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Cosmological multi-black-hole solutions
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We present simple, analytic solutions to the Einstein-Maxwell equation, which describe an arbitrary
number of charged black holes in a spacetime with a positive cosmological constant A. In the limit
A=O, these solutions reduce to the well-known Majumdar-Papapetrou (MP) solutions. Like the MP
solutions, each black hole in a A) 0 solution has charge Q equal to its mass M, up to a possible overall
sign. Unlike the A=0 limit, however, solutions with A & 0 are highly dynamical. The black holes move
with respect to one another, following natural trajectories in the background de Sitter spacetime. Black
holes moving apart eventually go out of causal contact. Black holes on approaching trajectories ulti-

mately merge. To our knowledge, these solutions give the first analytic description of coalescing black
holes. Likewise, the thermodynamics of the A &0 solutions is quite interesting. Taken individually, a

~Q~ =M black hole is in thermal equilibrium with the background de Sitter Hawking radiation. With
more than one black hole, because the solutions are not static, no global equilibrium temperature can be
defined. In appropriate limits, however, when the black holes are either close together or far apart, ap-
proximate equilibrium states are established.

PACS number(s): 04.20.Jb, 97.60.Lf

I. INTRODUCTION

In this paper we give simple, analytic solutions to the
Einstein-Maxwell equation, which describe collections of
charged black holes in a spacetime with a positive cosmo-
logical constant A. In the limit of a vanishing cosmologi-
cal constant, our solutions reduce to the well-known
Majumdar-Papapetrou (MP) solutions [1]. For all values
of A 0, individual black holes in the solutions have
charge Q equal to mass M, up to a possible overall sign.
For A) 0, however, this is no longer the condition of ex-
tremality [2]. We study the mechanical and thermo-
dynamic properties of the A )0 solutions, which turn out
to generalize the properties of the MP solutions in in-
teresting ways.

For A=O, the black holes are static. In contrast, the
black holes in a A) 0 solution are highly dynamical. The
black holes ignore one another and follow natural trajec-
tories in the background de Sitter spacetime. The black
holes eventually either merge or move out of causal con-
tact. As far as we known, these solutions give the first
analytic description of coalescing black holes. However,
there are many questions about the causal structure and
dynamics of these solutions which remain to be answered.

The thermodynamics of solutions with A) 0 is also
quite interesting. The black holes in the MP solution
each have vanishing Hawking temperature, and so are in
thermal equilibrium with each other and also with the
background Hat spacetime. With A) 0, the background
de Sitter spacetime has an ambient Hawking temperature
[3]. A single ~Q~ =M black hole actually has a tempera-
ture equal to the de Sitter temperature, and hence would
be in a state of thermal equilibrium with the background
spacetime. The temperature, however, depends on both
the cosmological constant and the mass of the black hole.
Adding more black holes, with differing masses, then,

does not produce a thermal equilibrium state. Indeed,
with more than one black hole, because the solutions are
not static, no global equilibrium temperature can be
de6ned. Approximate temperatures, however, can be
de6ned in the limits where the black holes are either
widely separated or coalesced. A given solution, then,
describes a transition between one state of thermal equi-
librium in the far past and another equilibrium state in
the far future. However, an understanding of the none-
quilibrium thermodynamics of the transition between
these states will require further investigation.

II. MA JUMDAR-PAPAPETROU SOLUTIONS

A, =0 ', 0=1++
l rl

&;=+(x —x;) +(y —y;) +(z —z, )2,

(2.1)

We use geometrical units, G =c =A= 1.

In Newtonian mechanics, a collection of charged point
particles, each having charge equal to its mass, ' can stay
at rest in a state of mechanical equilibrium. The electro-
static repulsions of the particles exactly balance the grav-
itational attractions. Remarkably, the same balance
holds in general relativity. The MP solutions to the
source-free Einstein-Maxwell equation correspond to this
Newtonian situation. The MP solutions, themselves, are
geodesically incomplete. Hartle and Hawking [4] showed
how the MP solutions could be analytically extended and
interpreted as a system of charged black holes. The
metric and gauge field for the MP solutions are given by

ds = Qdt +Q (dx +—dy +dz )
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where m; and (x;,y;, z;) are the masses and locations of
the black holes. It can be shown [4] that the points r; =0
actually represent event horizons of area 4am; . For the
case of one black hole, the metric (2.1) is just the extreme
Reissner-Nordstrom metric in isotropic coordinates.

A single Reissner-Nordstrom black hole having charge
equal to its mass is the simplest example of an extremal
black hole. If the charge of the hole were increased (or
the mass decreased) further, then the curvature singulari-
ty would no 1onger be hidden behind an event horizon. If
such a naked singularity arose in a "physical" solution, it
would violate the cosmic censorship conjectures and lead
to a breakdown of predictability. That the Hawking tem-
perature of an extremal Reissner-Nordstrom black hole
vanishes is impressive evidence for cosmic censorship.
The evaporation of a charged black hole terminates when
it reaches the extremal state, leaving the singularity hid-
den. The MP solutions then describe charged black
holes in thermal, as well as mechanical, equilibrium with
temperature equal to zero. A related property is that the
MP solutions are exact ground states of X =2 supergravi-
ty, since all quantum corrections to the effective action
expanded around the MP solutions vanish [6].Analogues
of the MP solutions have also been written down for dila-
ton black holes [7,8]. The individual black holes in these
solutions are also extremal ones.

III. REISSNKR —NORDSTROM —de SITTER SOLUTIONS

There is an analogue of the Reissner-Nordstrom solu-
tion for a spacetime with a cosmological constant. The
Reissner —Nordstrom —de Sitter (RNdS) metric and gauge
field in Schwarzschild coordinates are given by

ds = —V(R)dT +V '(R)dR +R dA
(3.1)

AT= ——,V(R)=1— + ——ARQ 2M Q 1

R R R2 3

where M and Q are the mass and charge of the hole and
A is the cosmological constant. The metric has a curva-
ture singularity at the origin. There are event horizons at
the radii where (R) vanishes. Taking M=Q =0 in (3.1)
gives the static form of the de Sitter metric.

Romans [2] has recently studied the thermodynamics
of these solutions. This is more complicated, because for
A) 0 the de Sitter horizon also radiates at its own tem-
perature [3]. Indeed, Gibbons and Hawking [3) have ex-
tended the laws of black hole thermodynamics to include
cosmological event horizons. The Hawking temperature
for a horizon at radius p is given by

(3.2)

where K is the surface gravity at the horizon. As in the
A =0 case, Romans finds extreme RNdS black holes with

~Holzhey and Wilczek [5] have studied how the evaporation
process for charged dilaton black holes can terminate at an ex-
tremal state, even though the temperature of this state may be
nonzero.

zero temperature, in which the inner and outer black hole
horizons coincide. For A) 0, the extremal black holes
have M ( ~Q~. In Appendix A, we show that, as in the
A=O case [9], it is impossible to destroy the horizon of
an RNdS black hole by throwing in charged particles to
charge it past the extremal limit

Another interesting class of RNdS solutions has the
temperatures of the black hole and de Sitter horizons
equal. Remarkably, these solutions have

~ Q~ =M. The
metric function then has the form

V(R) = 1 — ——AR
M
R 3

(3.3)

The common temperature is given by [2]
1/2

T= —(1—4M &A/3 )
1 A

2~ 3
(3.4)

In the naive picture of black hole evaporation, the
~Q~ =M solutions are thermodynamically stable states
and are the end points of the evaporation process. If
M )

~ Q~, then the black hole is hotter than the de Sitter
horizon and it will evaporate until it reaches M =

~ Q~. If
M ( ~Q~, then the de Sitter horizon is hotter and the
black hole will accrete radiation until it reaches M =

~ Q~.
It is interesting that for A )0 the conditions of extremali-
ty and thermal equilibrium no longer coincide.

We note that the total gravitational entropy of an
RNdS black hole is maximized, for fixed charge and
cosmological constant, in this equilibrium state. The to-
tal gravitational entropy is given by the sum of the areas
of the black hole and cosmological event horizons:

grav 4 ~BH+ 4 ~ds (3.5)

The result then follows from the generalized first law of
thermodynamics given in [3]. For an infinitesimal pertur-
bation between RNdS solutions of fixed charge, the gen-
eralized first law states that

Kds5 3ds KBH5 A BH 0 (3.6)

where Kds and KBH are the surface gravities of the de Sit-
ter and black hole event horizons. The change in entropy
of such a variation can then be written as

(3.7)

3This had been noted previously by Mellor and Moss [10].

Clearly, the entropy is extremized for Kds = —
KBH, which

coincides with the condition that the black hole and de
Sitter temperatures be equal, and happens when

~ Q~ =M.
From the discussion in the previous paragraph, we see
that the extremum is a maximum. This result is in con-
trast with an evaporating Schwarzschild black hole,
where the gravitational entropy decreases. Here, the de
Sitter horizon acts like the walls of a box. The entropy of
the de Sitter horizon measures, in some sense, the entro-
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py of the Hawking radiation carried away from, or ab-
sorbed by the black hole.

IV. MOTION OF TEST PARTICLES

Are cosmological analogues of the MP solutions built
out of extremal or lQl =M black holes? The black holes
in the Mp solution "ignore" one another. We would like
to find some similar phenomenon for charged black holes
in a de Sitter background. To find the right criterion, we
look at the motion of charged test particles in the RNdS
metric (3.1). We will see that the motion of q =m test
particles in a Q =M RNdS background is particularly
simple.

The conserved energy E of a test particle of charge q,
mass m, and four-velocity u' on a radial path in an
RNdS background is

= —P u + A, = V(R) — Ar(R), (4 1)

where P is the static Killing vector and ~ is the proper
time. Together with the normalization condition
u 'u, = —1, this gives the equation of motion

2 2
dR
dv

= —V(R)+ + Ar(R)
m m

(4.2)

Substituting in the gauge field and metric function for a
Q =M black hole, this becomes

2 2 2

1 — + —AR + 1 — . (4.3)
dw R 3 mR

If the test particle has q =m and has energy to equal its
rest mass (i.e. , E = m), then this further reduces to

1/2
dR A

d~ 3
R . (4 4)

V. COSMOLOGICAL COORDINATES

We seek to promote our q =m test particles to black
holes, expecting that they will follow "ingoing" or "out-
going" paths as in (4.4). Such black hole solutions should
be quite complicated in static coordinates. For example,

This in turn is the same as the equation of motion for a
minimum energy test particle in a background de Sitter
spacetime (i.e., Q =M=0). This looks like what we
want. The q =m test particle is, in some sense, not
afFected by the presence of the Q =M black hole. This
hint will turn out to be what we need to guess an exact
solution.

Note that there are two choices for the path of the
q =m test particle in (4.4). It can be either "ingoing" or
"outgoing. " This is in contrast with the A=O case,
where a minimum energy q =m test particle stays at rest
in the field of a Q =M black hole. Choosing one path or
another breaks the time reversal invariance of the system.
We will continue to use the names "ingoing" and "outgo-
ing" to denote these paths below, even though in di6'erent
coordinates they may not look ingoing or outgoing.

A, =Q ', Q= 1+
ar

1/2
AH=+
3

a (t) —eHt (5.1)

For M =0, this is just the standard cosmological form of
the de Sitter metric. We will call the coordinate system
with H )0 expanding and that with H &0 contracting.
The static Killing vector is given by

a —Hr
Bt Br

(5.2)

The norm of the Killing vector vanishes at the hor-
izons, which implies that the de Sitter horizon r+ and the
outer black hole horizon r are located at Har+Q =1,
or

ry= 1
(1—2MIHI+& I —4MIH )

2a (t) IH
(5.3)

There is also an inner black hole horizon at negative r in
these coordinates. Note that the products a(t)r+ are
constants, and also that the metric (5.1) is nonsingular at
r+. One can check that the surface gravity ~ at the two
horizons, defined by

2~.(4'sb) =——&4 (5.4)

yields the correct value (3.4) for their common tempera-
ture.

The transformation between the static and cosmologi-
cal coordinates is given by

a (t)r =R —M, t =T+h (R),
(5.5)

HR
(R —M) V(R)

Integrating this transformation near the black hole and
de Sitter horizons, one finds that the expanding coordi-
nates cover the past black hole horizon and the future de
Sitter horizon. Likewise, the contracting coordinates
cover the past de Sitter horizon and the future black hole
horizon. Thus, the metric (5.1) with H )0 actually de-
scribes the white hole portion of the extended spacetime,
while the metric with H & 0 describes the black hole part.
This can be confirmed by looking at null geodesics. The
two-sphere r =r is an outer trapped surface for H &0.
Null rays cannot get out. For H )0 it is an inner trapped
surface. Null rays cannot get in.

We can look at the paths of q =m test particles in (5.1).
The paths (4.4) that were "outgoing" in static coordinates
stay at constant spatial comoving coordinate in the ex-
panding coordinates, whereas they move out "doubly"

moving charged black holes will generate magnetic as
well as electric fields. However, in cosmological coordi-
nates the motion of such minimum energy particles is
quite simple.

The RNdS solutions can be rewritten in cosmological
coordinates. For Q =M this has the form

ds = O—dt +a (t)A (dr +r dA )
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fast in the contracting coordinates (and vice versa for the
"ingoing" test particles).

It is useful in understanding the new solutions below to
look at the motion of these particles in a little more de-
tail. Consider an "outgoing" q =m test particle in ex-
panding coordinates (H )0). It stays at a constant coor-
dinate radius. The de Sitter and white hole horizons r+,
however, redshift like 1/a. At early times the horizons
are both at large radii and the test particle is inside both.
At some later time the white hole horizon sweeps past it,
and then at some still later time the de Sitter horizon
sweeps past it. In static coordinates, we could follow the
portion of the particle's path between the two horizons.
We would see it leave the white hole horizon at T = —~
and move out to the de Sitter horizon at T =+ ~. Like-
wise, an "incoming" test particle, which stays at a fixed
radial coordinate in contracting coordinates (H & 0),
starts outside the past de Sitter horizon, moves in
through it and then through the black hole horizon. In
static coordinates, this looks like a particle leaving the de
Sitter horizon at T = —~ and getting to the black hole
horizon at T=+ ~.

VI. COSMOLOGICAL MP SOLUTIONS

The metric (51.) for one ~Q~ =M RNdS black hole in
cosmological coordinates closely resembles the MP
metric (2.1) for the case of one black hole. This suggests
a simple form for the cosmological MP solutions:

ds = Qdt —+a (t)Q (dx +dy +dz ),
m,.=Q ', a(t)=e ', Q= 1++
ar,.

(6.1)

«;=+(x —x, ) +(y —
y, ) +(z —z, )2, H =+V'A/3 .

H = — R + (m''vr 'vr ) =——16—r«p"—,
1

g IJ 2

(3)
Hk —— — V; ~k —16m Jk,v'g

(6.2)

where g; and m.;. are the spatial metric and momentum, p
and Jk are the energy and current densities, and E' is the
electric field. For a metric of the form (6.1), if we assume
that B,(aQ) =a then the momentum is given by

Indeed, we will show that more generally a metric and
gauge field of the form (6.1) solve the Einstein-Maxwell
equations with cosmological constant A, if B,(a (t)Q) =a
and V 0=0, where V is the Hat space Laplacian.

First consider the constraint equations. The Hamil-
tonian, momentum and Gauss law constraints on a spa-
tial slice are given by

——V'Q+ g "(V,Q)V Q, (6.4)
a 0 & Q

where g;J, V; are the Aat spatial metric and derivative.
The energy density p has contributions from the Maxwell
field and the cosmological Quid p =p,„+p„,. If
,2, =1/Q, then

8np, „= z 4ga'~(V;Q)VJQ .a'n4 (6.5)

From the expressions (6.3), (6.4), and (6.5), one sees that
the Hamiltonian constraint can be satisfied by having the
"black hole parts" and the "cosmological parts" vanish
separately. That is, one has a solution if

V Q=O and2 8m
pcos (6.6)

Further, the Gauss law constraint is satisfied if (6.6)
holds. Note that (6.6) can be satisfied by any time depen-
dent, but spatially constant, p, ,

Some insight into the nature of the solutions is gained
from the matter equations of motion:
V, (T'",„+T;,",)=0. The time component of this equa-
tion is

1 d a. p„,+3—(p„,+p„,)+ p,„+2—p,„=0 .1 d a

VII. GEOMETRIC
AND THERMODYNAMIC PROPERTIES

The solutions (6.1) with H & 0 appear to describe a sys-
tem of incoming" charged black holes. The solutions

(6.7)

From (6.5) it follows that the Maxwell terms themselves
sum to zero. Therefore, the part involving the cosmologi-
cal Quid must also vanish independently. At this point
there are two choices for a solution. From (6.6), p„, can-
not depend on the spatial coordinates. If p„, is allowed
to be time dependent, then, since A has spatial depen-
dence, the pressure p„, must be spatially dependent.
This makes sense physically; ordinary matter would tend
to accrete around the black hole. The inhomogeneous
pressure is needed to keep the density constant. In the
one black hole case, such solutions have been studied by
McVittie [11] and others (see, e.g., [12]). The other
choice, which we shall make, is to take p„, to be indepen-
dent of time. We then have p, , = —p„,= —A, the form
for a cosmological constant. Again, this makes sense
physically, because a cosmological constant cannot ac-
crete. Finally, we note that the full set of evolution
equations for m, are straightforward to check and yield
no more constraints.

a
vr,, = —2—&gg, (6.3)

Given this simple relation between m;J and the metric, the
momentum constraint in (6.2) is satisfied with zero
current. The three-dimensional scalar curvature is

4An idealized model of a cosmic string, spacetime minus a
wedge, can be embedded in any Bat Robertson-Walker back-
ground since the string does not accrete [13].



5374 DAVID KASTOR AND JENNIE TRASCHEN 47

with H )0 would describe the time-reversed situation; a
system of "outgoing" charged white hole. The first thing
to establish is that the solutions really do contain black
hole (or white hole) horizons. One expects this to be the
case. However, it is not straightforward to locate the
horizons. The solutions, with more than one black hole,
do not appear to have a stationary Killing vector. Thus,
one cannot simply look for the surfaces on which the Kil-
ling vector becomes null. One can look for apparent hor-
izons (boundaries of regions of trapped surfaces) in a
given spatial slice, but this, too, is complicated by the
lack of symmetry.

The situation does simplify for early and late times,
when the holes are either far apart or close together. For
concreteness, consider two "incoming" black holes in a
background with H (0. At early times the holes are far
apart, and near each one the metric approaches that for a
single hole. In this limit, one can verify that there are re-
gions of outer trapped surfaces surrounding each of the
holes. These regions extend out to radii r; given by
(5.3). As time goes on, the universe contracts, and the
coordinate size of each of these apparent horizons grows.
Their shapes will distort due to the presence of the other
hole. At some point in time the two apparent horizons
will collide with one another and presumably merge.
Indeed, in the late time limit one can verify that outer
trapped surfaces surround both of the holes.

To summarize, when H (0, one can show that the two
objects are first surrounded individually by outer trapped
surfaces, and then later there is an outer trapped surface
that surrounds both. For white holes with H )0, the sit-
uation is time reversed. At early times inner trapped sur-
faces surround both objects together. Later on, the ob-
jects are surrounded only separately by regions of inner
trapped surfaces. These results agree with what one ex-
pects from the area theorem. Black holes merge, and
white holes split.

Another question is whether an extension of the solu-
tions with H )0, which covers the black hole portions of
the "outgoing" holes (and likewise for the white hole por-
tions of the "ingoing" black holes with H (0). For the
case of one black hole, (5.5) gives an explicit coordinate
transformation from expanding to contracting coordi-
nates. It appears that making this transformation locally
about one of the "outgoing" holes (as t ~~ ), does indeed
extend the spacetime to cover a black hole horizon.
However, aspects of this transformation are still confus-
ing, e.g., how the difFerent regions fit together. We defer
an explicit presentation to future work.

For the purposes of discussion in this paper, we will as-
sume that the "outgoing" white hole spacetimes are ex-
tendable to coordinates that cover black hole horizons
and past de Sitter horizons. Likewise, the "incoming"
black hole solutions are assumed to be fully extendable.
A related question is whether the black holes must all be
"outgoing" or all "incoming, " or whether there can be
arbitrary combinations of "incoming" and "outgoing"
holes.

Although a full understanding of the thermodynamics
of these solutions must await a better understanding of
their analytic extensions and horizon structures, the ther-

modynarnics appears to be quite interesting. Given that
there is no stationary Killing vector, the usual definition
of temperature in terms of surface gravity at a horizon
(3.2) does not work. Indeed, these solutions appear to be
highly nonequilbrium. Still, as for the horizon structure,
we can give a simple description of the thermodynamic
behavior at early and late times, as follows.

Recall that for one Q =M RNdS black hole, the de Sit-
ter and black hole horizons are in thermal equilibrium at
a common temperature TBH=T~s=T(M, A) given by
(3.4). Now consider two black holes in a de Sitter back-
ground, both satisfying Q =M, but with different masses
M& and Mz. If the black holes are widely enough
separated to be out of causal contact, then each black
hole will have its own distinct de Sitter horizon. Also, in
the region near each black hole there will be an approxi-
mate static Killing vector that can be used to define an
approximate temperature. Each of the black holes will be
in approximate thermal equilibrium with its own de Sitter
horizon at temperatures T(M„A) and T(M2, A) respec-
tively. If the two black holes are "ingoing" with respect
to one another, then this will be the situation at very ear-
ly times. Later the black holes come into causal contact
and eventually merge into a single black hole with mass
M =M, +M2. At very late times, there will again be an
approximate static Killing vector. The black hole hor-
izon will be in equilibrium with the de Sitter horizon at
temperature T(M&+M2, A).

VIII. CONCLUSIONS AND FURTHER QUESTIONS

We have presented solutions to the Einstein-Maxwell
equations with a positive cosmological constant, which
plausibly represent a collection of charged black holes
moving either towards or away from one another. We
have also given a description of the horizon structure and
thermodynamics of these solutions in the early and late
time limits. There is clearly a good deal more work to be
done on these solutions; some of which has been noted in
the previous section.

Let us start with questions about the classical proper-
ties of the solutions. It is important to know whether
these solutions can be fully analytically extended, as has
been assumed above, and to have a clear picture of their
horizon structures. It should be especially interesting to
study the regime in which the black holes are merging
(the white hole splitting). These solutions might give in-
sight into an approximation which treats astrophysically
interesting mergers of black hole binaries. Although,
note that here the mergers take place without any gravi-
tational radiation.

The thermodynamics of the intermediate state, where
the black holes are distinct, but still in causal contact,
should be interesting. Will the masses of the black holes
change due to emission and absorption of Hawking radia-
tion during this periods If so, then they should emerge
from this nonequilibrium state with charges in general
di6'ering from their masses. Eventually then, each black
hole should exchange radiation with the background un-
til it again reaches a Q =M state. A first step towards
understanding the exchange of energy would be to study
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what a particle detector sees, if it follows the path of a
q =m test particle in a Q =M RNdS background.

The splitting and merging of holes raises interesting
questions about the parameter space of A=O solutions.
Extreme RN black holes are regarded a solitons of gen-
eral relativity, satisfying a kind of Bogomolnyi bound
[14]. But in at least one respect they appear to differ
from other solitons. Consider a magnetic monopole in
the Bogomolnyi limit with two units of topological
charge. The solution will have zero modes corresponding
to the possibility of breaking it up into two monopoles,
each having unit topological charge. By analogy, we
would expect an extreme RN black hole to have zero
modes, corresponding to the possibility of breaking it up
into smaller extreme black holes. By the area theorem,
though, this cannot be the case. On the other hand, a
single Q =M RNdS white hole appears to be unstable. It
can be split into any number of charge equal mass frag-
ments, which are then carried apart by the expansion of
the universe. In the limit of zero cosmological constant,
this may correspond to marginal stability of an extreme
RN white hole. This picture is supported by analysis at
the level of test particles. A q =m test particle can stay
at rest in a Q =M RN background, whether it is inside or
outside the event horizon. Hence, there should be analo-
gues of the MP solutions describing merged black holes.

Another interesting set of questions involves supersym-
metry. Multiobject solutions are usually associated with
Bogomolnyi bounds arising from an underlying super-
symmetry of the solution. Romans [2] has noted, though,
that the relevant supersymmetry (coming from N =2
Yang-Mills supergravity) is consistent only with A&0.
Our solutions, then, are not supersymmetric, at least in
this sense. On the other hand, for A & 0, while the Q =M
RNdS holes are supersymmetric, they are also naked
singularities. It should be interesting to see whether
these can also be assembled into multihole solutions and
to understand the role played by supersymmetry [15].
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ds = —V(r)dt +V(r) 'dr +r dA (Al)

with gauge field A, (r) = —
Q jr, the equation of motion

for a test particle (of energy E, rest mass m, and charge q)
on a radial geodesic is given by (4.3):

2

= —V(r)+ [E+qA, (r)]1
(A2)

In order for the particle to get into the hole it must, at
least, reach the event horizon. Looking for the minimum
energy particle which reaches the horizon, we set E =m
and dr/d~=0 at the horizon. At the horizon radius p,
we then have [ V(p) =0]

2

qQ (A3)
mp

)0

This translates to

m) Q
q p

For the extreme RNdS black holes we have [2]

M=p(1 —
—,'Ap ), Q =p (1—Ap ) .

(A4)

(A5)

From these we can compute how the mass and charge of
an extremal hole change with each other. We find

BM 2 Q=+I—Ap =—, (A6)
aQ p'

which coincides with the bound (A4). Hence an extreme
RNdS black hole cannot be pushed over the limit. Given
the nontrivial relation (A5) between the charge and mass
of the extreme black holes, this is a somewhat striking
confirmation of cosmic censorship.

APPENDIX

In Ref. [9], Wald asked whether you can destroy a
black hole by overcharging it. One might think that, by
throwing in particles with a high charge-to-mass ratio,
one could charge the hole past the extremal limit of
Q =M. It turns out [9] that for a charged particle to get
over the Coulomb barrier into the hole, it must have
more energy greater than or equal to its charge.

Here we do the analogous calculations for the extreme
RNdS black holes [2]. For a metric of the form
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