(0), and the pieces of E( ) and L( )

which do not cancel out when the combination E( )—
AL(2) is constructed.
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A. The Teukolsky equation

r 4'4 —— (ku) R„g (r) 2' (8, $)e ' ',

where, Yg (8, P) are spin-weighted spherical harmonics
[20]; the sums over E and m are restricted to E& —m & I
and l & 2. The radial function R~g~(r) satisfies the
inhomogeneous Teukolsky equation [16)

Gr f —2(r —M) —+ U(r) R„g (r) = T g (r),-

with

(3 2)

U(r) = f (ur) —4ia(r —3M) (3.3)

where A = (I —1)(E + 2).
The source term in Eq. (3.2) is calculated from the par-

ticle's stress-energy tensor T ~(x) = p f dr u~u~b~ ~ [x-
z(r)], where x is the spacetime point, z(r) the parti-
cle's trajectory with tangent u = dz~/dr, and r is the
particle's proper time. The first step is to construct
the projections OT = T pn n/, ~T = T tsn m/, and

2T = T pm m . Then one calculates the Fourier-
harmonic components, T q (r) according to

The stress-energy tensor associated with the mo-
tion of a particle perturbs the gravitational field of
a Schwarzschild black hole. The gravitational per-
turbations are described by the Weyl scalar 44
—C /3~~n~m/n~m~, where C~p~~ is the Weyl tensor,
n = 2(1, f,—0, 0), and m = (0, 0, 1, icsc—8)/~2r;
throughout we denote comple~ conjugation with an over-
bar. At large distances, @4 describes outgoing gravita-
tional waves; at the black-hole horizon, 44 describes in-
going waves.

The Weyl scalar can be decomposed into Pourier-
harmonic components according to

1 OO

»P~ Q„g 2M

R e (r)T I (r)
r4f 2 (3.8)

which we now derive. We use the fact that u = 0,
which implies, T = (—1)',T; substitution into Eq. (3.4),
using, Yg (8, P) = (—1)'+,Yz (8, P), then yields
,T ~,r, (r) = (—1),T g~(r). It follows from this and
Eq. {3.5) that T ~,r ~{r) = (—l)~T~r~(r). The homo-
geneous Teukolsky equation is invariant under complex
conjugation followed byes ~ —w, so R '

&(r) = R
& (r)

and Q'"
z

——Q'"z. Equation (3.9) finally follows from
Eq. (3.8).

B. Wave forms; energy and angular momentum
fluxes

At large distances, the two fundamental polarizations
of the gravitational waves, h+ and hx, can be obtained
from Eqs. (3.1) and (3.6); they are

2p
h+ —&tix = ).-2'r

Em
—OO

~ gH —iwu
wAn ~ (3.10)

where the functions R~&(r) and R &(r) are solutions of
the homogeneous Teukolsky equation. R &(r) is the so-
lution with boundary conditions corresponding to ingo-
ing waves at the black-hole horizon, RH&(r ~ 2M)
(wr) f e '~"; R+&(r) represents a superposition of in-
going and outgoing waves at large radii, R~&(r ~ oo)
Q'"r(cur) 'e ' " + Q r'(~r)se' " . R ~{r) is the solu-
tion with boundary conditions corresponding to outgo-
ing waves at infinity, R~&(r ~ oo) (~r) e'~"*; R~&(r)
represents a superposition of ingoing and outgoing waves
at the horizon.

The amplitudes Z
&

satisfy the identities

(3.9)

1,Tg (r)=
27'

dt dA,T,Yg~ (8, P)e'~, (3.4)

where u = t —r* represents retarded time. The transverse
traceless gravitational-wave tensor is

where dA is the element of solid angle. The source is
h b

—(h+ ihx)rn~mb+ (h+ + ihx)m~mb (3.11)

T~q~(r) = 2ir( 2[A(A+ 2)] ~ r OT~g~(r)

+2(2A) ~ r fl:r f i iT g (r)
+rflr f Zr 2T g (r)), (35)

R g (r ~ oo) pu)2Z ~
rse' ", (3.6)

where r* = r + 2M ln(r/2M —1), and the solution near
the black-hole horizon is

where l: = fd/dr +i~.
The inhomogeneous Teukolsky equation (3.2) can be

integrated by means of a Green's function [21]. The so-
lution at large radii is

ZHq ——) ZP"6(u) —~A,.), (3.12)

and

The rates at which gravitational waves carry energy
and angular momentum to infinity can be calculated
from the Isaacson stress-energy tensor [22], which is con-
structed from hTbT. An alternative but equivalent method
involves reading oK the multipole moments of the radia-
tive field, as defined by Thorne [23], and using the rele-

vant equations of Ref. [23] to calculate E~ and L~. To
present the results we now specialize to the case consid-
ered in this paper, in which the frequency spectrum of
the waves is characterized by a discrete set of distinct
frequencies ~I, . Then

R g (r~2M) pw Zq~r f e

The amplitudes Z &' are defined by

{3.7)
(3.13)
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2i-= —")4''
Emk

'[z""~' with the radial equation. Equations (2.1) imply
(3.14)

(dr/dt) 2 + U(E, L, r) = 0, (4 1)
The rates at which the black hole absorbs energy and

angular momentum can be calculated along similar lines
[24]. From @4(r ~ 2M) one recovers the gravitational-
wave tensor, from which the Isaacson stress-energy tensor
is calculated. The calculation of the fluxes then repro-
duces the results of Teukolsky and Press [25], which were
derived in a completely different manner:

where

U(E, L, r) = (f/E) [V(L, r) —E ]

Our strategy is to expand r(t) according to

(t) =, 1+ (('&(t)+ '(('l(t)+0( '),

(4.2)

(4 3)

for

2

~ k
2

LH & ) ~~Z
4zM (dk

(3.i5)

(3.16) (4.4)

where

and to similarly expand U(E, L, r), using Eqs. (2.3) and
(2.4). Collecting terms of equal order in s yields (i) a
differential equation for ((~l(t),

(d$('l/dt) = A„(1—(('l 2)

Z g
= ) Zg b((d —Cdy).

k

We have introduced

(3.17)
(4.5)

is the radial frequency, the fundamental frequency of ra-
dial motion, and (ii) a linear difFerential equation for
(("(t)

2i2 1 + 4(Mcus) 2 1 + 16(M(ug) - (M~g) .
A(A + 2) + 144(M~g)2

(3.18)
The total rates of loss of energy and angular momen-

& = Z~+/0 andL, ~ ~~ =L,~+L,~

Z q' ——Aq
' b(u) —mA), (3.19)

which is a special case of Eqs. (3.12) and (3.17), with
wg = mA. Equations (3.13)—(3.16) then yield

2

E = AL = ) (mA)2~AP ~2 (3.20)

C. Proof that E~ & = AI & &

For circular motion, the particle's stress-energy tensor
is proportional to 6'(P —At). Equations (3.4) and (3.5)
then imply T r oc b(u —mA) —the wave frequency cu

is a harmonic of the orbital frequency A. Equation (3.8)
further implies Z

&
oc b(~ —mA), so that we can write

(( l (t) = cos A„t, (4 7)

where the time origin is chosen so that r(t = 0) = rp(1+
s). Substitution of Eq. (4.7) into (4.6) then yields, after
integration,

(( (t) = qq(v)(1 —cos A„t) + qq(v)(1 —cos 2A„t),

(4.8)

where qz(v) = (1 —7v )(1 —6v ) and q2(v) = (1—
llv2 + 26v4) [2(1 —2v )(1 —6v )]

Integration of the azimuthal equation proceeds along
similar lines. Equations (2.1) imply

(~) (2) ' —"' '"'
(~)

A„~ dt dt 1 —6v2 1 —2v2

+ 1 —11v + 26v4 (i)s
(1 —2v2) (1 —6v2)

(4 6)
Equation (4.4) can be integrated to give

2Z" = AL" = ",) ~,~AP ~' (3.21)
d4'/« = (L/@)(f/ ') (4.9)

which may be expanded in powers of s using Eqs. (2.3),
(2.4), (4.3), (4.7), and (4.8). Integration then yields

where ag = nz (u~ = mA). Finally, Eqs. (3.20) and (3.21)
imply E~ ~ = AL~O&. Notice that the proof does not
require the explicit calculation of A&

' . The key to the
proof is the observation that for a mode of given m and
cup, F ' /L = w&/m. This property is very general
and holds for arbitrary fields; cf. Ref. [26].

IV. GRAVITATIONAL WAVES PROM
SLIGHTLY ECCENTRIC MOTION

A. First step —slightly eccentric motion

The erst step of the calculation consists of solving the
geodesic equations for slightly eccentric orbits. We begin

P(t) = Apt —~pg(v) sin A„t + s pg(v) sin A„t
+s ps(v) sin 2A„t + O(ss), (4.10)

where

pq(v) = 2(1 —3v )[(1 —2v )(1 —6v ) ~
]

pg(v) = 2 (1 —3v2)(l —7v~)

x[(1 —2v )(1 —6v ) ]

ps(v) = (5 —64v + 250v —300v )

x[4(1 —2v ) (1 —6v ) /
]
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and

3(1 —3v~)(l —8v~) 2

2(l —2v~) (1 —6v2)
(4.ii)

is the azimuthal frequency, the fundamental frequency of
azimuthal motion. That Ay g A„reflects the fact that
eccentric orbits in Schwarzschild are not closed.

B. The remaining steps —an overview

The next steps of the calculation consist of (i) substi-
tuting the results of the preceding subsection into the
expression for the particle's stress-energy tensor,

u u~
T ~ =p, 6[r —r(t)]b(cos8)b[P —P(t)], (4.12)

(ii) constructing the i «ojection s, T, and (iii) expanding
to second order in the eccentricity. In particular, we must
expand r —r(t) about r —ro, thereby introducing deriva-
tives of the radial 6 function; and expand P —P(t) about
P —Apt, which introduces derivatives of the azimuthal b

function.
The next task is to obtain the Fourier-harmonic com-

ponents, T g (r), using Eq. (3.4). The integration over

P implies that the derivatives of b'(P Apt) are inte—grated
by parts, and the nth derivative of b(P —Apt) is therefore
equivalent to (im)"6(P —A~t).

Once the source to the Teukolsky equation has been
evaluated using Eq. (3.5) we calculate Z z' using
Eq. (3.8). Since the source has support only at r = rp,
the integration can be performed analytically, and in-

volves several integrations by parts. As a result, Z &'

can be expressed as a function of (i) ro, (ii) the functions
R

& (r) and their derivatives at r = ro, and (iii) the
coefficient Q'"&.

In weak-field, slow-motion situations (ro large), the an-
alytical techniques developed in paper I [18] may be used
to calculate, approximately, R &(r) and Q'"&. The result
is an analytical expression for Z &, valid for ro )) 6M.
Since E~/E and LH /L are of order vs and hence
very small [14, 27], the weak-field, slow-motion calcula-
tion does not require the computation of Z

&

In a strong-field situation, R
& (r) and Q'"& must be

obtained, for a given value of ro, by numerically integrat-
ing the homogeneous Teukolsky equation. The result is

then a numerical expression for Z &', valid for that value
of rp.

Once Z &' has been obtained we observe that the
continuous sum over u reduces to a discrete sum, as
in Eqs. (3.12) and (3.17). We then calculate E~Gw)

and LlG ) with the help of Eqs. (3.13)—(3.16). Finally,
Eqs. (2.10) and (2.11) are used to calculate r'o and s/s.

C. Frequency spectrum, simpliBcations, and
proof that ~(1) L (&) O

Each step of the calculation, as outlined in the pre-
ceding subsection, would require an extremely long and
tedious computation if some remarkable simpli6. cations
did not occur along the way. These simplifications arise
because of the following. (i) The gravitational waves pos-
sess a frequency spectrum characterized by a discrete set
of frequencies. As in the circular case, the waves have
frequencies equal to the harmonics of the azimuthal fre-
quency, w = mAy. However, a small eccentricity also
implies the existence of side bands [28], at w = mA~ +A„
and u = mAy + 2A„. (ii) The calculation of ElGw)

and L~Gw) includes a time averaging, which causes a
large number of terms to vanish. In particular, all O(c)
terms average out, as do most O(r ) terms. And (iii)
the calculation of d/s only requires the computation of
E&2~ —AX~2~, which also generates important cancella-
tions.

We now look more closely into the nature of the waves'
frequency spectrum. The calculation of,T~g~(r) was
outlined in Sec. IVB. After the angular integration
has been performed, it is clear from Eqs. (4.7), (4.8),
(4.10), and (4.12) that the next step is to integrate over
time terms which are proportional to (i) e'~ ~ i)', (ii)
e+iQ t&i(w —mAi, )t and (iii) &+2iii„t&i(ur —mAy)t

clear that the terms with dependence (i) are dominantly
O(P), while the terms with dependence (ii) are dom-
inantly O(s), and the terms with dependence (iii) are
dominantly O(ss). Correspondingly, time integration
yields terms which are proportional to (i) 6(u —mA~),
with magnitude O(s ), (ii) b(u —mA~+ A„), with mag-
nitude O(e'), and (iii) b(cu —mA~ +2A„), with magnitude
O(s2). Finally, Eqs. (3.5), (3.8), and (3.10) imply that
the gravitational waves possess the frequency spectrum
described previously.

Our schematic considerations can be pushed further.
It is indeed clear from the results obtained thus far that
Z &' must have the structure (we momentarily remove
the H, oo subscripts for the sake of clarity)

—)s 2+g b(~ —~+)s+ Og ~(~ —w )& + DI 6(u —w )e

+D~+ 6(w —a+)s + E~ 6(a —~ 2)s + E~+ f(~ —~+2)s2 + O(ss) (4.i3)

~p + ~r ~
and ~+2 = m~y + 2A„. The various coefBcients of the 6 functions Ore expected

to be complicated functions of (i) ro, (ii) R
& (r) and their derivatives at r = ro, and (iii) Q' . All these coefficjents

can be calculated with the help of the equations presented in this and the preceding section; however, we shall now
show that only a small number actually need be calculated.

Substitution of Eq. (4.13) into (3.13)—(3.16), using (3.12) and (3.17), yields
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E = ) ~ (AP +»0
(

+
(

'B-z P»~+ ( +) (~B~ +(2»2+0(»~),
m mem

2 ™
em

Ag
Em

2

0!g (d+
em

(4.14)

(4.15)

(4.16)

(4.17)

where nr = n& (w~ = w~) and a« = a.z" (wi, = coy) The.sek

results teach us that the coefficients D&
' + and E&

'

are irrelevant to our calculation; their contributions van-
ish after the time averaging has been carried out. More
simplifications arise below.

Equations (4.14)—(4.17) imply that corrections to
E(Gwl and L(G l, due to nonvanishing eccentricity, are
second order in e. Thus EI ~ = L~ ~ = 0, as was first
written in Eq. (2.9). The proof that circular orbits re-
main circular under radiation reaction is now complete.

D. Calculation of r'p and ps/s

The calculation of ro is almost complete. Explicit ex-
pressions for A&

' will be given in Sec. IVE; these may
be used together with Eqs. (3.20) and (3.21) to calculate
E(Pl, which is then substituted in Eq. (2.10).

The calculation of ps/s requires the computation of
E( l and E( l —QL( l. In Eqs. (4.14)—(4.17), a number
of terms are explicitly second order in the eccentricity;
others are O(z~) only implicitly, by virtue of the fact
that Ay = A(1 —AAs~), where AA can be read off from
Eq. (4.11). To make all dependence on s explicit we now
adapt our notation so that ~~ = mA + A„and write

IA&
'

I

= (mA) IA&
'

I
+ O(e2). It follows that

the quantity E~ ~ —AL~ ~ + LAE& ~ only requires the
calculation of the coefBcients B&

' +. With the he p of
Eq. (2.11) we finally obtain

with v = (M/rp)'~2.
Equations (4.18)—(4.21) imply that the calculation of

ps/z is much simpler than the individual computations,
to second order in the eccentricity, of E~ ~ and L~
Because of the occurrence of important cancellations, the
calculation only requires the computation of B&

' +, and
the leading-order part of A&

' . Computation of all other
coefficients, as well as the O(ss) part of A& ', is super-
fluou.

Because of those various cancellations, the calculation
of ps'/s may now proceed in complete ignorance of the
O(s ) corrections to the motion of the particle. The only
essential correction, the O(e'2) part of Ay, has already
been incorporated into Eq. (4.18). The computation of
B&

' + only requires a calculation accurate to first order
in the eccentricity.

E. Calculation of A&
' and Bz '

The calculation follows the lines of Sec. IVB above.
We find

& ~mTO ~ g

(4.22)

where (we momentarily remove all unnecessary indices
for the sake of clarity)

(1 —2v2)(1 —3v2)'~2 -

„( )
(p)-

v2(1 —6v2)

where I' = I' + I H, with

(4.18)

pA = pafpR,
iA= iafp (2fp+iw~rp)R —fprpR',

(4.23)

(4.19)

where co~ ——mA + A„and
2 o,+ AI'»= B) ~~B +~ — ~~B ~)] 6~M2 + ~ ~m ~ ~m

Em

zA = 2afp [ icu~rp(2 —2v + iw~rp) R
2(fp+i~ rp—)fprpR'+ (fprp) R"].

Here, w = rnA, fp = 1 —2M/rp = 1 —2v, R
R '

& (rp), and a prime denotes differentiation with re-
spe™ctto rp. Also

BH,ook
em

We also have

1 —12v2 + 66v4 —108v6

2(l —2v~)s (1 —6v~)

(4.20)

(4.21)
where

BH,oo+ + BH,oo+ + BH,oo
Em Em

(4.24)
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B+

= pc+ Re —pa( fprp Rg —4V Ry),
pc+ (2 —4v + i~grp)Rp —fprpR~

+ ya (4v —8V + 6'LMcd~ —icd~rp)R~ —fp(l + i&dorp)rpRy + (fprp) Ry
2cy (fprp) R~ —2fp(l —2v + lcdyrp)rpR~ + 2cdyrp(2 —2v + 2(dorp)Ry

2a (fprp) R~' —2iuyrp( fprp) R~ —fp(2 —8v + 8V —10iMuy + 2ud~rp + u~ rp )rpR~
+ 2i~grp(l —6v + 4v —4iMwy + i~~rp)Ry,

(4.25)

with u~ = mA + A„and R~ = R '& (rp). We have introduced

pat~ = A(A+ 2) '

p Yg~(2, 0) 2(1 —2v )(1 —3v ) /

qa~~ =iA qYj~(2, 0) v (1 —2v ) (1 —3v )

2at~ = —2'~(2, 0) v 2(l —2v ) (1 —3v )

where A = (E —1)(E+ 2) and

(4.26)

,c& ——,ag~ 2 —s —2(3 —s)v + i(2+ s)v(l —6v ) + 2m(1 —3v )(1 —6V ) (4.27)

The previous equations imply the following symme-
try properties: Az ' —— (—1) A& ', B&

'

(—1)~B ' +, dfo =0 B ' =B

F. The adiabatic approximation

I

will be presented without much detail.
The calculation of pe/e up through order vs beyond

Newtonian requires the computation of B&
+ for E = 2

and 8 = 3. We may use the symmetry properties of B&
+

and
one

consider non-negative values of m; for m = 0,
only B& 0+ is required. We find

We conclude this section by formulating the conditions
under which the adiabatic approximation holds. The re-
sults of this subsection were summarized in Sec. I B.

We require that the inspirat time scale rp/~r'0~ always
be much larger than the orbital period 2vr/0„. Using
Eq. (2.10) this requirement becomes

BH+22
BH—

22
BH+

2, 1

BH—
2, 1

= (vr/5) v —18+ 27v —54vrv + O(iv, v ),
=(vr/5)'/ v 6+ 7'v +6vrv +O(iv, v ),

(vr/5) / v iv+ 7sc—v—+O(v4)
= O(vs),

1 vs(1 —6v ) / 1
p/M ((

4K (1 3v2)3/2 (M/+)2E(0)
(4.28)

BH+
( /30)1/2 2 4+ 206 2 4 s + O(

~ s 4)

(5.1)

At large radii, rp )) 6M, (M/p)2E~pl 32v~p/5,
and the adiabatic condition (4.28) becomes p/M
(5/128~)v . This is superseded by a wide margin by the
condition p/M (( 1, which ensures that the gravitational
perturbations are linear. Near ro ——6M we may use the
numerical results of Sec. V C and put (M/p, ) E~ l

9x 10-', and Eq. (4.28) becomes p/M && 2.8(l —6v')'/'.
This condition is far more restrictive than p/M (( l.

V. ANALYTICAL AND NUMERICAL RESULTS

A. Weak-Beld, slow-motion case

For rp » 6M and v = (M/rp)~/2 (( 1, the analytical
techniques developed in paper I may be used to calculate,
approximately, R &(r) and Q'" &. The expressions for
these quantities may then be substituted into the equa-
tions of Secs. IV D and E, to obtain pe/e in the form of
a post-Newtonian expansion. As was mentioned previ-
ously, there is no need to calculate E and I, because
they contribute only at order v to the post-Newtonian
expansion [27]. The calculations are straightforward and

BH+33
BH—33
BH+31
BH—

3,1

= (vr/42)' v 64iv+ O(v ),
= (vr/42)' v —24iv + O(vs),
= (vr/70) / v siv+ O(v ),
=O(v ),

E~Pl = E~ 1 —'sss v2+47rv +O(v4) (5.2)

derived in paper I [E~ =
5 (y/M)2V~P is the leading-

order Newtonian expression]; this yields

and Bs + ——O(v ) for m = (0, 2). In the above, the
notation O(iv ) signifies that those terms of order vs,
which are purely imaginary, do not contribute, at order
v, to ~B& +~ . That the coefficients B& z are so small is

due to the fact that, for m = 1, w = 0—A(l —6v2) ~/2 =
3V20+0(v ); since u is suppressed by a factor v2 with
respect to ~+, the resulting B& z is much smaller than
BH+

E, l
We now substitute Eqs. (5.1) into (4.19) and (4.18),

and use the post-Newtonian expansion
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(5.3)

where i~ is the leading-order Newtonian expression,

mdiv/s = —sps4(p/M)2v . (5.4)

Throughout the post-Newtonian regime, v (& 1, i is
negativ" radiation reaction therefore reduces the eccen-
tricity.

Substitution of Eq. (5.2) into (2.10) and use of
Eqs. (5.3) and (5.4) yields Eq. (1.4).

B. Highly relativistic case

Analytical calculations may also be carried out in the
case where rp approaches 6M. Because h(v) diverges
when v~ ~ 1/6, cf. Eq. (4.21), and because both E~Pl

and F have well-defined limits when rp ~ 6M, pd/s is
dominated by the second term on the right-hand side of
Eq. (4.18).

Our claim that E~ ~ is well behaved in the vicinity of
rp = 6M can be substantiated by (i) an inspection of
the perturbation formalism, which shows no sign of a
singularity at rp = 6M; in particular, R

& (r) and Q'"&,

for M~ = mMO = 6 s~2m, are well behaved. And (ii)
with numerical calculations, which confirm the proper
behavior of E~ ~ in the vicinity of ro ——6M.

The proper behavior of I' can be established as follows.
Writing 6 = (1—6M/rp) ~2 (( 1 we first infer the various
b dependence of the relevant quantities. Using the equa-
tions of Sec. IV E we find that the, cg~ are independent
of b, while, c&

——+m, ag 6' + O(6P). Using the fact
that R '& (r) and Q'"

&
are properly behaved, Eq. (4.24)

then implies B&+ ——+kg~6 + k&+ + O(6), where kg

and k&+ are independent of b. The fact that, at leading
order in b, B& and B& differ only by a sign is an impor-
tant aspect of this discussion. [The case m = 0 requires
special thought, since then u~ = +hA, and Eq. (4.24)
suggests that B&+p might be more singular than O(6 i).
However, a careful study of the Teukolsky equation re-
veals that this does not happen. ] The final step is to
substitute our result for Bz+ into Eq. (4.19), and notice
a remarkable cancellation of the leading-order, O(h 2)
terms. Multiplication by 0„=bO then ensures that each
term in the sum over / and m is O(6'P). That I' has a well-
defined limit follows from the fact that the sum converges
for every ro & 6M, which was verified numerically.

Having established that I' and E~ ~ have well-defined
limits when rp approaches 6M, Eq. (4.18) reduces to

(o) , (1-6M/..)-',
for ro ~ 6M.

Substitution of Eqs. (5.5) and (2.10) into (1.2) yields
Eq. (1.4).

C. General case—numerical integration

When ro is neither very large nor very close to 6M,
R '& (r) and Q'"

&
must be calculated numerically. By

performing the integration for a wide range of orbital
radii we obtain pd/s as a function of rp. The numerical
results may then be checked against the limiting cases
(5.3) and (5.5).

We have carried out the numerical integration using a
straightforward generalization of the algorithm presented
in paper II [19] (we shall not repeat the discussion of
paper II here). We have constructed our integrator upon
the Bulirsh-Stoer method, using FORTRAN subroutines
given in Ref. [29]; all operations were performed with
double precision. We have verified that our numerical
results are in agreement with the limiting cases of Secs.
VA and B; this agreement gives us great confidence in
our results, which are summarized in Fig. 1.

It is easy to obtain high numerical accuracy by adjust-
ing the tolerance of our integrator to a very small value;
we have typically chosen a tolerance of 10 s. Although
it is hard to prove, we believe our numbers to be accu-
rate to at least six significant digits. Our estimate of the
critical radius r, (at which d changes sign) should also
be accurate to six significant digits; we have chosen to
quote only five digits in Eq. (1.1).

The accuracy of our numerical results is also subject
to errors of non-numerical origin, which arise because the
infinite sum over 8 must be truncated. The magnitude
of the error thus induced can be controlled by requiring
that the terms ignored contribute to a fractional error no
greater than a certain value (. Since a rnultipole of order
E contributes a fractional amount of order (M/rp) to
E and L [18] we arrive at the following criterion on the
maximal value of E which needs be included in the sum:

„&2 —ln(/ln(rp/M). (5.6)

VI. CONCLUSIDN

We have established in this paper that a particle in
circular motion around a nonrotating black hole remains
on a circular orbit under the inHuence of radiation reac-
tion. Furthermore, we have shown that circular orbits
are stable only if the orbital radius is greater than a crit-
ical radius r, 6.6792M, where M is the mass of the
black hole.

Also, our analysis permits us to follow the evolution,
under radiation reaction, of an orbit s eccentricity, so
long as it remains small. We find that the eccentric-
ity is reduced by many orders of magnitude during the
post-Newtonian phase of the inspiral, but that it starts
increasing once the orbit's radius is smaller than r, . For
reasonable values of p/M, the eccentricity increases by at
most an order of magnitude before the adiabatic approx-
imation breaks down and the particle begins its plunge
toward the black hole.

For example, choosing ( = 10 s yields l ~„= 10 for
rp/M = 6 and l ~„=3 for rp/M = 10s.

The graph of Fig. 2 was obtained by numerically inte-
grating Eq. (1.5), in the range between rp/M = 6+ 10
and rp/M = 100. The integration was performed using
the extended trapezoidal rule, which is accurate enough
for our purposes.
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Our analysis is restricted by four major assumptions:
(i) the black hole is nonrotating, (ii) the eccentricity is
always small, (iii) the gravitational perturbations are lin-
ear, and (iv) the adiabatic approximation is valid. On
the other hand, our analysis is not limited to weak-field,
slow-motion situations; it is valid for particle motion in
strong gravitational fields.

We now examine whether any of our four assumptions
could be relaxed, and at what cost, in future work.

Assumption (i) could be removed without much effort,
that is, our analysis could be extended to the case of a ro-
tating black hole, if and only if the orbit lies in the hole's
equatorial plane. In the more general and more inter-
esting situation of nonequatorial orbits, the formulation
of the problem of radiation reaction would take a signifi-
cantly different form. In such cases, the motion possesses
a nonvanishing value of the Carter constant, whose rate
of change cannot be simply (if at all) related to the rates
of change of energy and (vectorial) angular momentum.
The general analysis would therefore require techniques
more sophisticated than the ones utilized here; for exam-
ple, a numerical implementation of Gal'tsov's formalism
[14].

Assumption (ii) is one of simplicity and could be re-
moved without introducing additional conceptual diK-
culties. For example, a calculation valid to higher order
in the eccentricity could be carried out, at the price of
a modest effort. A calculation valid to all orders in e
could also be performed by numerical integration of the
geodesic equations; see Ref. [17].

Assumption (iii) cannot be removed easily. Strong-
field analyses valid for arbitrary mass ratios would re-

quire either the formulation of a higher-order perturba-
tion theory, or the complete numerical solution of Ein-
stein's equations for the two-body problem. Both ap-
proaches are still a long way into the future. A recent
analysis by Kidder, Will, and Wiseman [30] suggests that
the value of the critical radius r, should increase with the
mass ratio p/M.

Assumption (iv) could be removed (at least par-
tially) by incorporating, at the very beginning, radiation-
reaction effects into the motion of the particle. Thus the
motion would be nongeodesic to begin with, and higher-
order radiation-reaction effects could then be calculated.
These higher-order effects would be quite small at large
orbital radii; but for a given mass ratio, there exists an
orbital radius ro at which the adiabatic approximation
breaks down, and at which higher-order effects would
become important. The breakdown of the adiabatic ap-
proximation, and the transition from slow inspiral to fast
plunge, is discussed in Ref. [15].
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