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It is argued that the observed thermodynamic arrow of time must arise from the boundary conditions
of the Universe. We analyze the consequences of the no-boundary proposal, the only reasonably com-
plete set of boundary conditions that has been put forward. We study perturbations of a Friedmann
model containing a massive scalar field, but our results should be independent of the details of the matter
content. We find that gravitational wave perturbations have an amplitude that remains in the linear re-
gime at all times and is roughly time symmetric about the time of maximum expansion. Thus gravita-
tional wave perturbations do not give rise to an arrow of time. However, density perturbations behave
very differently. They are small at one end of the Universe's history, but grow larger and become non-
linear as the Universe gets larger. Contrary to an earlier claim, the density perturbations do not get
small again at the other end of the Universe's history. They therefore give rise to a thermodynamic ar-
row of time that points in a constant direction while the Universe expands and contracts again. The ar-
row of time does not reverse at the point of maximum expansion. One has to appeal to the weak anthro-
pic principle to explain why we observe the thermodynamic arrow to agree with the cosmological arrow,
the direction of time in which the Universe is expanding.

PACS number(s): 98.80.Hw, 98.80.Bp

I. INTRODUCTION

The laws of physics do not distinguish the future from
the past direction of time. More precisely, the famous
CPT theorem [1] says that the laws are invariant under
the combination of charge conjugation, space inversion,
and time reversal. In fact, effects that are not invariant
under the combination CP are very weak, so to a good
approximation, the laws are invariant under the time re-
versal operation T alone. Despite this, there is a very ob-
vious difference between the future and past directions of
time in the Universe we live in. One only has to see a film
run backward to be aware of this.

There are several expressions of this difference. One is
the so-called psychological arrow, our subjective sense of
time, the fact that we remember events in one direction
of time but not the other. Another is the electromagnetic
arrow, the fact that the Universe is described by retarded
solutions of Maxwell's equations, and not advanced ones.
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Both of these arrows can be shown to be consequences of
the thermodynamic arrow, which says that entropy is in-
creasing in one direction of time. It is a nontrivial
feature of our Universe that it should have a well-defined
thermodynamic arrow which seems to point in the same
direction everywhere we can observe. Whether the direc-
tion of the thermodynamic arrow is also constant in time
is something we shall discuss shortly.

There have been a number of attempts to explain why
the Universe should have a thermodynamic arrow of time
at all. Why shouldn't the Universe be in a state of max-
irnum entropy at all times? And why should the direc-
tion of the thermodynamic arro+ agree with that of the
cosmological arrow, the direction in which the Universe
is expanding? Would the thermodynamic arrow reverse
if the Universe reached a maximum radius and began to
contract?

Some authors have tried to account for the arrow of
time on the basis of dynamic laws. The discovery that
CP invariance is violated in the decay of the K meson [2]
inspired a number of such attempts, but it is now general-
ly recognized that CP violation can explain why the
Universe contains baryons rather than antibaryons, but it
cannot explain the arrow of time. Other authors [3] have
questioned whether quantum gravity might not violate
CPT, but no mechanism has been suggested. One would
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not be satisfied with an ad hoc CPT violation that was put
in by hand.

The lack of a dynamical explanation for the arrow of
time suggests that it arises from boundary conditions.
The view has been expressed that the boundary condi-
tions for the Universe are not a question for science, but
for metaphysics or religion. However, that objection
does not apply if there is a sense in which the Universe
has no boundary. We shall therefore investigate the ori-
gin of the arrow of time in the context of the no-
boundary proposal of Hartle and Hawking [4]. This was
formulated in terms of Einsteinian gravity which may be
only a low-energy effective theory arising from some
more fundamental theory such as superstrings. Presum-
ably, it should be possible to express a no-boundary con-
dition in purely string theory terms, but we do not yet
know how to do this. However the recent Cosmic Back-
ground Explorer (COBE) observations [5] indicate that
the perturbations that lead to the arrow of time arise at a
time during inAation when the energy density is about
10 ' of the Planck density. In this regime, Einstein
gravity should be a good approximation.

In most currently accepted models of the early
Universe there is some scalar field P whose potential en-
ergy causes the Universe to expand in an exponential
manner for a time. At the end of this infiationary period,
the scalar field starts to oscillate and its energy is sup-
posed to heat the Universe and to be transformed into
thermal quanta of other fields. However, this thermaliza-
tion process involves an implicit assumption of the ther-
modynamic arrow of time. In order to avoid this, we
shall consider a Universe in which the only matter field is
a massive scalar field. This will not be a completely real-
istic model of the Universe we live in because it will be
effectively pressure free after the inflationary period,
rather than radiation dominated. However, it has the
great advantage of being a well-defined model without
hidden assumptions about the arrow of time. One would
expect that the existence and direction of the arrow of
time should not depend on the precise matter content of
the Universe. We shall therefore consider a model in
which the action is given by the Einstein-Hilbert action

I = J d x( —g)' R+ I d x(h)' K1 1

16mG 4~G aw

plus the massive scalar field action

I = ——I d x( —g)'~ (g" d„Qd P+m P ) . (1.2)
1

In accordance with the no-boundary proposal, we shall
take the quantum state of the Universe to be defined by a
path integral over all compact metrics with this action.
This means that the wave function %[h,",$0] for finding a
three-metric h; and scalar field $0 on a spacelike surface
S is given by

4(h;, $0)= J d[g„]d[p]e (1.3)

where the path integral is taken over all metrics and sca-
lar fields on compact manifolds M with boundary S that

induce the given values on the boundary. In general, the
metrics in the path integral will be complex, rather than
purely Lorentzian or purely Euclidean.

There are a number of problems in defining a path in-
tegral over all metrics, two of which are (1) the path in-
tegral is not perturbatively renormalizable and, (2) the
Einstein-Hilbert action is not bounded below.

These difhculties may indicate that Einstein gravity is
only an effective theory. Nevertheless, for the reasons
given above, we feel the saddle-point approximation to
the path integral should give reasonable results. We shall
therefore endeavor to evaluate the path integral at sta-
tionary points of the action, that is, at solutions of the
Einstein equations. These solutions will be complex in
general.

The behavior of perturbations of a Friedmann model
according to the no-boundary proposal was first investi-
gated by Halliwell and Hawkins [6], and we shall adopt
their notation. The perturbations are expanded in hyper-
spherical harmonics. There are three kinds of harmonics.

(1) Two degrees of freedom in tensor harmonics. These
are gauge invariant and correspond to gravitational
waves.

(2) Two degrees of freedom in vector harmonics. In
the model in question they are pure gauge.

(3) Three degrees of freedom in scalar harmonics. Two
of them correspond to gauge degrees of freedom and one
to a physical density perturbation.

One can estimate the wave functions for the perturba-
tion modes by considering complex metrics and scalar
fields that are solutions of the Einstein equations whose
only boundary is the surface S. When S is a small three-
sphere, the complex metric can be close to that of part of
a Euclidean four-sphere. In this case, the wave functions
for the tensor and scalar modes correspond to them being
in their ground state. As the three-sphere S becomes
larger, these complex metrics change continuously to be-
come almost Lorentzian. They represent universes with
an initial period of inflation driven by the potential ener-
gy of the scalar field. During the inAationary phase, the
perturbation modes remain in their ground states until
their wavelengths become longer than the horizon size.
The wave function of the perturbations then remains
frozen until the horizon size increases to be more than
the wavelength again during the matter-dominated era of
expansion that follows the inflation. After the wave-
lengths of the perturbations come back within the hor-
izon, they can be treated classically.

This behavior of the perturbations can explain the ex-
istence and direction of the thermodynamic arrow of
time. The density perturbations, when they come within
the horizon, are not in a general state, but in a very spe-
cial state with a small amplitude that is determined by
the parameters of the inAationary model; in this case, the
mass of the scalar field. The recent observations by
COBE indicate this amplitude is about 10 . After the
density perturbations come within the horizon, they will
grow until they cause some regions to collapse as proto-
galaxies and clusters. The dynamics will become highly
nonlinear and chaotic, and the coarse-grained entropy
will increase. There will be a well-defined thermodynam-
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ic arrow of time that points in the same direction every-
where in the Universe and agrees with the direction of
time in which the Universe is expanding, at least during
this phase.

The question then arises: If and when the Universe
reaches maximum size, will the thermodynamic arrow re-
verse? Will entropy decrease and the Universe become
smoother and more homogeneous during the contracting
phase? In Ref. [7] it was claimed that the no-boundary
proposal implied that the therm. odynamic arrow would
reverse during the contraction. This is now recognized to
be incorrect, but it is instructive to consider the argu-
ments that led to the mistake and see why they do not ap-
ply. The anatomy of error is not ruled by logic, but there
were three arguments which together seemed to point to
reversal.

(1) The no-boundary proposal implied that the wave
function of the Universe was invariant under CPT.

(2) The analogy between spacetime and the surface of
the Earth suggested that if the North Pole were regarded
as the beginning of the Universe, the South Pole should
be its end. One would expect conditions to be similar
near the North and South Poles. Thus, if the amplitude
of perturbations was sma11 at early times in the expan-
sion, it should also be small at late times in the contrac-
tion. The Universe would have to get smoother and more
homogeneous as it contracted.

(3) In studies of the Wheeler-DeWitt equation
on minisuperspace models [8], it was thought that the
no-boundary condition implied that %(a)~1 as the ra-
dius a~0. In the case of a Friedmann model with a
massive scalar field, this seemed to imply that the classi-
cal solutions that corresponded to the wave function
through the WKB approximation would bounce and be
quasiperiodic. This could be true only if the solutions
were restricted to those in which the perturbations be-
came small again as the Universe contracted.

Page [9] pointed out that the first argument about the
CPT invariance of the wave function did not imply that
the individual histories had to be CPT symmetric, just
that if the quantum state contained a particular history,
then it must also contain the CPT image of that history
with the same probability. Thus, this argument did not
necessarily imply that the thermodynamic arrow reversed
in the contracting phase. It would be equally consistent
with CPT invariance for there to be histories in which the
thermodynamic arrow was pointed forward during both
the expansion and contraction, and for there to be other
histories with equal probability in which the arrow was
backward. With a relabeling of time and space directions
and of particles and antiparticles, these two classes of his-
tories would be physically identical. Both would corre-
spond to a steady increase in entropy from one end of
time, which can be labeled the big bang, to the other end,
which can be labeled the big crunch.

The second argument, about the North and South
Poles being similar, is really a confusion between real and
imaginary time. It is true that there is no distinction be-
tween the positive and negative directions of time. In the
Euclidean regime, the imaginary time direction is on the
same footing as spatial dimensions. So one can reverse

the direction of imaginary time by a rotation. Indeed,
this is the basis of the proof that the no-boundary quan-
tum state is CPT invariant. But as noted above, this does
not imply that the individual histories are symmetric in
real time or that the big crunch need be similar to the big
bang.

The third argument, that the boundary condition for
the Wheeler-DeWitt equation should be 4—+1 for small
three-spheres S in a homogeneous isotropic minisuper-
space model, was the one that really led to the error of
suggesting that the arrow of time reversed. The motiva-
tion behind the adoption of this boundary condition was
the idea that the dominant saddle point in the path in-
tegral for a very small three-sphere would be a small part
of a Euclidean four-sphere. The action for this would be
sma11. Thus, the wave function would be about one, ir-
respective of the value of the scalar field. With this
boundary condition, the minisuperspace Wheeler-DeWitt
equation gave a wave function that was constant or ex-
ponential for small radii, and which oscillated rapidly for
larger radii. From the WKB approximation, one could
interpret the oscillations as corresponding to Lorentzian
geometries. That fact that the oscillating region did not
extend to very small radii was taken to indicate that these
Lorentzian geometries would not collapse to zero radii
but would bounce. Thus, they would cor'respond to
quasiperiodic oscillating universes. In such universes, the
perturbations would have to obey a quasiperiodic bound-
ary condition, and be small whenever the radius of the
universe was small. Otherwise, the universe would not
bounce. This would mean that the thermodynamic arrow
would have to reverse during the contraction phase, so
that the perturbations were small again at the next
bounce.

This boundary condition on the wave function became
suspect when LaAamme [10,11] found other minisuper-
space models in which a bounce was not possible. Then
Page [9] pointed out that for small three-surfaces S, there
was another saddle point that could make a significant
contribution to the wave function. This was a complex
metric that started almost like half of a Euclidean four-
sphere and was followed by an almost Lorentzian metric
that expanded to a maximum radius, and then collapsed
to the small three-surface S. The long Lorentzian period
would give the action of these metrics a large imaginary
part. This would lead to a contribution to the wave func-
tion that oscillated very rapidly as a function of the ra-
dius of the three-surface S and the value of the scalar field
on it. Thus, the boundary condition of the Wheeler-
DeWitt equation would not be exactly 4'~1 as the ra-
dius tends to zero. There would also be a rapidly oscillat-
ing component of the wave function.

As before, the wave functions for perturbations about
the Euclidean saddle-point metric would be in their
ground states, but there is no reason for this to be true for
perturbations about the saddle-point metric with a long
Lorentzian period that expanded to a large radius and
then contracted again.

To find out what the wave functions for perturbations
in the contracting phase are, one has to solve the relevant
Schrodinger equation during the expansion and contrac-
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tion. This we do in Secs. IIIA and III B. We find that
the tensor modes have wave functions that correspond to
gravitational waves that oscillate with an adiabatically
varying amplitude. This amplitude will depend on the ra-
dius of the Universe. It will be the same at the same ra-
dius in the expanding and contracting phases, and it will
be small compared to one whenever the wavelength is less
than the horizon size. Thus, these gravitational wave
modes will not become nonlinear and will not give rise to
a thermodynamic arrow of time.

In contrast, scalar modes between the Compton
wavelength of the scalar field and the horizon size will
not oscillate, but will have power-law behavior. There
are two independent solutions of the perturbation equa-
tions, one which grows and one which decreases with
time. The boundary condition provided by the no-
boundary proposal picks out the solution that is a small
perturbation about the Euclidean saddle point for small
three-spheres. It does not require that the perturbation
about the saddle point with a long Lorentzian period
remain small. So the no-boundary proposal picks out the
solution of the density perturbation equation that starts
small, but grows during the expansion and continues to
grow during the contraction. At some point during the
expansion, the amplitude will grow so large that the
linearized treatment will break down. This, however,
does not prevent one from using linear perturbation
theory to draw conclusions about the thermodynamic ar-
row of time. The arrow of time is determined by when
the evolution becomes nonlinear. The linear treatment
and the no-boundary proposal enable one to say that this
will happen during the expansion. After that, the evolu-
tion will become chaotic and the coarse-grained entropy
will increase. It will continue to increase in the contract-
ing phase because there is no requirement that the pertur-
bations become small again as the Universe shrinks.
Thus, the thermodynamic arrow will not reverse. It will
point the same way while the Universe expands and con-
tracts.

The thermodynamic arrow will agree with the cosmo-
logical arrow for half the history of the Universe, but not
for the other half. So why is it that we observe them to
agree? Why is it that entropy increases in the direction
that the Universe is expanding? This is really a situation
in which one can legitimately invoke the weak anthropic
principle, because it is a question of where in the history
of the Universe conditions are suitable for intelligent life.
The inflation in the early Universe implies that the
Universe will expand for a very long time before it con-
tracts again. In fact, it is so long that the stars will have
all burnt out and the baryons will have all decayed. All
that will be left in the contracting phase will be a mixture
of electrons, positrons, neutrinos, and gravitons. This is
not a suitable basis for intelligent life.

The conclusion of this paper is that the no-boundary
proposal can explain the existence of a well-defined ther-
modynamic arrow of time. This arrow always points in
the same direction. The reason we observe it to point in
the same direction as the cosmological arrow is that con-
ditions are suitable for intelligent life only at the low-
entropy end of the Universe's history.

II. THE HOMOGENEOUS MODEL

In this section we review the homogeneous model with
the metric

ds =o [ N—(t) dt +a(t) dQ3], (2.1)

where o. =2/(3mmt, ), N is the lapse function, a is the
scale factor, and d 03 is the standard three-sphere metric.
Expressing the scalar field as &2vrogwi. th the quadratic
potential 2m cr m P, the Lorentzian action is

I=—— dt Na
1

2

2
1

2

+m P~2a2 a2 N2
(2.2)

H= [
—a vr, +m& —a (1—a m P )]=0,

2a
(2.3)

where the momenta m., and ~& are defined as

a a= ——a and m0 N
(2.4)

and H is the Hamiltonian. This constraint is a conse-
quence of the invariance under time reparametrization.
Varying the action with respect to the field P we obtain
the reduced Klein-Gordon equation

d
dt N

+3—P+N m P =0
1

(2.5)

This latter equation together with the Hamiltonian con-
straint H=O is sufhcient to describe the classical dynam-
ics. The second-order equation for a can be derived from
these equations. In the inhomogeneous model there are
also momentum constraints, but these are trivially
satisfied in the homogeneous background.

The quantum theory is obtained by replacing the
different variables by operators. We will follow the Dirac
method and impose the classical constraints as quantum
operators. The Hamiltonian constraint thus becomes

a — —a (1—a m P ) Vo(a, g)=0,2 Qp2
(2.6)

and is called the Wheeler-DeWitt equation. The solution
of this equation, Vo(a, g) is the wave function of the
Universe. There is a factor ordering ambiguity, but it is
not important for the conclusions of our paper, which
rely on the classical limit.

In this paper, we investigate the predictions of the no-
boundary proposal in a model where small inhomo-
geneities are taken into account. In order to impose this
proposal, we return to a path-integral formulation of the
wave function. It is very hard to calculate this path in-
tegral exactly. However, we can have a good idea of the

where the dot denotes derivative with respect to
Lorentzian Friedmann-Robertson-Walker (FRW) time (if
not explicitly stated, throughout the paper time deriva-
tives are Lorentzian). There are no time derivatives of
the lapse function N in this action, it is a Lagrange multi-
plier. Varying the action with respect to N leads to the
constraint
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resulting wave function by using a saddle-point approxi-
mation.

I~ [g .e]
V(h, ., P) =Ce (2.7)

a=0, =1, ' =0, P=Qo,
da db
d7 d7

(2.8)

thus, we only have the freedom to choose the (complex)
value of P at the origin of complex time r.

Lyons [13] found that there were many contours in the
complex time plane which induced real end points a and

Some possibilities are obtained by choosing the initial
value of P to have an imaginary part much smaller than
the real part such that Po = —(I+2n)m/6$o' (for in-

teger n ). In this paper we will only investigate the case
n =0.

For small a, the complex metric can effectively be con-
sidered as a small real Euclidean section, with Po approxi-
mately real, described by

1
and a = sinmPor,

mPo
(2.9)

where ~ is the Euclidean time. When we consider gravi-
tons below, it is a good approximation to assume the fol-
lowing behavior for the radius a when Po) 1. For small a
((mPo), the background is part of a Euclidean four-
sphere:

where C is a prefactor and IE is the Euclidean saddle-
point action. In this approximation it is clear how to im-
pose the proposal of Hartle and Hawking. The regularity
condition is imposed on the (complex) saddle points of
the path integral. The semiclassical approximation to the
path integral can then be used to estimate the wave func-
tion.

One of the problems in using the semiclassical approxi-
mation in this model is that we cannot simply deform the
complex metric into purely real Euclidean and real
Lorentzian sections, for real arguments of the wave func-
tion. This could only be achieved in this model if the
time derivatives of both a and P vanish simultaneously on
the Euclidean axis [12], which is not possible, as P in-
creases monotonically if the no-boundary condition is im-
posed. Therefore, we must solve the background equa-
tions of motion for complex values of time and physical
variables, obtaining complex solutions which satisfy the
no-boundary proposal and have the given a and P on the
final hypersurface. The no-boundary proposal imposes
the boundary conditions at one end of the four-geometry:

where g is the analytic continuation of gE=ig. The
Universe is then in an inAationary era. In terms of
comoving time,

1 moos —m t i6
and a= e

3 mPo
(2.12)

where t is the analytic continuation of ~ in the Lorentzian
region.

The action is given by

I, = — [1—(1—m Pea ) ] .
3m Po

(2.13)

1/2
1 IIIRXI g

cos(mt) . (2. 14)

The scale factor of the Universe is then well described
by

~/2 —35, —g
a =a sin

2
(2.15)

where the constants have been chosen to ensure a smooth
transition between the inAationary and dust era. The
Universe will therefore expand to a maximum radius

exp(9(go) /2)

m(Po)

For large a ())I/mgo), the saddle point will have a
large imaginary part. The wave function will therefore
be of WKB type. After a suitable coarse graining [14],
we can associate the phase of the wave function to the
Hamilton-Jacobi function of general relativity. When
this is possible, we will assume that the Universe behaves
essentially classically. The wave function will be associ-
ated with the family of classical Lorentzian trajectories
described by the Hamilton- Jacobi function.

Meanwhile, the scalar field is decreasing and inflation
will end at g=n/2 —6„when the scalar field reaches a
value around unity, at which point the value of a will be

a, =( I/mgo) exp(3$o/2) .

6, is given by 5, = exp( —3(go) /2). For Po) 1, we have

6, « 1. When g) ~/2 —5„the scalar field oscillates and
behaves essentially as a pressureless Quid (i.e., dust):

1
a

pl Po coshrIE
—(x) & r]E &0 . (2.10)

The Euclidean conformal time is given by gE = J dr/a
Although gE has a semi-infinite range, notice that the
proper distance is finite. The radius a starts at zero and
increases to a maximum value of a /m Po, the equator of
the four-sphere. For larger a, the saddle point is well ap-
proximated by de Sitter space:

1a= 0&q& ——5, ,
m (hp cosrj 2

(2.11)
FIG. 1. Classical trajectories for the scale factor a and homo-

geneous scalar field P corresponding to the no-boundary propo-
sal.
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and recollapse. It will be convenient later on to redefine
the origin of conformal time during the dustlike era by
setting gz=g vr—/2+35, . The scale factor will then
evolve as

2 'gd
a =a,„sin, 0 (gd (2w .

2 ' (2.16)

III. INHOMOGKNEOUS PKRTURBATIONS

Let us now consider the behavior of small perturba-
tions around the homogeneous model described in the
previous section. We write the metric as

Figure 1 depicts a typical classical trajectory correspond-
ing to the no-boundary proposal.

to the symmetry of the FR W background. The
coefficients a„, b„, c„,d„, f„,g„, j„,and k„are functions
of time, but not of the spatial coordinates of the three-
sphere hypersurfaces. Spatial information is encoded in
the harmonics.

In [6] the actions (1.3) and (1.4) were expanded to
second order around the homogeneous model. In Appen-
dix A, we have reproduced it with the equations of
motion for the various Fourier coefficients. After exam-
ining the perturbing Lagrangians (A2) and (A3), we find
that the different types of harmonics decouple from each
other. Their wave functions will therefore separate, so
we can write

%„(a,g, a„,b„,c„,d„,f„)
g„(t, x)=g„(t )+5g„„(t, x) . (3.1) =g'„(a,P, a„,b„,f„)g„"( a, tI,)c„)g'„(a, P, d„ ) . (3.6)

0

j„S," 2c„S,"
jnS

(3.3)

where the S;"=S;~ +S.
~; are obtained from the transverse

vector harmonics S;". The scalar perturbations of the

The background part g„(t ) was described in the previ-
ous section by the line element (2.1).

One can decompose a general perturbation 6g„
of a Robertson-Walker background metric into scalar
(QI~ ), vector ((P, )&m, (S,")&~ ), and tensor
((P~)1",(S~')I",(G~")& } harmonics. This classification
originates from the way they transform under rotations
of the three-sphere. These harmonics are constructed
from the scalar, vector, and tensor eigenfunctions of the
Laplacian on the three-sphere, viz. QP, (S ')&, and
(G J')& . More details and properties of these harmonics
are given in Refs. [15,16].

We can expand the inhomogeneous perturbations of
the metric in terms of these harmonics (where the index n
should be thought of as shorthand for nlm and o, e ). The
tensor perturbations are

0 0
0 2d G." (3.2)

n n ij

6;" are the transverse traceless tensor harmonics. The
vector perturbations are

It is thus possible to investigate them separately. We will
study the tensor and scalar modes in the next two subsec-
tions. For the vector modes, there are only two variables,
c„and j„. The latter one, however, is a Lagrange multi-
plier, and thus induces a constraint for the only variable
left. Thus, we find that the vector degrees of freedom are
pure gauge and will only contribute to the phase of the
total wave function.

A. Linear gravitons

d„"+2&d„'+(n —1)d„=0 (3.7)

for the modes d„. Here the derivatives are evaluated
with respect to Lorentzian conformal time and &=a '/a.
The gravitons are decoupled from the scalar- and vector-
derived tensor harmonics and depend only on the
behavior of the background.

We will calculate the wave function for the graviton
modes using a saddle-point approximation, assuming the
background wave function (2.7) and saddle-point action
(2.13). The tensor part of the wave function [see (3.6)]
can be written as

(Iext)
g'„(a, +o, d„)=I [dd„]e =Ce (3.8)

Linear gravitons are the transverse and traceless parts
of the three-metric, and are described by the variable d„
in the above notation. Using the background equation of
motion we can derive the equation [17]

—2Xog„Q"
(s) —~ k„P,"

2a„A; Q "+6b„P;"
where

f.Q" . — (3.5)

This expansion is in effect a Fourier transform adapted

where the P;"=Q ~;
/(n —1 ) and

"vQ" Qiv

(n —1)

are obtained from the scalar harmonics Q". We must
also take into account the scalar perturbations of the sca-
lar field.

[g2(Iext )/gdi gd f]1/2

is the prefactor assuming the Aat spacetime measure.
The Euclidean action for a mode d„calculated along

an extremizing path is given by the boundary term
f

a tEI'"= +2aa 'dE n i
IF.

(3.9)

where gE is the Euclidean time, a function of the back-
ground variables a and yo as described in [18]. It is possi-
ble to rewrite this action in terms of values of the field on
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the boundary d„',d„and solutions of the classical equa-
tion p„,

aI'"t= Ad2= a +4
2 p„a d.'. (3.11)

d 2 d
a p„(n——l)a p„=0,

dgEd WEE

(3.10)

evaluated on the boundary. The regularity condition for
the no-boundary proposal implies that d„must vanish
when the three-geometry shrinks to zero, and this implies
that the action will have the form

In regions of configuration space where the Universe is
Lorentzian, the appropriate analytic continuation of
(3.11) should be taken.

It is possible to find a good analytical approximation
for p„, and thus of the wave function, using (3.8) and
(3.11) and assuming that the background is described by
Eqs. (2.10), (2.11), and (2.15). The p„are approximately

cosh'QE
sinhgE e, —~ &gE &0 in the Euclidean region,

7l

. singcosy+i e '"", 0&g & ——5, in the inflationary era,
n 2

cos[n (g —3'/2+ 35, ) ]
cos [(g—3m/2+35, )/2]

sin[(rl —3n/2+ 35, ) /2] sin[ n (g —jm/2+ 35, ) ]

2e cos [(g—3m /2+35, )/2]

——5, & g in the dustlike phase .

(3.12)

Modes with n6, «1 are those with wavelengths much
larger than the Hubble radius at the end of inflation. At
the onset of inflation, they are in their ground state, and
thus oscillate adiabatically. These modes will no longer
oscillate adiabatically when they leave the Hubble radius
during inflation. However, all modes will reenter the
Hubble radius during the dust era when

(g —
m /2+35, )n= tan

2

where y = 1 —n 6, /2. The expectation value of the
Hamiltonian

1H„= I7rd +4(d„77d +erg d„)a7r,
2a n n

+d„[10a vr, +6m& 6a m P +(—n +1)a

(3.16)

is
and start oscillating adiabatically again. Modes with
n5, )) 1 oscillate adiabatically throughout the evolution.
All the modes oscillate around the time of maximum ex-
pansion, and even if some do not have a phase which is
exactly time symmetric, their amplitudes are.

The variance squared of the field and its momenta for
modes with n 5, «1 around the time of maximum expan-
sion are given by

n
at the onset of inflation,

a
&H„&= ~

near the maximum expansion .
an 5,

(3.17)

&d'& = 1

2(2*+2 )

&vr„' &=
2(A*+ A )

1+2y cos(2ng)+y
2na (1—y )

(3.13)
This shows that modes start in their ground state before
the onset of inflation, and get excited during inflation and
the dust phase.

A useful way to gain information about this state is to
investigate the Wigner function

and

(1—y ) +4y sin (2nrI)
[1+2ycos(2ng)+y ](1—y )

+ d &

i( A —A *) 4y sin(2ng)
3+2* 1—r

(3.14)

(3.15)

V(d„,m„)= f db, e ' P"(d„—b, )P(d„+b, ) .
1

(3.18)

The Wigner function gives an idea of the phase-space
probability distribution of possible classical perturbations
(once decoherence has occurred). For the wave function
(3.8) with action (3.11), it is given by
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A+A*
V(d„,rr„)= exp

2K

4AA* —
2 1 2 . A —A

7T~ 2lA+A* A+A* A+A* (3.19)

sin( n i) +e )

3/2g
e

(3.20)

where e is an unimportant phase depending on the details
of the matching of the p„ functions in (3.12). Around the
time of maximum expansion, the amplitude of the gravi-
ton modes is symmetric, and thus their arrow of time
agrees with the cosmological one. Figure 2 depicts a typ-
ical classical evolution of a linear graviton.

At the onset of inAation, the Wigner function is a round
Gaussian (factoring out the mode number and the radius
of the Universe). A mode with n & tan(ir/2 —b, ) will go
outside the Hubble radius and have frozen amplitude,
and the Wigner function will then become an ellipse
elongated iii ~he momentum direction. When the mode
comes back within the Hubble radius, it starts rotating
with period 2~/n in phase space. This behavior lasts un-
til n = tang in the recontracting phase. The parameter
characterizing the eccentricity of this ellipse is called the
squeezing and has been studied by Grishchuk and
Sidorov [19].

Typical classical perturbations d„" resulting from the
above Wigner function are small at the onset of inflation.
Their amplitudes get frozen when they leave the Hubble
radius. During this stage their energies increase. The
perturbations will start oscillating again with amplitude
proportional to a ' when they come back within the
Hubble radius in the dust phase. They behave like

perturbations of a massive scalar field will not behave adi-
abatically at the time of maximum expansion.

From the expansions (3.4) and (3.5), we see that there
are five scalar degrees of freedom described by the time-
dependent coefficients a„, b„, f„, k„, and g„. However,
the latter two appear as Lagrange multipliers in the La-
grangians (A2) and (A3) and induce two constraints, so
overall there is only one true scalar degree of freedom.
Without the presence of the scalar field, the scalar de-
grees of freedom would also be pure gauge. Care should
be taken in the treatment of the scalar perturbations in
order to avoid gauge dependent results. Let us first find
the real degree of freedom.

Variations of the action with respect to the Lagrange
multipliers X, g„, and k„result in the Hamiltonian, linear
Hamiltonian, and momentum constraints. In Dirac
quantization, which we follow here, these constraints are
imposed as constraints on the quantum state. The wave
function therefore depends only on a linear combination
of the coefficients a„, b„, and f„. The momentum con-
straints ensure that the wave function is invariant under
diffeomorphisms of the spatial three-surfaces. The Ham-
iltonian and linear Hamiltonian constraints ensure time
reparametrization invariance of the wave function.

Shirai and Wada [20] give an explicit form for the wave
function, which automatically satisfies the momentum
constraints. These are solved by making the judicious
change of variables

B. Linear scalar perturbations

1. Quantum mechanics of the physical degree offreedom

a=a+ —g a„2g —b„,1 2 n —4 2

2 ~ ~ 71 1

P=P —3g b„f„,
n

(3.21)

We have seen that gravitons are adiabatic near the
time of maximum expansion, so that their amplitude is
time symmetric with respect to that point. This is not
special to gravitons, as the electromagnetic field and
massless or conformally coupled scalar fields will also be
adiabatic. In this section we will show, however, that

where o.=lna. Once this transformation has been per-
formed, the momentum constraints imply that the wave
function is independent of the linear combination a„—b„.
In terms of the two degrees of freedom left, the linear
Hamiltonian constraint becomes

~~ir~ vr vr, +e m P—f„+K„s„=0, (3.22)

dn

a

where s„=a„+b„and

K„=—,'[(n 4)vr (n +5)~—
&
—(n —4)e m —P ] .

The remaining gauge degree of freedom can be eliminated
by solving the linear Hamiltonian constraint using the
canonical transformation

y„ l~„e6 m'y s„

~a fn
(3.23)

FIG. 2. Classical trajectories for the radius of the Universe a
in the FRW model with scalar field. The amplitude of a partic-
ular mode of the gravitons d„has time symmetric amplitude
with respect to the maximum up to very small radii.

~$
n

6am 2
l.

Jn
7T

&n

'7Tz
n
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%(y„,z„)=0, (3.24)

where X= I—C„m +e m Per&. The linear Hamiltonian
constraint then implies that, imposed as a quantum con-
straint,

and the constraints

a„' +&a„=—3P'f„,
a„(n —4 —3P' )= 3P'f„' +3 m Pa f„+9&/'f„.

(3.30)

(3.31)

P'(a, g, z„)-C(a,g) exp( —IE') . (3.26)

The Euclidean action of the saddle-point contribution to
the path integral is a boundary term (since the action is
quadratic) given by

and so 4 is independent of y„. Therefore, the true degree
of freedom has been isolated —the wave function is found
to depend only on the single physical variable

z„=~&s„+nQ„=a (P's„Af„)—, (3.25)

and on the background variables a and P (in the rest of
the paper we will drop the tilde on a and P). The expres-
sion for the Hamiltonian for the modes z„ is rather com-
plicated, and is shown only in Appendix A.

We can find the wave function for the scalar perturba-
tions in terms of the real degree of freedom by using the
semiclassical approximation to the path-integral expres-
sion for the wave function as in the graviton case

This gauge corresponds to having a zero-shift function
and a diagonal metric on the three-sphere. It fixes the
metric up to a conformal transformation of the three-
sphere corresponding to the n =2 mode. This eliminates
the possibility of gauge artifacts for scalar modes with
higher n Eq.uations (3.28) —(3.30) are just (A7), (All),
and (A8), noting that g„=—a„ in this gauge. The last
equation follows from (A14), (3.30), and the background
constraint. These equations are not independent; the first
one can be obtained by taking a derivative of the first
constraint and using the second equation and the back-
ground equation of motion. Equations (3.28), (3.30), and
(3.31) can be combined to give the decoupled equation of
motion for a„:

tl It

a "+2 &— a'+ 2&' —2& +n +3 a =0 .n n Pl n

(3.32)

for

(3.27)

(n —4)
2[(n —4)a' +3a P' ]

X= K„2a —3a m /+3 a P'1 4 6 2 2 n —1 4

4MUa n —4

This equation is useful in the inAationary era, where
P'%0. It is also useful in the limit where the curvature of
the three-space can be neglected, as we can solve it ex-
plicitly in either the adiabatic or nonadiabatic regime (see
[22]). Once we have a solution for a„, we can also find f„
using the constraint equation (3.30) or (3.31), and there-
fore the real degree of freedom z„. In the region near the
maximum expansion it is much harder to solve (3.32),
and we return to (3.28)—(3.31).

+a' m P +3a PP'a'

U=K„aa'+a m PP',

and the derivatives here are with respect to Euclidean
conformal time.

It is dificult to find solutions of the equations for z„. It
is easier to return to the original variables and pick a par-
ticular gauge. In order to study the scalar perturbations,
we shall choose the gauge b„=k„=O, which is known as
the longitudinal gauge. Once the result has been ob-
tained in this gauge, it will be easy to recast it in terms of
the true degree of freedom z„, and therefore in a gauge-
invariant .way. Alternatively, we could use the gauge-
invariant variables of Bardeen [21]. Their relationship
with the formalism used here is described in Appendix B.

In the b„=k„=O gauge, we have the equations of
motion (in Lorentzian time)

a„"+3&a„'+(3m P a2 —2)a„=3(m Pa f„P'f„'), —

(3.28)

f„"+2&f„'(n —1+m a )f„=2m Pa a„—4P'a„',

(3.29)

2. ¹boundary proposal mode function

Let us now construct the solutions of (3.28) —(3.32)
selected by the no-boundary proposal. We focus only on
modes which go outside the Hubble radius during
inAation. These are the ones which get excited by the
varying gravitational field. The very-high-frequency
modes remain adiabatic throughout the history of the
Universe, so the variation of their amplitudes will agree
with the cosmological arrow of time. As in the graviton
case, we divide the background saddle-point four-
geometry into an approximately Euclidean section, fol-
lowed by an inflationary one, which finally turns into
dust. We have, however, to take into account the de-
tailed behavior of the background scalar field P as it cou-
ples directly to the perturbations. We first find the regu-
lar Euclidean solutions and match them up to the ones in
the inAationary phase. This can be done by analytic con-
tinuation. In the inAationary era, the modes oscillate for
a while until they leave the Hubble radius. At that point
we match them to nonadiabatic solutions. Finally, the
inflationary era comes to an end when P becomes small
and starts oscillating, behaving like a dust background.
At this point we match on the solutions for the dustlike
phase. It turns out that, for the Euclidean and
inflationary solutions, the right-hand terms in (3.29) are
negligible. We can solve for the scalar field modes f„and
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I ng&
~qE An e

a =A~ e f = ——
a ' " 3 a

(3.33)

for some complex constant A. Here, the conformal time
gE=O corresponds to the juncture of Euclidean and
Lorentzian spacetimes. Continuing the regular Euclidean
solution into the Lorentzian section, taking gE ~i q,
gives

a„= ,'im Ae—'"",f„=—An e
3 a

(3.34)

where we have used P'/a =Em/3 'during inflation (dash
now denotes a Lorentzian time derivative). The analyti-
cal continuation holds into the infm. ationary era as long as
the wavelength is smaller than the Hubble radius, i.e.,
n ))&. By this time inflation has begun, and we can
match onto the inAationary solutions. When the modes
move outside the Hubble radius, the modes a„and f„
stop oscillating. They both have decaying and growing
modes (the latter would be constant in the limit of exact
de Sitter space). As the Universe inflates only the slowly
growing mode remains [22], so that

D D
a = f =—

n 2 ~ n (3.35)

where

calculate a„ from an integral version of the constraint
(3.30), and check that this agrees with the approximate
solutions of (3.32). If these terms were negligible during
the whole of the dust era, the modes would oscillate adia-
batically around the maximum expansion, as in the gravi-
ton case. However, we show that these terms do contrib-
ute to a monotonically increasing amplitude of the scalar
field perturbations around maximum expansion.

The no-boundary proposal requires that the matter
fields in the path integral be regular, so in the semiclassi-
cal approximation we look for solutions to the Euclidean
perturbation equations which are regular as ~~0. The
regularity condition requires that f„and a„vanish as
r~0. For n ))1, the dominant terms of Eq. (3.32) are
the second derivative of a„and —n Xa„, and one can
construct a WKB solution. The approximate Euclidean
solution selected by the no-boundary proposal is

FIG. 3. The amplitude of a particular scalar perturbation a„
during the inflationary scenario and beginning of the dust
period. I,

'a) The mode oscillates adiabatically when the wave-
length is smaller than the Hubble radius. (b) It freezes when it
crosses the Hubble radius in the inflationary era. It slowly in-
creases as 1/P until the end of inflation. (c) At the beginning of
the dust era, the mode is essentially constant with a small oscil-
latory component due to the oscillations of the background sca-
lar field.

the metric perturbations will behave like those of a pure
dust universe (see, e.g. , [22]). This is indeed what is
found below.

During inflation the Hubble radius H ' is roughly
constant, but as the Universe evolves in the dust era the
Hubble radius starts growing. When it becomes larger
than the Compton wavelength I /ma, the dominant term
in (3.29) is m a . The perturbation of the scalar field will
start oscillating again. In this early state of the dust era
when the curvature of the three-surface is negligible, it
can be shown that the f„socill tae exactly in phase with
P' as

I

f„=— fdgaa„. (3.36)

This will remain true in later stages of the dust era as
long as n & ma, . This condition ensures that the phase of
f„bot i aend by integrating (3.29) does not differ appreci-
ably from that of P'. Using (3.36), together with (3.30),
we can establish that the metric perturbation a„, time
averaged over one oscillation period of m/m, is growing.
The small oscillations around this average arise because

ingH

3 maH

is a constant depending on the detailed matching of the
modes when they cross the Hubble radius at the time gH.
This solution is valid until the background scalar field de-
creases to P-1. Figure 3 depicts the behavior of a„dur-
ing inflation and the beginning of the dust phase.

Eventually inAation ends and the background scalar
field begins to oscillate. We expect that the background
will behave effectively as a dust-filled Universe [see Eq.
(2.16)] for perturbation modes with physical wavelengths
much larger than the scalar field Compton wavelength
(n « ma ), since the pressure of the oscillating scalar field
averages to zero over that wavelength scale. Therefore,

FIG. 4. Classical trajectories for the radius of the Universe a
in the FRW model with scalar field. The amplitude of a partic-
ular scalar perturbation a„does not have a time symmetric am-
plitude with respect to the maximum expansion.
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the background energy-momentum tensor is not exactly
that of dust, but that of an oscillating scalar field. The
averaged gravitational perturbation a„can be calculated
by taking the derivative of the averaged version of (3.30)
to obtain the diff'erential equation

a„" +3&a„"—2a„"=0 . (3.37)

The general solution is a linear combination of the solu-
tions

&
anti

SlnXf d

(1—cosi)d )
(3.38)

2sin old
—6(i)d m) —sinild —8 cosild+8

a„'y
3(1—cosild )

(3.39)

a =Da reg
n n (3.40)

We can now use (3.36) to see that f„ is oscillating with
monotonically increasing amplitude throughout the dust
era:

D I

f„=— [4ild —6 sinild+2i)d cosild ] . (3.41)
(1—cosild )

With these solutions, we can construct the wave func-
tion (3.26). When the background saddle-point is approx-
imately Lorentzian, the no-boundary wave function for
the scalar perturbation is

g'(z„)-C(a, g)exp i M —+%(a,P) z„. ,
p

(3.42)

where M is given in (3.27) and p is the mode function
for zn. It is a solution of the equation of motion for zn

picked out by the no-boundary proposal. It is explicitly
given by the functions a„and f„,using (3.25) with z„re-
placed by p„. From the solutions of a„and f„,we can
see that it is clearly asymmetric about the time of max-
imum expansion. Considering points placed symmetri-

The conformal time is defined with the new origin at the
beginning of the dust phase (old =0). These solutions are
antisymmetric and symmetric with respect to the max-
imum of expansion (i)d =sr), and are the same solutions
found for perturbations in a pressureless perfect Quid
Universe, as expected. Both solutions diverge like gd in
the beginning of the dust era as gd ~0. There is, howev-
er, a regular solution, given by

reg. symm 6 anti
n ' n n

which approaches a constant in this limit. At the end of
inflation, the a„picked out by the no-boundary proposal
are small as seen from (3.35). Therefore, the regular solu-
tion is the one selected by the no-boundary proposal, and
this is asymmetric in the dust era: the perturbation am-
plitude steadily increases with time (See Fig. 4.). Match-
ing the solutions for the dust era to (3.35) shows that,
during the dust era,

cally about the maximum of expansion, the background
will be the same at both points, so that the asymmetry in
the mode function manifests itself as an asymmetry in the
wave function. The variance of zn is proportional to the
modulus of p„, and is therefore asymmetric with respect
to the time of maximum expansion. We therefore con-
clude that the wave function predicts the continuing
growth of low-frequency scalar perturbations, even when
the Universe begins to recollapse.

This result alone provides a time asymmetry so long as
the modes stay in a regime where they can be treated in a
linear approximation. However, most modes will also
enter a nonlinear regime well before the maximum expan-
sion occurs. When this occurs, the interaction terms in
the Hamiltonian will become important, and hence the
coarse-grained entropy will increase throughout the evo-
lution.

Considering the stress tensor in the gauge-invariant
formalism (see, e.g. , [22]), we can show that the density
contrast is

[(n 4)a„—9&/'f„] .—
p 3~m

(3.43)

Modes will cross the horizon (gf'- n ) when i)d —1/n, and
the recent COBE results [5] indicate that the density con-
trast at this time is of order 10 . Using Eqs. (3.40) and
(3.41) in (3.43), we find that the constant D is of order
10 . At later times, only the first term in (3.43) is im-
portant, and we find that the density contrast behaves
like

6P Ip
—7 22

p
(3.44)

Consequently, when the density contrast is of order uni-
ty, we expect nonlinearity to be the dominant feature,
and this occurs for i'd~10 /n . Modes with n ~1000
will therefore enter a nonlinear phase before they reach
the maximum, and the coarse-grained entropy for these
modes will grow.

IV. CONCLUSION

In this paper we have investigated the consequences of
the no-boundary proposal for the arrow of time. In par-
ticular, we have investigated the behavior of small metric
and matter perturbations around a homogeneous isotro-
pic background. The no-boundary proposal predicts
classical evolution with an inAationary area followed by a
dustlike era. We found that perturbation modes are in
their ground state at the beginning of the inAationary era.
This can be interpreted as a statement that the Universe
is born in a low entropy state. Modes which leave the
Hubble radius during inflation become excited, then sub-
sequently evolve in various ways in the dustlike era.

We find that gravitons oscillate adiabatically for most
of the dustlike era, and consequently the amplitude of
their oscillations is time symmetric with respect to the
point of maximum scale factor. However, looking at the
physical scalar degrees of freedom we find that those
which have been excited by superadiabatic amplification
during inAation have a time asymmetric evolution with
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respect to the maximum. In particular, the variance of
the scalar modes predicted by the wave function is
different at the same value of the scale factor before and
after the maximum.

Thus we find that the wave function of the Universe
distinguishes between symmetrically placed points on ei-
ther side of maximum volume. The expanding phase has
a smaller amplitude of the variance in the low-frequency
scalar modes than does the corresponding point during
the collapsing phase. In other words, the thermodynamic
arrow coincides with the cosmological arrow before the
maximum, but points in the opposite direction after the
maximum. This is true for all the lowest-frequency
modes, so that they induce a well-defined thermodynamic
arrow of time. Amongst the modes which display this
nonadiabatic behavior, higher-frequency modes will enter
a nonlinear regime during the expansion, and consequent-
ly produce a growing coarse-grained entropy throughout
expansion and recontraction, and hence also create a
thermodynamic arrow of time.
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APPENDIX A: ACTION AND FIELD EQUATIONS

In this Appendix, we reproduce the action and field
equations of the perturbed FRW model driven by a mas-
sive minimally coupled scalar field from Ref. [6]. The
homogeneous part of the Einstein-Hilbert Lagrangian is

1L = ——%a 3
0 2 0

a
%a

'2

+m P . (Al)
a X

The second-order perturbation of the Einstein-Hilbert
Lagrangian is
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L"= 'aN ~ ——n ——a + b —2(n 4)c —(n +1—)d + (n ——4)a b

+ —g„[(n 4)b„+(—n + —,
' )a„]+ z

0
k„+(n —4)j„

3(n —1)

+ — —a„+ b„+(n —4)c„+d„+g„2—a„+ (3a„—g„)
1 a . 2 n —4 2 2 .2 ~ 2 a. a

1l 2
1

ll a " a2

2 4+ — —2a„a„+8 b„b„+8(n —4)c„c„+8d„d„
a n 1

2+'
a

2 4——a +6 b +6(n —4)c +6dn 2 1
n n n

1 2 . n —4.+——k —a„— b„+—g —2( n —4)c„j„
n —1

(A2)

(n —1)f„+ g„
a 0

The perturbation of the matter Lagrangian gives

L" =
—,'X0a (f„+6a„f„g) m(f„+6a„f„g)—

%0

3 2

2 Ã0

2

a„—4 b„4(n —4—)c„—4d„2 n 4 2 2 2 2

n

—g„2m f„/+3m a„P +2 +3fn& an 4
~o &0

—2 k fP. .
a&o

(A3)

The field equations necessary to calculate the saddle-point approximation are given below. From (Al) we find the
equations obeyed by the homogeneous background fields. The homogeneous scalar field yo obeys

d 1 d V'0 da d V'0
No +3 +Tom go=quadratic terms,

dt Xo dt a dt dt
(A4)

and the scale factor a obeys
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2
d 1 da . , &o+3y-
dt Xoa dt 0 a2 2

2a' . , &0+ jr 0
— +Nom P =quadratic terms .

a a
(A5)

The background variables a, yo, and their momenta are subject to the constraint

0'0

a A 0 0

1 +I go=quadratic terms .
a

(A6)

Let us now turn to the equation of motion of the small inhomogeneities. Variations with respect to an, b„, cn, dn,
and f„give the following second-order field equations:

da
No — + (n ——4) Noa( a„+b„) +3a(jpof„—Nom yLf'„)

dt Xo dt 3

d a' db.
dt Xo dt

a kn
=No[3a m yo

—
—,'(n +2)a]g„+a ag„——No

0

2

(n——1)N a(a +b )=—N (n —1)ag + N—1 1 d a kn

3 0 n n 3 0 n 3 0 dt 0

(A7)

(A8)

a den

Xo dt

a3

Xo

d ajn
dt Xo

+(n —1)Noad„=O,

(A9)

a d n +3a jroa„NO [m a + ( n —1 )a ]f„=a —2Nom yog„+ yog„—
dt Xo dt

V'okn
(A 1 1)

Variations with respect to kn, j„,and g„ lead to the constraints

n —4 ~a„+, b„+3f„+,=
n —1

jn
C

a

k„
a(n 1)— (A12)

(A13)

e

3an 9 o +2 id'. —aa, 2%0 2akn
+Nom (2f„yo+3a„yo)— [(n 4)b„+(n2+—

—,
' )a„j= "

+2g„
a 3a 3a a

We also give the perturbation Hamiltonian in terms of the real degrees of freedom:

(A14)

H2(z„, ~, )= A~, +Bz„~, +Cz„,
n n n

with

3 3A'2 2 —1aa+, 8= K 2a —3am/ —3 aP +am/ —3amgga
2 n2 —4

' 2U n —4

3(n 1)K 3 p p 9+a m K —Sa m $ K+12a' m P P
15 4 2 2

(n —4)a
(A15)

a, U= —Kaa —amPP.n —4 4

3
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APPENDIX B: RELATION
TO THE GAUGE-INVARIANT FORMALISM

There has recently been much interest in the gauge-
invariant formalism [21,22] which cast the variables of
the theory (the scalar perturbations of the gravitational
and scalar fields) into ones which are invariant under
infinitesimal gauge transformations. In this Appendix we
relate the different harmonics in Eqs. (3.4) and (3.5) to the
gauge-invariant variables (in particular we shall follow
the approach of [22]).

Mukhanov et al. define the time- and space-dependent
scalar metric perturbations as

rt~rt=rt+P(rt, x), x'~x'=x'+y'Jg~. (g, x),
the scalar perturbations transform as

(84)

where we have suppressed in the sum the indices lm cor-
responding to the angular momentum.

Under a general linear gauge transformation of the
form

ds =a (g) [(1+2$)dg 2B ~;d—x 'dg

+[(1—2$)y, +2EI;, ]dx'd (81)

8 =8+( —g',
E=E—(,

(85)

and the scalar field perturbations

y(x, t ) =q)o(t )+5g(x, t ) . (82)

The above variables are related to the modes perturba-
tions used in this paper in the following way:

The idea of the gauge-invariant formalism is to make a
linear combination of the different scalar perturbations
such that the resulting variables are independent of the
gauge. A possible choice is

—(a„+b„)Q"
v'6

k„Q"
(n —1)&6

(83)

N=P+ —[(B E')a ]', —1

a

'0 =g — (B E'), —a'
a

5«g'=5q&+go(B E') . —
(86)

3b„Q"

(n —1)&6 These gauge-invariant quantities obey the equations

31V' N —3&4&' (&'+2M —4' )@= —(q)'5« ' + V a 5'~'),
7 (87)

l4'+&4 =3 (p'5«s', —
2

@"+3&@'+(&'+2& )@= (y'5y's' —V a 5«g'),3$

2

which are the gauge-invariant versions of the 5GO = 8m.G5Tp, 6G; = 8m G5T;, and 6G' =8~G6T' equations, and

5«P'~" +2~5«s~~' P 25&~g~~+ V a 25«e~ 4&'@'+2 V a 2@=00

(88)

(89)

(810)

is the gauge-invariant version of the scalar field equation.
In the longitudinal gauge (B=k„=O and E =b„=O) used in this paper, the gauge variables reduce to @=/, 0'=g,

and 5«@'=5~, and, if we expand them in harmonics on the three-sphere, N„=g„/V6, 4„=—a„/&6, and
5«'sf„/+6. Indeed, it is easy to see that Eqs. (89) and (810) are equivalent to (3.31) and (3.32) respectively, and
that the constraint (88) is equivalent to (3.33).
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