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We investigate here the occurrence and nature of a naked singularity for the inhomogeneous gravita-
tional collapse of Tolman-Bondi dust clouds. It is shown that the naked singularities form at the center
of the collapsing cloud in a wide class of collapse models, which includes the earlier cases considered by
Eardley and Smarr and Christodoulou. This class also contains self-similar as well as non-self-similar
models. The structure and strength of this singularity are examined, and the question is investigated as
to when a nonzero measure set of nonspacelike trajectories could be emitted from the singularity, as op-
posed to isolated trajectories coming out. It is seen that the weak energy condition and positivity of en-
ergy density ensures that the families of nonspacelike trajectories come out of the singularity. The cur-
vature strength of the naked singularity is examined, which provides an important test for its physical
significance. This is done in terms of the strong curvature condition, which ensures that all the volume
forms must be crushed to zero size in the limit of approach to the singularity, and, also, the divergence
of the Kretschmann scalar # =R “®*R,,., is pointed out. We show that the class considered here con-
tains subclasses of solutions which admit strong curvature naked singularities in either of the senses stat-
ed above. The conditions are discussed for the naked singularity to be globally naked. An implication
for the fundamental issue of the final fate of gravitational collapse is that naked singularities need not be
considered as artifacts of geometric symmetries of space-time such as self-similarity, but arise in a wide
range of gravitational collapse scenarios once the inhomogeneities in the matter distribution are taken
into account. It is argued that a physical formulation for the cosmic censorship may be evolved which
avoids the features above. Possibilities in this direction are suggested while indicating that the analysis
presented here should be useful for any possible rigorous formulation of the cosmic censorship hy-
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pothesis.

PACS number(s): 04.20.Cv

I. INTRODUCTION

It is generally believed that a generic gravitational col-
lapse would commence from a highly inhomogeneous ini-
tial state. This will be described in terms of an inhomo-
geneous energy density distribution given as a regular ini-
tial data on a spacelike hypersurface. The general class
of solutions of Einstein’s field equations describing spher-
ically symmetric dust clouds, independent of the homo-
geneity assumption, was given by Tolman [1], which was
further developed and studied by Bondi [2]. This class
could be used to model the gravitational collapse of
matter from general inhomogeneous initial conditions
and one can study the fundamentally important issue of
the final fate of gravitational collapse of a massive star
which has exhausted its nuclear fuel within this frame-
work. The assumptions involved here are the vanishing
pressure and the spherical symmetry of the matter distri-
bution which is in the form of dust. One could argue
that, in the final stages of collapse, the matter distribution
would become almost spherically symmetric, and that the
pressures should play a minor role to justify the dust ap-
proximation. From our view point, however, the main
advantage is that subject to these conditions these models
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allow us to describe the evolution of inhomogeneous dis-
tributions of matter, which offers a very general class for
the study of the gravitational collapse phenomena.

A special case of the these Tolman-Bondi classes of
solutions is the Oppenheimer-Snyder [3] study of a com-
pletely homogeneous dust cloud collapse with zero pres-
sure. This example has been studied in great detail and
has provided much insight towards understanding the
final fate of a continually collapsing massive body such as
a star, which could achieve no equilibrium state because
of the dominance of gravitational forces. This case pro-
vides the basic motivation for the idea of formation of
black holes as the final state of collapse, and the related
cosmic censorship hypothesis [4] which broadly states
that the singularities forming in gravitational collapse
must necessarily be hidden behind the event horizons of
gravity and hence permanently invisible to the outside
observers. This cosmic censorship hypothesis plays a
fundamental role in both the theory and applications of
the black-hole physics and has been recognized as one of
the most important open problems in the general theory
of relativity and gravitation physics today.

As it turns out, despite several attempts no proof or
any precise mathematical formulation of the cosmic cen-
sorship has been available so far. Further, the completely
homogeneous dust collapse mentioned above could also
be viewed as a special case which forms a set of zero mea-
sure in the general inhomogeneous class represented by

5357 ©1993 The American Physical Society



5358

the Tolman-Bondi solutions. It thus becomes imperative
to study the general class of Tolman-Bondi models in
greater detail in order to understand the final fate of a
gravitationally collapsing massive body when the effects
of inhomogeneities are taken into account. In fact, it was
pointed out by the numerical simulations of Eardley and
Smarr [5] that naked singularities not covered by event
horizons arise in the marginally bound Tolman-Bondi
collapse, and subsequently a class of such models was
studied in detail analytically by Christodoulou [6] to
draw the same conclusion. However, these singularities
were shown to be gravitationally weak by Newman [7],
who studied the curvature strengths of such naked singu-
larities and conjectured that nature avoids strong curva-
ture naked singularities.

Our purpose here is to study the Tolman-Bondi inho-
mogeneous collapse for a rather general class of models,
which includes the above classes, and to study the forma-
tion and structure of the naked singularity occurring at
the center of the collapsing cloud. We show that the for-
mation of a naked singularity is a generic feature for a
very wide range of solutions considered here. We have
recently shown [8] such a result for the general class of
self-similar models describing the gravitational collapse
of a perfect fluid, where it is shown that a powerfully
strong curvature naked singularity forms from which
families of nonspacelike geodesics escape in the space-
time. Further to this, the class considered here is shown
to include all the self-similar Tolman-Bondi models as
well as a wide range of non-self-similar models. This in-
dicates that the naked singularity may not be regarded as
the consequence of the geometric property of self-
similarity only [9]. A naked singularity may not be treat-
ed as a serious enough situation if only a single nonspace-
like trajectory escaped from it. Thus, we examine the
sufficient conditions when families of nonspacelike geo-
desics could escape from the naked singularity. Interest-
ingly, it turns out that the validity of the weak energy
condition in the space-time ensures the existence of such
families. This is analogous to the results of Ref. [8] for
the self-similar class. We also discuss the issue as to
when the naked singularity will be globally naked, i.e.,
visible to far away observers.

The organization of the paper is as below. In Sec. II,
the basic parameters of the Tolman-Bondi models
describing the inhomogeneous dust collapse are specified.
The existence and structure of the naked singularity is
analyzed in Sec. III. We also characterize here the condi-
tions that ensure that families of nonspacelike geodesics,
rather than a single isolated trajectory, are emitted from
the naked singularity. In particular, it is shown that the
weak energy condition, together with the positivity of en-
ergy density, implies that a nonzero measure set of non-
spacelike geodesics comes out from the naked singularity.
The global versus local nakedness of the singularity is
also discussed here. The curvature strength of the naked
singularity provides an important test of the physical
significance for the same. This issue is examined in Sec.
IV, where it is shown that the models considered here in-
clude both self-similar as well as non-self-similar classes
admitting a strong curvature singularity in a powerful
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sense. The final Sec. V summarizes some of the implica-
tions and conclusions.

II. TOLMAN-BONDI SPACE-TIMES

The Tolman-Bondi metric representing collapse of a
spherically symmetric inhomogeneous dust cloud in the

comoving coordinates (i.e., u‘=8!) is given by
’2
ds’=—di?+ R 42+ RAd6 +sin20de?) , (1)
1+f
Ti=e8i8], e=e(t,r)=—r @)
R“R’

where TV is the stress-energy tensor, € is the energy den-
sity, and R is a function of both ¢ and r given by

R2=£+f. @3)

Here the dot and the prime denote partial derivatives
with respect to the parameters ¢ and r, respectively, and,
as we are only concerned with the gravitational collapse
of dust, we require R (#,7) <0. The quantities F and f are
arbitrary functions of . The quantity 47R %(t,r) gives the
proper area of the mass shells and the area of such a shell
at »r =const goes to zero when R (¢,r)=0. Integration of
Eq. (3) gives
3203 —

t—ty(r)=—KC IR @
where G (y) is a strictly real positive and bound function
which has the range 1 2y = — « and is given by

vy Viee
Gy)= |2Yy  VIZY | gr12y>0,
y
G(y)=% for y=0, (5)
—aresinhV —v T—
G(y)= arcsmh3 3 Yy Vi-y for 0>y 2> — o0 ,
(—yp)¥

and #,(r) is a constant of integration. We thus have in all
three arbitrary functions of r, namely, f(r), F(r), and
to(r). One could, however, use the remaining coordinate
freedom left in the choice of scaling of » in order to
reduce the number of such arbitrary functions to two.
We therefore rescale R using this coordinate freedom
such that

R(O,r)=r . (6)

Then ty(r) is evaluated by using the equation above and
(4) to give

_ r’*G(—fr/F)
V'’F '

The time ¢t =t,(r) corresponds to the value R =0 where
the area of the shell of matter at a constant value of the
coordinate r vanishes. It follows that the singularity
curve t =ty(r) corresponds to the time when the matter
shells meet the physical singularity. Thus, the range of
the coordinates is given by

to(r) @)
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0<r<ow, —o<t<tyr). (8)

It follows that unlike the collapsing Friedmann case,
where the physical singularity occurs at a constant epoch
of time (say, at ¢+ =0), the singular epoch now is a func-
tion of r as a result of inhomogeneity in the matter distri-
bution. One could recover the Friedmann case from the
above equations if we set t(r)=1,(r)=0.

The function f(r) classifies the space-time as bound,
marginally bound, or unbound depending on the range of
its values which are

f(r)<0, f(r)=0, and f(r)>0,

respectively. The function F(r) can be interpreted as the
weighted mass (weighted by the factor V'1+4 f) within the
dust ball B of coordinate radius » which is conserved in
the following sense:

F(r)
2

m (=== [ (1416 r)dy

=47 [ ptrir’ar 9)

where €(0,7)=p(r). For physical reasonableness the
weak energy condition would be assumed throughout the
space-time, i.e., T;;¥"'¥V/20 for all nonspacelike vectors
V'. This implies that the energy density € is everywhere
positive (e 20), including the region near r =0. Partial
derivatives of R such as R’ and R’ are of importance in
our analysis. We get, from the Egs. (3)-(7),

R'=r*"!|(n=PX+[0—(n—3HX*G(—PX)]

1/2]

=r "' H(X,r), (10)

P+

X
X

1 172

. A /2 1

RI:ZXZ {“‘BXZ [?'FPI +06
r.

—(n—21B)X*"*G(—PX)

_ —N(X,r)
- r

> (11

where we have put

X=(R/r%),

(12)

B=B<r>=rffi ,

p=p(r)=rf/F,
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r3(a—1)/2

_ 1+8—n
(1+p)1/2r3(a-1)/2

The function 3(r) is defined to be zero when f is constant
and zero. The factor % has been introduced here for the
sake of convenience in examining the structure of the
naked singularity. The exact value of the positive con-
stant =1 is to be determined and will depend on the
different models of the space-time which allow naked
singularities. Functions H (X,r) and N(X,r) are defined
by Egs. (10) and (11). Using the scaling given by (6), the
energy density € on the hypersurface t =0 is written as
€=F'/r%. Since the weak energy conditions are satisfied
and F is a function of r only, it follows that F'>0
throughout the space-time. One can write the energy
density as

€= _712A_ . (14)
R°H
Since F’=nAr®"!, it follows from the above that every-
where H(X,r)=0 and nA =0 as a consequence of the
weak energy condition.

Singularities are the boundary points of the space-time
where the normal differentiability and manifold struc-
tures break down. In other words, these are the points
where the energy density given by Eq. (2), or the curva-
ture quantities such as the scalar polynomials constructed
out of the metric tensor and the Riemann tensor, diverge.
One example of such a quantity is the Kretschmann sca-
lar # =R ;4R ", which is given in the Tolman-Bondi
case by

F? FF' F?
—32 +48— .
R*R"? R°R’ RS

H=12 (15)

Such singularities are indicated by the existence of in-
complete future- or past-directed nonspacelike geodesics
in the space-time which terminate at the singularity.
Then one requires that the curvature quantities stated
above assume unboundedly large values in the limit of ap-
proach to the singularity along the nonspacelike geo-
desics terminating there. If such a condition is satisfied,
then one would like to consider the singularity to be a
physically significant curvature singularity.

In Tolman-Bondi space-times singularities occur, as
one can see from Egs. (2) and (15), at points where R =0,
which are called shell-focusing singularities, and also at
points where R’=0. At the points where R'=0 the
Tolman-Bondi metric is degenerate and these are called
shell crossings. In the context of Tolman-Bondi space-
times the points R >0, F' >0, where R’=0, are called the
shell-crossing singularities [7]. Such shell-crossing singu-
larities in Tolman-Bondi space-times have been analyzed
in detail in the literature [10,11], and their nature appears
to be fairly well understood. Even though such shell-
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crossing singularities could be locally naked, the impor-
tant point is they have been shown to be gravitationally
weak [7]. Thus, it is generally believed that such shell-
crossing singularities need not be taken seriously as far as
the cosmic censorship conjecture is concerned. The ab-
sence of shell-crossing singularities in a space-time turns
out to be related to the condition that the function #(r)
giving the proper time for the shells to fall into the physi-
cal singularity should be a monotonically increasing func-
tion. The dust density and certain components of the
curvature blow up near such a singularity. However, the
causal structure of the space-time can be extended
through such a singularity and the space-time metric can
also be defined in the neighborhood of such a point in a
distributional sense [12]. In the context of such a situa-
tion, we do not consider here such shell crossings, and as-
sume that there are no shell-crossing singularities in the
space-time (except probably right at the center r =0
[10]). This does not involve any loss of generality as our
basic purpose here is to examine the formation and local
structure of the shell-focusing naked singularity at the
center of the collapsing cloud. Whereas the existence of
shell crossings will not affect the qualitative nature of
these general conclusions, the above assumption allows
the calculations to be presented in a more transparent
manner.

Unlike the shell crossings, the space-time metric, how-
ever, admits no extension through a shell-focusing singu-
larity occurring at R =0 which is more difficult to ignore.
A shell-focusing singularity can be avoided only by re-
jecting the forms of matter such as dust as the fundamen-
tal forms of matter (see, e.g., [S]). Hence, we investigate
here the occurrence of such shell-focusing singularities at
the center of the collapsing dust cloud and examine their
nature and structure for the Tolman-Bondi space-times.
It has been shown earlier [6] that a shell-focusing singu-
larity occurring at >0, R =0 is totally spacelike and
therefore our discussion would be confined to the singu-
larity at » =0.

The points (#,,ry), where a shell-focusing singularity
R(ty,7,)=0 occurs, are related by Eq. (4). The singulari-
ty here occurs at r =r, at the coordinate time ¢t =7, and
we would call the singularity a central singularity if it
occurs at » =0. Earlier work [3,4] has shown that this
central shell-focusing singularity is naked, though gravi-
tationally weak, for a class of Tolman-Bondi space-times
for which the energy density (which is assumed to be pos-
itive everywhere and is taken to be nonzero at r =0) and
the metric are even smooth functions of ¢ and r.
Translated in terms of parameters defined above, this cor-
responds to the class for which 7(0)=3, B(0)=2, and
p(r) is an even smooth function of ». In terms of func-
tions F(r) and f (r) it amounts to the conditions

F(r)=r3#r), «>FH0)>0, 0<p(r)=<1. (16)

It was, however, pointed out by Waugh and Lake [13]
and Ori and Piran [14] that this class of gravitationally
weak naked singularities excludes the self-similar
Tolman-Bondi models, where they showed the singularity
to be gravitationally strong along the Cauchy horizon,
which is a null geodesic coming out of the singularity.
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Further, Grillo [15] pointed out an example in the case of
bound Tolman-Bondi models which are non-self-similar
and the naked singularity is gravitationally strong. In
fact, we have pointed out recently [16] that the naked
singularity exists and is gravitationally strong for a wide
class of Tolman-Bondi models which are non-self-similar
in general and include all the self-similar models as a spe-
cial subclass. In the notation used here, these models are
characterized by the conditions 7(0)=1 with F(r) and
f (r) being analytic at » =0.

Throughout the present consideration we would re-
quire rather general differentiability conditions on the
functions F(r) and f(r) in that they will be assumed to
be at least C! at the center » =0, o >7(0)>0, and B(0)
is finite [17]. We note that the function f, and also its
first derivatives (through R’), enter the metric potentials.
One might actually argue that the above condition is a
more general condition than should be required because
it is often a customary practice to assume that the metric
is C? differentiable (which ensures again the above re-
quirement), so that the metric transformations and other
functions connected with the metric are well defined to
do regular physics. Hence, such a condition may be con-
sidered to be physically reasonable and a rather general
differentiability requirement which includes practically
all the inhomogeneous collapse Tolman-Bondi models of
interest. In fact, one could argue that if the metric is not
C? differentiable, but say only C' on initial surface, it
may be considered as being already naked singular and
not defining a regular initial data on an initial spacelike
hypersurface.

In order to represent the gravitational collapse
scenario, we assume the energy density € to have a com-
pact support on an initial spacelike hypersurface and the
Tolman-Bondi space-times given by (1) can be matched at
some » =const=r, to the exterior Schwarzschild field

ds?m — [l_zﬂ
rs

r2

dT*+ +rdQ?, 17

- s
1—2M /rg

where dQ?=d60*+sin’0d¢*. The value of the
Schwarzschild radial coordinate is r¢=R(t,r,) at the
boundary r=r.. We have m (r,)=M, where M is the to-
tal Schwarzschild mass enclosed within the dust ball of
coordinate radius of r=r,. Without going into further
details of the matching conditions we would like to say a
few words regarding the apparent horizon. The apparent
horizon in the interior dust ball lies at R =F(r). From
(4) and (7) one can see that the corresponding time
t =t y(r)is given by

3/2 —
terH(r>=i—%J1—FG<—f) . (18)

It has been shown earlier [6,7] that emissions from the
shell-focusing singularity R (¢(,7y)=0 for all 7, >0 would
lie in the region above t =t .y, i.e., ;> t oy for all 7, >0,
t, being the time when singularity at r =ry, occurs.
Hence all radiations would be future trapped from shell-
focusing singularities at r>0. At r =0, however,
t(0)=1,4(0) and the singularity could be at least locally
naked. Any light ray terminating at this singularity in
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the past goes to the future infinity if it reaches the surface
of the cloud r=r, earlier than the apparent horizon at
r=r,. In such a case the singularity would be globally
naked. We now examine this central singularity in the
section below.

III. THE EXISTENCE AND STRUCTURE
OF NAKED SINGULARITY

In this section we investigate the existence of the naked
central singularity for the general class of Tolman-Bondi
space-times under consideration. The singularity is
naked if there are future directed nonspacelike curves in
the space-time with their past end point at the singulari-
ty. The existence of such curves implies that either pho-
tons or timelike particles can be emitted from the singu-
larity. In particular, we will examine the future directed
nonspacelike geodesics for their past end point at the
singularity. Other related issues examined here are when
a nonzero measure set of nonspacelike trajectories will
meet the singularity in the past, rather than a single iso-
lated geodesic, and when such a singularity will be global-
ly naked.

A. The existence

The tangents K*=dx?/dk for the outgoing nonspace-
like geodesics in the Tolman-Bondi space-time given by
(1) can be written as

K=~ x> (19)
2__ 72 2

K,Z_j_lr(:\/l—kf\/IzDR,l +BR® 20)

(K%)?+sin?0(K ?)*=1%/R* . 21)

Here / is an impact parameter that labels different geo-
desics and vanishes (/ =0) for radial trajectories, B
characterizes the type of geodesics, i.e., B =0 for null and
B=—1 for timelike curves, and the function P=7(t,r)
satisfies the differential equation

dP
dk

V1+fR'

2__ 12 2
+(@P—1*+BR?) | L

_R
R?

—(?2—12+BR2)”2?"~/1I:_—f +BR=0. (22)

The parameter k is an affine parameter along the geo-
desics. For future-directed nonradial trajectories that
meet the central singularity at R =0 in past, it follows
from Eq. (20) that 7> [ near the singularity.

If the outgoing nonspacelike geodesics are to terminate
in the past at the central singularity » =0, which occurs
at some time ¢t =¢, at which R (¢,,0)=0, then along such
geodesics we have R—0 as r—0. The following is
satisfied along nonspacelike geodesics:

dR _ 1 sdt o,
du ar® ! Rdr+R
P(f+A/X)? H(x,u)
VI+f VP —1’+BR? a
=U(X,u), (23)

where we have put u =r% The function H(X,r) in the
above equation is strictly positive and nonzero for all
r >0 as a consequence of (10) and (14). For an outgoing
geodesic, (dR /du) must be positive while the negative
value for this quantity means the geodesic is ingoing.
The point u =r*=0, R =0 is a singularity of the above
differential equation.

It is now essential to understand the exact nature of
this singularity. If the functions appearing in the
numerator and denominator of (23) are expandable and
contain linear terms, then one can apply the standard
analysis on the classification of singular points of first-
order differential equations [18] to understand the nature
of this singularity. However, in the case otherwise, the
same could be understood only by means of studying the
detailed behavior of the characteristic curves in the vicin-
ity of the singularity. If these characteristics terminate at
the singularity in past with a definite tangent, this is
determined by the limiting value of X=R /r®*=R /u at
R =0, u=0. If the nonspacelike geodesics meet the
singularity with a definite value of tangent, then using
Eq. (23) and ’'Hospital rule we get, for the value of X,

X,= lim R _ im 4R
R—0,u—0 U R—0,u—0 du
= lim U(X,u)=U(X,,0) . (24)
R—0,u—0

If a real and positive value of X, satisfies the above equa-
tion then the singularity could be naked. Real and posi-
tive roots of the above equation gives the possible values
of tangents the outgoing geodesics can have at the singu-
larity. Thus, if a real and positive value of X =X, satisfy-
ing the above equation exists, then integral curves of the
differential equation (23), i.e., outgoing nonspacelike geo-
desics, can terminate in the past at the singularity with a
definite value of the tangent given by X =X,,. Clearly if
no real positive root of the above exists then the singular-
ity is not naked.

In order to make the discussion transparent, at this
point we would limit ourselves to radial null geodesics
only. Similar consideration can be given for the nonradi-
al nonspacelike geodesics as well in terms of (23) and (24),
which will be more complicated in view of the assumed
generality of the functions involved. Equations (23) and
(24) could then be written as

dR _ |, _Vf+A/X |H(Xu) _ ,

du 1 m . =U(X,u), (25

V(X,)=0, (26)
where
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V(X)=U(X,0)—X

|V o+ A/X | HX,0) _

= \/TIJTO o X, (27)
where we have introduced the notation
By=p(0) ,
Mo=1(0) ,
fo=r(0),
P,=P(0), 2%
Ay=A(0),
0,=0(0) .

Along an outgoing null geodesic from the singularity, r
increases and so does the area coordinate R. A point to
note is that dR /du is positive for X > A, which implies
R >F, and the geodesic is outgoing. If the geodesics
cross and get inside the curve R =F, which represents the
apparent horizon, dR /du becomes negative and hence
the geodesics are ingoing (in the sense that area coordi-
nate R starts decreasing). Since the apparent horizon
R =F is the boundary of all trapped surfaces, if a null
geodesic terminating at the singularity is to be outgoing it
must have R > F at the singularity along the geodesic.
The null geodesic would also reach the future infinity if it
does not get inside the apparent horizon (i.e., R <F)
within the boundary of the dust cloud and reaches this
boundary at r =r, with R > F along the same geodesic.

In the description given here the constant a actually
represents the behavior of singular geodesics near the
singularity, i.e., R «<r“ near the singularity. In fact, we
can write R =X,r% in the neighborhood of singularity,
X, being the real and positive root of Eq. (26). Thus, the
determination of a really means determining the behavior
of possible singular geodesics terminating at the singular-
ity. The algorithm for evaluation of the value of « is as
follows: Given the functions F(r) and f (r) (which speci-
fy the Tolman-Bondi model), the unique value of a is
determined by the condition that ®(»)V'P+1/X does
not vanish or goes to infinity identically as r—0 in the
limit of approach to the central singularity along any
X =const direction. This condition ensures that the
quantity H (X,0) will not be identically zero or infinite in
(26) and (27). Note the ®(r) vanishes identically only for
the case of Friedmann models [n(r)=3, B(r)=2] where
the singularity is spacelike. Once such a value of a is
determined, the values of positive roots of Eq. (22) are
then determined if there are any. There remains a possi-
bility when such a value of a cannot be found. Such a
case can arise only in some of the situations where
B(0)=2,7(0)>3. 1In this case, actually one has
O(r) <™ 2—mlnr) near the singularity at » =0. Howev-
er, in this situation one can use a suitable change of the
variable R, namely, R =R +ar™® *Inr +b) and X=X
+ar™? “(nr +b) (@ and b are some constants). This
reduces Egs. (25) and (26) in the desired form and the
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value of a can then again be determined. Once the value
of a is known in this manner, one can easily establish
whether the singularity could possibly be naked. That is,
if for this value of a the quantity A, diverges, then clearly
the space-time does not permit a naked singularity as
X, =— . In fact, this puts an upper bound on the possi-
ble values of «a if the singularity is to be naked, which is
given by a=<n,. It follows from Eq. (26) that ¥ (0)7O0;
hence, X =0 cannot be the root of ¥ (X)=0 and this im-
plies that Hy=H (X,,0)70. We specify the values of a
for some specific classes. If, for example, ,=1, then
a=1. It should be noted that, for the case when 7,=3,
By=2 (the cases that have been discussed in [5-7]), and
F and f are even functions of 7, the value of a turns out
to be

a=1, Xo=(20,)". 29)

Wl

In these cases a shell-crossing singularity also occurs at
the central singularity (i.e., R’=0) along with the shell-
focusing singularity. Again, a determines the occurrence
of a shell-crossing singularity at the central singularity.
It follows from Egs. (10) and (26) that, near the central
singularity at » =0, R'=r"‘_1H(X0,0). Hence, for a>1
the shell-crossing singularity would also occur along with
a shell-focusing one. This actually happens in the cases
already discussed by Refs. [5,6]. On the other hand, if
a=1 no shell-crossing singularity occurs at the central
singularity as the cases discussed in Ref. [15].

This determination of the value of a allows one to
determine the existence of real and positive roots of Eq.
(26). If the equation V(X)=O0 has a real and positive
root, the singularity could be naked and the geodesics
could terminate at the singularity in past with the
tangent X =X in the (u,R) plane. Therefore, existence
of at least one real positive root of (26) is the necessary
condition for the space-time to admit naked singularity.
The positive root X =X, actually represents the value of
the tangent to null geodesics at the singularity, and it fol-
lows from Eq. (26) that X, > A,. Since A, is the value of
the tangent of the apparent horizon R =F [19] at the
singularity, it is clear that the geodesics in such cases
could be at least locally naked. Clearly if no real positive
root of the above is found, the singularity R =0, r =0 is
not naked. It should be noted that many real positive
roots of Eq. (26) may exist which give the possible values
of tangents to the null geodesics at the singularity. It is
possible, however, that the integral curves may or may
not realize a given value X, at the singularity.

To determine whether a value X, is realized at the
naked singularity along any outgoing singular geodesic,
which establishes the nakedness of the singularity, con-
sider the equation of radial null geodesics in the form
u =r®=u(X). From Eq. (25) we have

-X =——————U(X’;‘)—X : (30)

The solution of the above gives trajectories of radial null
geodesics in the form ¥ =u (X). The necessary condition
for a null geodesic to terminate at the singularity at
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R =0, u =0 is that V(X)=0 must have a real positive
root X=X,. In such a case, nonspacelike curves could
terminate at the singularity with the tangent X,. There-
fore, if the null geodesics do terminate at the singularity
then u —0 as X— X, along the same. Let X=X, be a
simple root of Eq. (26). We could then write

VX)=(X—X)(hy—1)+h(X), (31

where & is a constant, the value of which is determined
in terms of the quantities defined earlier as

_ 1 AoHg
Hy | 2aX3V/ fo+A/XoV fo+1
X, N,
S — (32)
V fot+Ag/X
The function 4 (X) is so chosen that
dh
h(X ): —_ = S
0 dX |x=x,

i.e., h(X) contains higher-order terms in (X —X,) and

H,=H(X,,0), Ny=N(X,,0). Equation (30) could then
be written as

dx ho—1 g

2 (x—Xx ==

du ( o) u u’ (33)
where S=S(X,u)=U(X,u)— U (X,0)+h (X) is such that
S(X,,0)=0; i.e., in the limit as u =0, X =X, we have

S —0. Integration of (33) gives the _e}cllufltion of geodesics
as u =u (X). Multiplying (33) by # ° ~ and integrating
gives

X—Xo=Du" o fsu " g, (34)
where D is a constant of integration that labels different
geodesics. If the singularity is the end point of these geo-
desics with tangent X =X,, we must have X —>X, as
u#—0 in (34). Note that as X — X, u —0, the last term
in Eq. (34) always vanishes near the singularity regardless
of the value of the constant A, (this is due to the reason
that, as u —0, X - X, we have S—0). The first term on
the right-hand side of the equation, namely, Du" 1,
however, vanishes only if 7, > 1. It follows therefore that
the single null geodesic described by D =0 always ter-
minates at the singularity R =0, u =0, with X =X, as
tangent. On the other hand, if ;> 1, a family of outgo-
ing singular geodesics terminates at the singularity with
each curve being labeled by different values of constant
D.

Therefore, if a real and positive root of Eq. (26) exists,
then singularity will always be at least locally naked. It
follows that the existence of a real and positive root of
Eq. (26) is both the necessary and sufficient condition for
the singularity to be locally naked.

The above analysis implies that a very wide class of
Tolman-Bondi space-times would, in fact, allow the ex-
istence of a naked singularity. In the following we con-
sider a few examples which illustrate this point and pro-
vide insight into the formalism. Let us consider first the
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‘marginally bound Tolman-Bondi space-times character-

ized by the functions F(r) and f(r) as

f(r)=0, F(r)=Fyr", n#3,n>1. (35)

In the above F| is to be treated as a constant. In this

case, the relevant functions and Eq. (26) are

—n

=1, H(X, =—+ —
“ En="T+ 3%
V(X)=3—n)X +nVAOWVX (36)

_3—n (3—n)VA(0)
+ =0.
vXx X

In the case n > 1, where A(0)=0, the above equation has
only one positive root X =1 which satisfies the equation
V(X)=0 for all n > 1, thus establishing the existence of
naked singularity for all these space-times. These results
agree with the earlier numerical calculations of [5] for the
cases n =% and 2. In case n =1, the space-time is self-
similar with A(0)=F, and Eq. (36) becomes

2x*+x3/Fy—2x+2VF,=0, 37

, Ar)=Fyr" 1,

where we have put x?
tive roots if

(Fy)P?<4(26—15V3) . (38)

=X. The above has real and posi-

For example, for v F0=% there are two positive roots
x =0.5 and 0.658. Hence, for all such values given by
Eq. (38), the singularity is naked.

Next, consider the Tolman-Bondi space-times defined
by the values of F and f given by

f(r):f0r2(1+flr3) ’
F(r)=Fyr®, (39)

Here f, F,, and f are to be treated as some constants.
For this second example the relevant quantities are writ-
ten as

Bo=2, (=3, p(r=po(1+f,r’),
a=3, Oy=f, |—————2G(—py) |, Ar)=F
’ 0 1 \/1+PQ 2 0 ’ 0>
(40)

V(X)=0=2x*+x*/F,— Oy + 0,1/ F,=0

where we have again put X=x2 and we see that, for a
wide range of constants f, Fy, f, the positive root of
the above would exist and the singularity would be
naked. In fact, for

F )3/2 >13+15\/3 (41)
0

the above equation always has two real positive roots es-
tablishing the nakedness of the singularity. These space-
times are effectively of the type as those considered by
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Newman [7], however, a condition on the evenness of
functions was assumed there which we have relaxed here.

B. The structure of singularity

We have shown above that if a real positive root of
V(X)=0 exists then at least one single outgoing geodesic
would terminate at the singularity in the past and thus
the singularity would be naked. If a single ray in the
(u,R) plane escapes from the singularity, it amounts to a
single wave front being emitted, and thus the singularity
appears naked only instantaneously to a distant observer.
If the singularity is to be naked for a finite period of time,
a nonzero measure set of null geodesics (i.e., families of
null geodesics) must have the singularity as their past end
point. In earlier examples of a naked singularity occur-
ring in Vaidya space-times [20] and in self-similar space-
times, families of nonspacelike geodesics terminate at the
naked singularity in the past. In fact, an analysis of self-
similar gravitational collapse of a perfect fluid in order to
examine the nature and structure of naked singularity has
shown [8] that a nonzero measure of nonspacelike geo-
desics terminate at the singularity in past provided the
weak energy condition and positivity of energy are not
violated in the near regions of the singularity. This re-
sults into the exposure of the singularity to a distant ob-
server for an infinite period of time. We therefore exam-
ine this issue of termination of families of nonspacelike
geodesics at the singularity below.

It follows from Eq. (34) that when only one simple real
positive root X =X, for V(X)=0 exists, no families of
geodesics would terminate at the singularity if 4, <0. On
the other hand, if A, > 1 it is seen that an infinity of in-
tegral curves will meet the singularity in the past with
tangent X =X, different curves being characterized by
different values of the constant D. Thus, one sufficient
condition for the families of nonspacelike curves to meet
the naked singularity in past is 4, > 1, when V' (X)=0 ad-
mits only one simple real positive root. Such a condition
corresponds to the requirement that hy—1
=(dV/dX)X:X0 must be positive; i.e., V' (X) must be an

increasing function at X =X. The interpretation of such
a condition is seen very clearly in the case of self-similar
models [13,8], where this derivative of ¥ is determined
directly by the Einstein field equations in terms of the en-
ergy density and the components of the metric tensor. It
turns out in that case that this derivative will be positive
with hy>1 provided the weak energy condition is
satisfied and the energy density is always greater than a
certain lower bound in the neighborhood of the singulari-
ty, which gives a sufficient condition for families to meet
the naked singularity in the past.

Suppose now that Eq. (26) has two simple positive
roots X; and X,. In such a case at least one singular geo-
desic would always terminate along each of the tangents
X=X, and X =X, at the singularity. Furthermore, since
V(X)=0 has two simple roots it follows that the value of
its derivative #,—1 would be negative along one of the
roots and positive along the other. Therefore, at least
along one of the roots hy;>1. Hence the situation that
emerges is that in such a case families of geodesics will al-
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ways terminate along one of the roots for which hy> 1
while along the other only a single geodesic would escape.
The conclusions are the same if ¥ (X)=0 has more than
two simple positive roots. Thus, existence of two positive
roots is a sufficient condition for a nonzero set of geo-
desics to terminate at the singularity.

This situation is similar to the scenario arising in the
gravitational collapse of radiation shells which we have
analyzed in detail for the case of a linear mass function in
Vaidya space-times [20], where the full structure of fami-
lies of all the nonspacelike geodesics terminating at the
naked singularity in the past has been worked out. It is
seen there that when the corresponding quantity there
has two roots, they provide the tangent values for the es-
caping geodesics. The families of nonspacelike geodesics
meet along one of the roots as the tangent at the naked
singularity, where as there is a single null trajectory es-
caping from the singularity at the second root. In fact,
Lemos [21] has pointed out recently several parallels be-
tween the self-similar Tolman-Bondi models and the self-
similar radiation collapse described by the linear mass
Vaidya space-time background, showing that this radia-
tion collapse picture can be taken as a limiting case of
Tolman-Bondi space-times when viewed in an appropri-
ate sense.

It was shown in Ref. [8] that if the positivity of energy
was respected in the near regions of the singularity (i.e.,
€+ P >0 in the neighborhood of the singularity), then
infinite many integral curves terminate at the singularity
which was naked. We show here that a similar con-
clusion holds in the Tolman-Bondi case as well.

Let the energy density € be positive in the collapsing
region near the central singularity at » =0, i.e.,

e=-12 59 “2)

This implies that Ay>0 and then the definition of % im-
plies that a=(0). Let one simple positive root X =X,
exist for the equation V' (X)=0. Note that in the (X,u)
plane Eq. (30) has a singular point at X =X,, u =0.
Therefore, in order to analyze the behavior of the integral
curves in the (X,u) plane near this singular point we in-
tegrate Eq. (30) near the singularity to get

X—X,=Du""". (43)
Hence in the case s <1 integral curves move away from
the singular point X=X,, u =0 in the (u,X) plane.
However, in the (R,u) plane the above equation trans-
forms to

R—Xou=Du" . (44)

Therefore, if 1, <0 integral curves approaching R —Xu
in the (R,u) plane would move further and further from
the point R =0, ¥ =0 and would not terminate there.
On the other hand, if hy>0 the integral curves in the
(R, u) plane move into the point R =0, ¥ =0 with either
R =Xyu or with the R axis as their ultimate tangent. In
fact, the equation of these integral curves terminating at
the singularity is given by
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Ry =D+ [S(uu @)
0
u

where we have put

Y=R/u o xy ' Mo

and note that, in the limit,

lim S(X,u)ulvho———S(Y,u)uhho—»const)( Y.

u—0
Thus, we see that infinite many integral curves (each
characterized by a different value of the constant D)
would terminate at the singularity provided Ay>0.
Hence, we deduce that future-directed null geodesics
would terminate at the singularity in the past, as long as

w0 >ho=h(Xy)>0. (46)

If the positivity of energy in the near regions of singulari-
ty is respected as stated in Eq. (42), i.e., A;> 0, then using
Egs. (32) and (26) and the fact that if f(0)70 then
B(0)=0 we get for the value of &, when A;7O0,

AoH,

-0 47)
ZaXo(f0+l)

ho

Hence, we conclude that s, >0 as long as the positivity
of energy holds in the near regions of the singularity.
Therefore, families of geodesics would always terminate
at the singularity when it is naked and provided the posi-
tivity of energy holds.

It is illustrative at this point to note the examples given
in the earlier section in the context of families meeting
the singularity. Note that, for the first example given by
Eq. (35), in the case n =2, for example, A;=0 and
V(X)=0 has only one root given by X =1 and hy=1.
Therefore, no families of integral curves terminate at the
singularity with the tangent X =1. On the other hand,
for n =1, Ay7#0 the space-time is self-similar and the
families or infinitely many nonspacelike curves terminate
at the singularity. The same is the case with the second
example in which Ay70 where families would terminate
at the singularity when it is naked.

C. Global visibility

It is seen that the existence of a real positive root
V' (X)=0 establishes that the singularity would be at least
locally naked. Such a locally naked singularity could be
globally naked as well. To examine this issue note that
the apparent horizon lies at R (¢,7)=F (r), and therefore
if a geodesic gets inside the apparent horizon it becomes
ingoing (i.e., R <F along geodesics and dR /dr is nega-
tive). Eventually this trajectory falls back to the singular-
ity. Therefore, if a light ray is to reach future infinity in
order for the singularity to be globally naked, it must
cross ¥ =r,, which is the boundary of the dust cloud be-
fore the apparent horizon. Hence all escaping nonspace-
like geodesics that reach the boundary r=r, with
R(r.)>F(r,) would reach future infinity. Since geo-
desics emerge from the singularity with the tangent value
X, and the apparent horizon has the tangent at the singu-
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larity A,, it follows from Eq. (26) that X, > A,. As a re-
sult, because of the generality of the function F(r) one
can always choose suitably r, and F(r,)=2M (M being
the Schwarzschild mass of the cloud) such that geodesics
reach the boundary of the cloud r =r, with R (r,)> F(r,)
making the singularity globally naked. However, given a
boundary r=r, and F(r.)=2M, which and whether any
singular geodesics would reach future infinity depends on
the global properties of the functions F(r) and f (7).

At this point we first discuss an explicit class of
Tolman-Bondi models where we show the singularity to
be globally naked, before discussing the general scenario
for global nakedness. Because of the complicated nature
of the equations, exact solutions to geodesics are virtually
nonexistent in these models even in cases of simple forms
of functions F(r) and f(r), except in the cases of Fried-
mann models corresponding to complete homogeneity.
We consider the first example given in the earlier section
by Eq. (35) for n =1. This situation represents a self-
similar marginally bound collapse (f =0) and illustrates
the formalism discussed. here giving a comparison with
the results already obtained. Earlier, this example has
been analyzed using a special null trajectory which is the
Cauchy horizon [13] which is given by X =const. We
show below, however, that actually one can integrate the
geodesic equations completely for this self-similar case to
obtain radial null families. As it was pointed out earlier,
in this case if condition (38) is satisfied, then V' (X)=0 has
two real positive and two complex roots. Let x;,x,
(x| >x,) be two such positive roots of this equation. The
equation of geodesics, in the form r=r(x), X=x2, is
given by

(X'_xz)n2
r=r(X)=r(x)= ~ fi(x), (48)
(X_x‘) !
where
Ax+B
=exp |— [ "—dx | . 49
f1lx)=exp fx2+D1x+D2 * 49

Here n,,n,, A,B,D,,D, are constants given by

A _
x4+ 0x3-—x+\/A0

=(x—x)(x —x,)(x?>+D;x+D,), (50

3x3 I

x4 (VA2 —x+V A, XTX;  Xx—Xx;
Ax +B

x2+D,x+D, ’

(51)

and D is the constant which labels the different geodesics.
The constants n,,n, are positive. In fact, for the case
Ay= %, they are given by

17
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x,=0.658303 ,

x2=0.5 ,
n,=2.09356
n,=1.08511,
(52)
D,=1.36419 ,
D,=1.2509 ,
A=-—1.99154,
B=—1.26354 .

It is clear from Eq. (48) that geodesics reach r =0 at
x=x, and r=c at x =x,;, making the singularity glo-
bally naked. Note that n(r)A(r)=F, <x, and therefore
all the trajectories that are emitted in the region
X, >x >x, reach the future infinity. In fact, x=x,; and
x, are also geodesics which cross the boundary of the
cloud and escape to future infinity.

We now discuss the conditions which ensure the global
nakedness of the singularity in general. At this point we
assume that the functions 7 and f3 are at least C 0in the
interval r, > r>0. Since the later two functions involve
the first derivatives of f and F in the form f'/f and
F'/F, this requirement implies that f and F have at least
first continuous derivatives existing. As discussed in Sec.
II, the C? differentiability of the metric in the concerned
interval will ensure the above requirement.

Consider now the situation that ¥ (X)=0 has only one
simple root X =X and that a family of curves terminates
at the singularity (i.e., #,> 1) with this value of tangent.
Let n(r)A(r)<aX, for r. Zr>0. In such a situation the
singularity would be globally naked. To see this consider
now the equation of geodesics given by Eq. (34) where the
constant D labels different geodesics terminating at the
singularity and is determined by the boundary conditions.
For a singular geodesic that reaches the boundary of the
dust cloud u=u.=r%=r? with X=(R,/rf)=X, we
have

XC—X0=Duch°_1+uCh°h1fu su " dy (53)

and hence the equation of such a geodesic can be written
as

Pl h
re -

+u"" [¥su

uC

X—X,=(X,—X,) o

LR
ut‘
(54)

The event horizon is represented by the geodesic for
which X, =A(r,). Since it is outgoing dR /d (r?®) is posi-
tive at » =0 and ejected into the region R >F, where
dR /dr is positive. Therefore, all the geodesics that reach
the line » =r, [the line at which the metric (1) is matched
with the Schwarzschild exterior] with X, > A(r,) would
escape to infinity, while others would become ingoing. It
follows that the geodesics that reach future infinity with
their past end point at the singularity are given by Eq.
(54) with X, > A,. Hence, in case when a family of geo-

desics terminates at the singularity with tangent X =X,
and 7(r)A(r) <aX,, for r,=r >0, the singularity would
be globally naked as there would always be some geo-
desics that would escape to infinity.

Consider the case now when the equation ¥ (X)=0 has
two positive roots X; and X, (X; >X,). In such a case,
as shown earlier, families of curves would emerge from
the singularity with the tangent either X; or X,. Let
n(r)A(r)<aX, for r.Zr >0, then it ensures that some
geodesics would cross the boundary of the cloud with
X, > A(r,) making the singularity globally naked. The
same holds even in the case when more than two positive
roots exist. Thus, if the family of geodesics does ter-
minate at the singularity with tangent X, then the condi-
tion 7n(r)A(r)<aX, for r,=r>0 implies the global
nakedness of the singularity.

IV. CURVATURE STRENGTH

Consider the case when naked singularities occurred in
the gravitational collapse of matter with a reasonable
equation of state and in a space-time where desirable con-
ditions such as the energy conditions, etc., are satisfied.
Even such a situation may not be considered as a problem
from the point of view of cosmic censorship if the naked
singularities forming were gravitationally weak in a suit-
able sense. In fact, it was shown [7] that the naked singu-
larities forming in the classes of Tolman-Bondi models
considered by Eardley and Smarr and Christodoulou are
gravitationally weak. This is a useful result because, if
true in general, it would have important implications for
the cosmic censorship hypothesis. Thus, it was conjec-
tured that nature avoids naked singularities where non-
spacelike trajectories end in a strong curvature singulari-
ty [7,22].

The gravitational strength and physical seriousness of
a space-time singularity have been discussed in detail and
characterized precisely in the literature. In particular,
Clarke and Krolak [23] have provided a sufficient condi-
tion for a singularity to be strong in the sense of Tipler
[24], which is that at least along one null geodesic with
the affine parameter k, with k =0 at the singularity, the
following should be satisfied in the limit of approach to
the singularity:

lim k’R,,K°K®>0 . (55)
—0

This provides a sufficient condition for all the two-forms
u(k) defined along the singular null geodesic to vanish as
singularity is approached and implies a very powerful
curvature growth establishing a strong curvature singu-
larity. For the timelike geodesics this will imply that all
the volume forms defined by the Jacobi fields along these
trajectories must vanish in the limit of approach to the
singularity or they must vanish infinitely many times in
this limit.

The criteria on the strength of a singularity are, of
course, subject to further refinement. However, the im-
portant physical consequences of the existence of a singu-
larity are related to its strength. The point is if the singu-
larity is gravitationally weak, it may be possible to extend
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the space-time through the same classically. On the oth-
er hand, when there is a strong curvature singularity
forming in the above sense, the gravitational tidal forces
associated with this singularity are so strong that any ob-
ject trying to cross it gets destroyed. Thus, as argued by
Ori [25], the extension of space-time becomes meaning-
less for such a strong singularity which destroys to zero
size all the objects terminating at the singularity. From
this point of view, the strength of singularity may be con-
sidered crucial to the issue of classically extending the
space-time and thus avoiding the singularity because, for
a strong curvature singularity defined in the above sense,
no continuous extension of the space-time may be possi-
ble.
For the general class of Tolman-Bondi models under
consideration, using (2) we get
’ 2 ’ )2
V=R, K°K’= F (ZK Y _F (ZK ) , (56)
R“R’ R“R’

where K? is tangent to null geodesics. For radial null
geodesics, using L’hospital rule and Eqgs. (4)-(14) and
(19)—(22) and the fact that at the singularity »—0,
X—X, we get

. . kVF P
lim k2¥ =, 1 e
P Mo | RAVR
4n,A
= - _ "Moo S (5D
HoX5[2V 1+ fo(3a—mn4)—No]

Hence it is seen from the definition of A in (12) that
;in})kz\ll=0 for a<ny,, (58)
]zim k2W#0 for a=>1, . (59)

)

However, from our earlier conclusions, naked singularity
occurs only when a <7, therefore the strong curvature
condition is satisfied along singular geodesics only for the
classes where a=1m, As noted earlier, for the special
class considered by Newman and Christodoulou, a=7I
and =3 and hence the naked singularity turns out to be
gravitationally weak as concluded earlier. On the other
hand, it is clear from the above that for a wide variety of
Tolman-Bondi solutions satisfying the condition a=m,,
the singularity will be a strong curvature singularity in
the above sense. In general, it is also possible that nonra-
dial null or timelike curves could terminate at the naked
singularity. Then, a similar calculation along nonspace-
like geodesics in general gives

lim k2 r"%, 2o (60)

Hence, as discussed above, one concludes that the condi-
tion for strong curvature is satisfied along nonspacelike
geodesics as well if a=mn, and if such families meet the
naked singularity in the past.

The Kretschmann scalar R,,.,R“*? along the geo-
desics goes in the Tolman-Bondi space-times as

j{ocrz(no~3a) ) 61)
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Hence, the singularity is a scalar polynomial singularity
as long as a > 1,/3.

The self-similar Tolman-Bondi models are defined by
the conditions f (r)=const and y(r)=1=n(0)=a. It fol-
lows from the above that the naked singularity forming in
this class will be a strong curvature singularity along all
the families of radial null geodesics. As shown in Ref.
[8], other families of nonspacelike geodesics also ter-
minate at the naked singularity along which as well the
strong curvature condition is satisfied.

V. CONCLUDING REMARKS

We have analyzed here the Tolman-Bondi models for
the existence and structure of the naked singularities. As
stated earlier, these are dust models assuming the pres-
sure p =0, and also the exact spherical symmetry of the
space-time. Would the introduction of pressure change
the qualitative nature of the conclusions obtained here?
This does not seem to be the case at least for the self-
similar gravitational collapse of a perfect fluid incor-
porating pressure as indicated by the analysis of [14,8]. It
is possible, on the other hand, that in the final stages of
collapse, the dust equation of state could be relevant (see,
e.g., Penrose [26] and Hagerdorn [27]) and at higher and
higher densities the matter may behave more and more
like dust. Again, there is some case for the argument
that eventually in the final stages of collapse the matter
distribution should become almost spherically symmetric
(see, e.g., Nakamura and Sato [28]). Hence, it is clearly
useful to examine the inhomogeneous dust collapse as
modeled by the Tolman-Bondi space-times. Further, a
situation analogous to the singularity theorems might de-
velop here where the conclusions derived under the as-
sumption of spherical symmetry are preserved when
small perturbations are taken into account. Thus, spheri-
cal symmetry may be a good model to represent a certain
class of gravitational collapse.

Also, we have not addressed the issue of the stability of
naked singularity. If these are not stable (in a sense to be
defined suitably) such naked singularities need not be
considered as counterexamples to the cosmic censorship
hypothesis. As far as the issue of stability is concerned,
one needs to develop a precise criterion for stability in
general relativity. In this connection it may be noted,
however, that for self-similar Tolman-Bondi models the
Cauchy horizon is stable at least against the blueshift
mode of instability [21].

Subject to these reservations, it is seen here that
Tolman-Bondi space-times admit naked singularities un-
der fairly general conditions, from which a nonzero mea-
sure set of nonspacelike trajectories emanate in the future
direction. Certain examples of particular classes where
nonradial nonspacelike geodesics terminate at the naked
singularity in the past are also explicitly worked out. An
interesting point is that, in the case of the strong curva-
ture condition being satisfied along radial null trajec-
tories, the same conclusion also holds along all other non-
spacelike geodesics. For various other classes of naked
singularity space-times, even though the strong curvature
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condition may not be satisfied along radial curves, they
could still be regarded as strong curvature singularity in
the sense that the Kretschmann scalar diverges.

Another feature one would like to note here is that
while strong curvature naked singularities have been
found to occur in self-similar gravitational collapse as in-
dicated earlier, the present consideration gives a wide
class of inhomogeneous collapse models which need not
be self-similar in general. A wide class of space-times has
been pointed out, namely, the ones for which a=1,,
which gives a set of solutions of the field equations which
admit a strong curvature naked singularity. The sugges-
tion that seems to be coming is that the phenomena of
naked singularity is probably not related to the space-
times with any particular geometric properties such as
the self-similarity of the models. It may be that the ex-
istence of naked singularity is not just a geometric phe-
nomena and the answer to cosmic censorship conjecture
could lie in the dynamics of the Einstein equations. Of
course, if one rules out the matter fields such as the dust
and perfect fluid, etc., from consideration because they
may create singularity even without gravity, then such
naked singularities are ruled out (see, however, [29]
where the occurrence of naked singularity is pointed out
for a wide range of matter satisfying the weak energy
condition in self-similar gravitational collapse).

To summarize, the conclusions on the final fate of
gravitational collapse are rather different in the generally
inhomogeneous Tolman-Bondi models as compared to
the Oppenheimer-Snyder case of a completely homogene-
ous dust collapse, which forms a set of zero measure in
the general Tolman-Bondi class considered here. In fact,
the similarity in conclusions concerning the nature and
structure of the naked singularity for the radiation col-
lapse [20], the general self-similar collapse [8] of perfect
fluid, and the results here appear suggestive of a certain
general property of Einstein equations. It would be
worthwhile to isolate and study this feature as that might
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help towards a definite mathematical formulation of the
cosmic censorship by pointing out the precise features
one wants to rule out. Such a study would be of indepen-
dent interest anyway because not much is understood on
the global properties of the Einstein equations except the
results on the existence of space-time singularities as pre-
dicted by the singularity theorems.

While the analysis we have presented here should be
useful towards arriving at any rigorous formulation of
cosmic censorship in a provable form as pointed out
above, we would like to argue here that a physical formu-
lation of the cosmic censorship may be evolved which
avoids features such as above. For example, an interest-
ing feature that emerges from the presently available ex-
amples is the role of energy conditions in determining the
escape of families of nonspacelike trajectories from the
naked singularity, which is an important criteria for the
physical significance of the same. In all the presently
available collapse scenarios, it is the weak energy condi-
tion together with the positivity of energy which leads to
the existence of families of nonspacelike geodesics ter-
minating at the naked singularity in the past. Could one
then argue that somehow the energy conditions must be
violated in the very final stages of gravitational collapse
so as to avoid the formation of naked singularity? In
fact, in the case of self-similar collapse [8], it can be
shown that the violation of the energy condition near the
singularity no longer allows the families of nonspacelike
geodesics to come out but only an isolated trajectory can
emerge. Hence, for all practical purposes, the singularity
is no longer naked preserving the effective censorship.
Again, as emphasized by Israel [30], many of the naked
singularities arising in the spherically symmetric collapse
are massless (with the mass being defined in a suitable
manner, see also Lake [18]); and as a consequence these
may not violate the basic physical spirit of the cosmic
censorship. Such possibilities need a serious investiga-
tion.
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