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Cosmic censorship in two-dimensional gravity
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A weak version of the cosmic censorship hypothesis is implemented as a set of boundary conditions on
exact semiclassical solutions of two-dimensional dilaton gravity. These boundary conditions reAect low-
energy matter from the strong coupling region and they also serve to stabilize the vacuum of the theory
against decay into negative energy states. Information about low-energy incoming matter can be
recovered in the final state but at high energy black holes are formed and inevitably lead to information
loss at the semiclassical level.

PACS number(s): 04.60.+n, 97.60.Lf

I. INTRODUCTION

Black hole physics provides a setting for the study of
the interplay between general relativity and quantum
mechanics. In particular, it appears dificult to reconcile
the apparently thermal evaporation of a black hole
formed in gravitational collapse with the Hamiltonian
evolution of pure quantum-mechanical states [1,2]. In re-
cent months considerable effort has been put into devel-
oping a semiclassical description of black hole evolution
in two-dimensional dilation gravity coupled to conformal
matter [3-16]. This simplified context shares important
features with more realistic four-dimensional black hole
physics. The original model proposed by Callan, Gid-
dings, Harvey, and Strominger [3] (CGHS) has singular
classical solutions, which describe the formation of a
black hole by incoming matter, and the Hawking emis-
sion from this background geometry can be obtained
from the conformal anomaly of the matter fields [17,3].
CGHS further suggested a semiclassical description of
the back reaction of the Hawking radiation on the
geometry by introducing anomaly-induced terms into the
equations of motion of the model.

The quantum corrected CGHS equations have not
been solved in closed form' but soon after the original
work of CGHS it was shown that gravitational collapse
always leads to a curvature singularity at a certain criti-
cal value of the dilaton field in their theory [4,5].
Modifications of the model have since been found, where
the formation of a singularity in collapse can be avoided
[9]. Furthermore, an improved treatment of the quantum
theory [10-15]has led to models where the semiclassical
equations can be solved exactly, as first exhibited by Bilal
and Callan [11]and de Alwis [12].
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Numerical results on black hole evolution in the CCxHS mod-

el have been obtained in [8,16,18].

In this paper we will argue that having a critical value
of the dilaton, where a singularity forms in collapse, is
really a blessing in disguise, and may prove essential for a
consistent formulation of a quantum theory of two-
dirnensional black holes. The possibility that no singular-
ity forms in gravitational collapse is appealing but unfor-
tunately all solvable two-dimensional models suggested to
date which exhibit this feature suffer from serious insta-
bilities [11,12,14].

In a previous paper [13]we proposed a particular solv-
able model which has some desirable features built into it.
The linear dilaton vacuum is a solution. Furthermore, all
static solutions with negative Arnowitt-Deser-Misner
(ADM) energy have naked singularities. We were able to
follow the evolution of a black hole, formed by the gravi-
tational collapse of a shock wave, using an exact solution
of the semiclassical equations. As expected, the collaps-
ing matter forms a spacelike singularity at a critical value
of the dilaton field inside an apparent horizon. As the
black hole evaporates the apparent horizon recedes and
after a finite proper time it meets the singularity. At that
point the singularity is no longer cloaked by the horizon
and the future evolution of the geometry is not uniquely
determined. In [13]we showed that there exist boundary
conditions which match the final state of the black hole
evolution onto the linear dilaton vacuum. With this
choice of boundary conditions the geometry is nonsingu-
lar after the black hole evaporation is complete.

Here we will study this model further. A two-
dimensional version of the cosmic censorship hypothesis
[19]will play a central role in our considerations. At the
end point of Hawking evaporation of a black hole, when
the apparent horizon meets the singularity, a region of
strong curvature becomes visible to outside observers.
This constitutes a violation of the cosmic censorship hy-
pothesis, but a fairly mild one, with the naked singularity
being an isolated event. If we choose other boundary
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conditions, which do not match the black hole solution
onto the vacuum when the evaporation is completed, the
black hole singularity becomes timelike at that point and
persists in the future geometry. We will, however, insist
that physical configurations do not develop such extend-
ed naked singularities and use this requirement to deter-
mine physical boundary conditions in the strong coupling
region. In order words, we will implement a weak form
of the cosmic censorship hypothesis which states that
curvature singularities in our semiclassical geometries
must be hidden behind an apparent horizon, except for
isolated events such as the end point of Hawking eva-
poration of a black hole.

We will take the line P =P„ to be a boundary of space-
time in the semiclassical theory. In "low-energy phys-
ics" where the incoming energy Aux is below a certain
threshold value (which equals the rate at which a black
hole evaporates ) no black holes are formed in scattering
processes [13]. In this case the critical line remains time-
like and we have to supply boundary conditions for the
fields there. We will show how requiring the curvature to
be finite at P =P„,or in other words not allowing a naked
singularity there, leads to the rejecting boundary condi-
tions we suggested in our previous paper. The fact that
such nonsingular boundary conditions can be found, and
their physical interpretation in terms of reAecting energy,
support our view that the spacetime has a boundary at
P=P„. This timelike boundary is not present in the clas-
sical theory and as a result incoming matter cannot be
turned away classically from the strong coupling region
regardless of how little energy it carries. The quantum
corrections spontaneously generate a boundary so that
low-energy matter is reAected in the semiclassical theory
and a black hole is only formed if the incoming matter
carries a certain minimum energy density [13]. At the
same time the boundary conditions stabilize the theory
against decay into negative energy configurations by im-
plementing cosmic censorship at the critical line P =P„.

In the following section we write down some key
definitions in order to establish notation and make con-
tact with previous work. We also point out that the func-
tional integral over all the fields can be carried out explic-
itly in some models where no spacetime boundary is
present. Such theories thus appear too simple to describe
the physics of two-dimensional quantum gravity. How-
ever, the quantum theory becomes nontrivial with boun-
daries present, especially since in this case not only the
two-dimensional spacetime but also the field space of the
theory is bounded at the semiclassical level. In Sec. III,
we consider semiclassical solutions describing general in-
coming matter distributions with energy Aux below the
threshold required to form black holes. We use cosmic
censorship to derive boundary conditions at P=P„ for

this low-energy physics and then we verify that these
boundary conditions are consistent with energy conserva-
tion.

II. SEMICLASSICAL MODEL

We will work with the two-dimensional dilaton gravity
model we introduced in [13). It is related to models stud-
ied by Bilal and Callan [11] and de Alwis [12] and
reduces to the original CGHS theory at the classical lev-
el. The semiclassical equations are derived from the one-
loop effective action

S=—f d x e ~(2d r) p 48 Q—r) /+A, e e)

N

+ —,
' g 8+f d f;

—t~(B+pB p+ QB+8 p ) (2.1)

(2.2)

The exactly soluble semiclassical models all have a corre-
sponding symmetry but if our counterterm is added the
current maintains the same simple form in terms of p and
P at the semiclassical level. By defining our model this
way we simplify the analysis and interpretation of the
semiclassical solutions considerably. For example, the
linear dilaton solution of the classical theory is preserved
in our model.

In addition to the equations derived from (2.1) we have
to impose as constraints the equations of motion of the
metric components which are set to zero in this gauge:

+ —,
' g d f, B f, tr(d~B~ 'd~+—t ) . —

(2.3)

written here in conformal gauge, g++ =g =0,
g+ = —

—,'e l'. If the coeScient K in front of the one-loop
quantum correction terms has the value tr = (N —24)/12
this action defines a conformal field theory and is there-
fore one-loop finite [10—12]. In everything that follows
we will assume that the number of matter fields is E & 24,
so that K is positive. The first quantum correction term
in (2.1) comes from the one-loop conformal anomaly and
the second one is a covariant, local counterterm which
we are free to add to the definition of our model. The
classical theory has a symmetry generated by the current

It is useful to keep in mind an analogy with the dimensional
reduction to radial degrees of freedom of higher-dimensional
gravity. In the e6'ective two-dimensional theory spacetime has a
boundary at the origin of the radial coordinate.

The evaporation rate of two-dimensional black holes is in-

dependent of their mass [20,3].

The nonlocal character of the conformal anomaly is ex-
pressed in the functions t+(x —

) which are to be fixed by
physical boundary conditions on the matter energy-
momentum tensor.

The action simplifies dramatically if we make the field
redefinitions
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eQ= P+
2 v'~

(2.4)
&7c ey=&ap — P+

2 v'ir

In terms of the new variables the action (2.1) becomes

s= —fa'x a—Jta ~+a,na n1

2—(y —Q)

In the following section we will consider semiclassical
solutions of this system.

We conclude this section with some observations about
the quantum theory defined by the action (2.5). The ap-
parent similarity to Liouville theory is somewhat decep-
tive because the path integral over Q and g can, in fact,
be carried out explicitly, leading to an effective action
which turns out to be identical to the classical action
(2.5). To see this we first rewrite the action in terms of
"light-cone" variables in field space:

S[n„n ]= f—d'x —a,n a n
N

+-,'ya, fa f,

and the constraints (2.3) reduce to

(2.5)
+A, exp —Q

IC

(2.7)

Kr~ = —a~Jay++ +Ka+++ a+Qa~n
N

+ —,
' g a+f, a~f, . (2.6)

where 0+=g+0 and we have dropped the matter term
from the action for the time being. Now we couple the
new fields to sources and consider the generating func-
tional

e' (~ 'J )=JVf [dn+][dn ]exp iS[Q+Q ]+if d x(j+Q++j Q ) (2.8)

where JV is a normalization constant. Only Q appears in the interaction term in the action (2.7) so we can carry out

the functional integral over 0+. The result is a formal 6 function involving 0, which means that we can also perform
the second functional integral in (2.8). The connected generating functional is

r

W[j+,j ]=f d x exp
X2 2'—f d x'g(x, x')j+(x') ~f d x—'j (x)g(x, x')j +(x')

&7c
(2.9)

where the Green's function is a solution of

a a g(x, x')=5' '(x —x') .
ax+ ax

The final step is to obtain the effective action via a Legen-
dre transform

r[n, n" ]=e[J J ] fd'x(j Q +J Q )

d x —8+0+8 0"1

+A, exp (2.10)

where we have used that

Q" (x)= = nfd x'g(x—,x'.)j+(x') .58
5j (x)

This formal argument is, of course, not sufhcient by it-
self to prove that the action (2.5) receives no quantum
corrections. We have to introduce regularization, choose
boundary conditions on propagators, etc., to make these
expressions well defined. The point, however, is simply
that the kinetic terms of Q and y in (2.5) have opposite
signs while these fields appear in a symmetric fashion in
the interaction term. As a result one finds a lot of cancel-

I

lation in a diagrammatic perturbation expansion. If the
0 and g propagators are defined using identical regulari-
zation and boundary conditions they will differ only by a
sign and any two diagrams which differ only by a single
internal propagator will exactly cancel. This means in
particular that all loop diagrams will cancel one on one
and the full effective action will be generated by tree
graphs as suggested by (2.10).

A key assumption in the above argument is that the 0
and g propagators satisfy the same boundary conditions.
In our semiclassical theory the critical line P=P„ is a
spacetime boundary. Quantum consistency conditions
may require introducing nontrivial boundary interactions
there, or even new degrees of freedom, and these will, in
general, not preserve the symmetry between Q and y.
Note also that Q in (2.4) is bounded from below in our
semiclassical theory. It takes its minimum value at

Restricting the range of Q in the quantum path
integral leads to nontrivial physical effects. Away from
the boundary quantum fluctuations can cause the dilaton
field to reach its critical value in some region which is
then no longer part of the spacetime. The full quantum
theory will then include configurations with disconnected
boundary components in the path integral. Topology
change of this kind would be strongly suppressed in the
weak coupling region where asymptotic observers are lo-
cated but it may play an important role in the strong cou-
pling physics near the boundary.
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In some models with X (24 matter fields the singulari-
ty at P =P„ is absent and the issue of restricting the
range of 0 does not arise [9,11,12]. In this case boundary
conditions are imposed on propagators in the asymptotic
regions of weak and strong couplings. If they are chosen
so as to preserve symmetry between 0 and g, the quan-
tum theory will be very simple indeed, as we argued
above.

III. LOW-ENERGY PHYSICS,
BOUNDARY CONDITIONS,

AND COSMIC CENSORSHIP

The semiclassical equations of motion derived from the
eff'ective action (2.5) are

2
t)+t) g=t)+t) 0= — —exp —(y —0)

IC K
(3.1)

(iii)

(ii)

r
rr

rrJr

This set of equations can be explicitly integrated [11,12]
and we will focus our attention on solutions which de-
scribe the response to a general distribution of incident
matter. It is easily checked that the linear dilaton vacu-
um, which takes the form e ~=e ~= —

A, x+x in
"Kruskal" coordinates, solves the equations of motion
and we will match solutions with incident matter onto
this vacuum in the far past.

The classical energy Aux carried by an arbitrary distri-
bution of incoming rnatter is described by some
&~++(x+)= ~t)+f8+f at x ~ —ec. For convenience
we will assume that the matter arrives over a finite span
of time so that T++(x+) vanishes for x+ (xo+ and
x+)x i+ (see Fig. 1). The limits xo+ ~0 and x, ~oo
can be taken at the end of the day if desired.

At a given value of x + one can define the integrated in-
coming energy and Kruskal momentum up to that point,

+
M(x+ ) =Afdx, +x TI++ (x+),

(3.2)
P (x+)=f dx+T~ (x+),

and it turns out that the incoming energy Aux only enters
into the semiclassical solution through these two func-
tions. It is easy to verify that the equations of motion
(3.1) and the constraints (2.6) are satisfied by

Q=y= — —x+ x + P (x+)1

&7c

++M(x ) ~i ( ~p +
)

4
(3.3)

This solution is valid for all x (xo [region (i) in Fig. 1]
and it reduces to the linear dilaton vacuum for x+ & x 0+.

At x —=xo the leading edge of the incoming matter
distribution reaches the boundary at P =P„and the evo-
lution of the system after that depends on the boundary
conditions imposed there. There are two cases to consid-
er. If the energy flux of the incoming matter is always
smaller than the rate at which a black hole evaporates
then the critical line remains timelike for x+ )xo+ [13].
This requires the inequality

TI++ (x+)(
4x+ (3.4)

to hold for all values of x+ in Kruskal coordinates. If,
on the other hand, this inequality is violated at some
value of x+ then the critical line will become spacelike
there and no meaningful boundary conditions can be ap-
plied. In this case an apparent horizon will form to cloak
the singularity and we have a black hole. Once the in-
coming Aux falls below the threshold value, the apparent
horizon begins to recede and, as we discussed in our pre-
vious paper [13], it will meet the singularity in a finite
proper time. When the evaporation of the black hole is
complete the critical line goes timelike again and we must
impose boundary conditions there.

For our discussion of boundary conditions we will as-
sume that the incoming energy fIux remains below
threshold at all times. This condition defines a low-
energy sector of the theory without real black holes (vir-
tual black holes will presumably appear at the quantum
level) and it is of considerable interest to study the quan-
tum theory of this sector by itself. For example, it
would be very interesting to determine whether quantum
coherence loss occurs at a nonvanishing rate in low-
energy scattering as conjectured by Hawking [2].

We will derive our boundary conditions from the
cosmic censorship hypothesis as discussed in the Intro-
duction. Imposing finite curvature at the boundary is a
coordinate-invariant condition. In this section we work
exclusively in Kruskal coordinates. This allows us to use
special relations, such as A=g, to simplify calculations
but at the same time some of our formulas will appear
none ovariant.

FIG. 1. Kruskal diagram of a semiclassical geometry with
low-energy matter incident on the linear dilaton vacuum. The
thick line is the spacetime boundary at P=P„.

5A classical shock wave with T~++ (x+ ) =(m /A. xo+ )5(x+
—xo+ ) forms a black hole for arbitrarily small m. This does not
convict with the existence of a low-energy sector because such a
concentrated Aux violates the uncertainty principle and is there-
fore not a good description of a low-energy state.
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The curvature can be expressed in terms of P as 0'"'(x+ x )=0"(x+ x )+F(x ), (3.8)

g = —2&2@

[I(, —(V(t ) ],
1 —(K/4)e ~

(3.5)

0'(P)= —e ~ 1 ——e & =0
V'K 4

where we have used the semiclassical equations of
motion. The critical line is defined as the curve of con-
stant P where

because otherwise the ++ constraints would no longer
be satisfied. The superscripts on 0 refer to the region of
validity in Fig. 1. The finite curvature conditions (3.7)
are sufficient to determine both F(x ) and the shape of
the boundary curve (x,x ) in terms of the incoming
matter distribution. For solution (3.8) these conditions
imply the two relations

$2A + A + p (A +
)

4 gz +

and the curvature will only be finite at the boundary if
the dilaton satisfies

&KF'(x ) =A, x++
4x

(3.9)

V„/=A, (3.6)

there, where V„denotes the invariant normal derivative
at the boundary. Since A'(P) =0 at the critical line it fol-
lows that requiring

C)+Q, ~~ ~
=C) Q~~ ~

=0 (3.7)

on the boundary where it is timelike is a necessary condi-
tion for finite curvature there. As we will see below, this
condition uniquely determines the solution in regions (ii)
and (iii) in Fig. l. At the end of this section we will show
that the resulting solution indeed has finite curvature on
the boundary which means that (3.7) is also a sufficient
condition when we work in Kruskal coordinates.

Let us look for a solution in region (ii) in Fig. 1 which
matches continuously onto solution (3.3) which holds in
region (i). The form of the new solution can only differ
from (3.3) by some function of x alone,

The first one defines the critical line and the second one
can be integrated to obtain the Inatching function:

F(x )= ln( —A, x x+)— +IC K4'"4
(3.10)

In this way cosmic censorship determines a unique ex-
tension of the solution into region (ii). There is no
discontinuity in 8 0 at x =xo so the ——constraints
in (2.6) are satisfied across the matching line and there is
no shock wave carrying energy out along this null line.

By assumption the matter stops coming in at x+ =x 1+

so M(x ) and P+ (x +
) receive no contribution after

that. Solution (3.8) extends smoothly into region (iii)
where it takes the form of a linear dilaton configuration
with x shifted by the total incident Kruskal momen-
turn,

&'" (x x )= — —x x + P (x+ )
l

+ I ln —
A, x+ x + P+(x,+ ) (3.1 1)

N
0=&Ka'q+-,' y a f, a f, —« (3.12)

Let us evaluate 8+g at the boundary:

and there is no shock wave propagating out along
X =X

1

We will now give the boundary conditions implied by
the cosmic censorship relations (3.7) a physical interpre-
tation in terms of rejected energy. In Kruskal coordi-
nates the constraints (2.6) reduce to

dx
+ —P'+ (x+)+ 4(-+)' '

2 dx F„(A —
) + Ic

&K dx 4(x )'

(3.14)

2+

dx
(3.15)

on the combination

By combining this with (3.13) and using the constraints
we obtain a reAection condition

a', y(x) = — P', (x+)+
4(x+ )

(3.13)

N=—,
' g c3 f C) f; Kt— (3.16)

c) g(x ) =F"(x )+
4(x )

This expression holds everywhere if we define F(x )=0
in region (i). Differentiating the first finite curvature rela-
tion in (3.7) with respect to x and the second one with
respect to x leads to the relations

Let us assume that the physical incoming energy is in
the form of coherent radiation of matter fields. We then
expect the outgoing radiation to consist of a coherent
part and an incoherent one due to the anomaly. The
refiection conditions (3.15) obtained from the cosmic cen-
sorship hypothesis do not separate the two contributions
and therefore they do not supply us with unambiguous
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boundary conditions for the matter fields. However, it
appears to be consistent with (3.15) to impose rellecting
boundary conditions on the matter, for example,

f;(x)=0 . (3.17)

In this case the classical matter energy-momentum tensor
by itself would satisfy the reflection condition and it
would follow from (3.15) that

2A. +
t (x )= t+[x+(x )] . (3.18)

dx

As x ~—~ the semiclassical solution for 0 should ap-
proach the corresponding classical solution with the same
incoming energy distribution. This determines
t+ =1/4x+ and for a given timelike boundary curve
(3.18) would give a unique t describing the anomalous
component of the outgoing radiation.

Given this strong form of the reflecting conditions a
distant observer would be able to completely reconstruct
the initial state from the outgoing radiation and no infor-
mation would be lost in low-energy physics at the semi-
classical level. Quantum fluctuations could still cause the
boundary curve to go spacelike and lead to information
loss. It should be stressed that while these strong
reflection conditions, imposed directly on the matter
fields, are consistent with the cosmic censorship hy-
pothesis, they do not follow from it and it is possible that
they are not the appropriate boundary conditions at

Returning to the weaker form of the reflecting condi-
tions (3.15) we can check their consistency by computing
the total energy radiated out to x+~~. First of all,
there should be no outgoing radiation in region (iii) in
Fig. 1 where the solution is vacuumlike. Evaluating
T there gives

iii )

4 [x +(1/A, )P+(x, )]
(3.19)

This vacuum contribution must be subtracted from T
to obtain the outgoing energy in a given region and the
total radiated energy is

E,„,= —A f dx x +,P+(xi+)
oo

x T +—
4 [x +(I/A, )P+(xi+ )]~

m(x ) = lim 1 ——e& e
K 2 —2

+ 4A, 4
(3.21)

(3.20)

The weight factor of —[x +(I/A, 2)P+(xi+ )] appears
because we are not using asymptotically Minkowskian
coordinates. A straightforward calculation shows that
E,„, precisely equals the total incoming energy M(x &+ )

so our boundary conditions appear to conserve energy.
Energy conservation can also be checked using a

definition of total energy in terms of the asymptotic cur-
vature, analogous to the one introduced in [8]:

This definition gives the correct mass for classical black
hole solutions and tends to the total incoming energy as
x ~—~. The formulas below are streamlined by in-
cluding the factor of [1—(K/4)e ~] in the definition of
the energy. It can be added at no cost since it goes to 1 in
the limit x ~ ~. Using the semiclassical equations of
motion for P and p the following expression is obtained
for the rate of change of the energy:

dPC . 2 2 2 K
lim —e ~d P e ~ ——(28 P

—48 pB P)
dx x+

lim —e ~B p[ T +K(B p'd p "r) p) ),

K +K 21 —ln — + (P —(t ) +
4 2 cr (3.23)

) =&(x )+—,'& &(x )6X+ +8 8 Q(x )6x+6x

+-'a' n(x )6X -'+
2

Comparing (3.13) and (3.14) leads us to write

dx
B+O(x ) =

dx
+

~(~) A, dx

(3.24)

(3.25)

where we have used that Q=y in Kruskal coordinates.
Inserting these relations, along with the equation of
motion, 0+c) 0= —

A. /&K, into (3.24) and comparing
with (3.23) gives the following expression for P in terms
of 6x+:

—[+dx + /dx dx
K

—+dx /dx +6x ]+ (3.26)

(3.22)

where we used the constraints (2.3) to obtain the second
equality. The term accompanying T inside the square
brackets subtracts off the same vacuum contribution as in
(3.20). By inserting the explicit semiclassical solution and
integrating over x one can easily check that m(x )

goes to zero as we enter region (iii).
Since conditions (3.7), which we used to determine the

solution in region (ii), appear to be weaker than (3.6),
which is expressed in terms of the original dilaton field,
one might worry that we have not guaranteed finite cur-
vature at the boundary. However, the semiclassical
geometry, which results from imposing (3.7), is, in fact,
nonsingular as the critical line is approached. To see
this, we consider a point near the boundary,
(x+,x )=(x +6x+,x +6x ), and evaluate the cur-
vature in the limit of vanishing 5x —.We need to show
that the expression in the square brackets in (3.5) is of or-
der 6x —.In order to obtain 8+/(x ) we expand II around
A(P„) in two different ways:

Q(P ) =A(P„)+ ,' f),"(P,„)(P P—,„)2+—
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From this we can read off the values of t)+P(x) and
t) P(x ) and insert them into (3.5) to see that our solution
has finite curvature at (t =P„.

Finally it is interesting to note that the solution for Q
can be expressed in terms of the boundary curve in a
surprisingly simple manner:

A,
2

Q(x+, x ) —0„=
IC

—x+x +x+(x )x

+ f du+x (u+)
x (x )

—x+x +x+x (x+)

IV. DISCUSSION

We have shown how the cosmic censorship hypothesis
leads to rejecting boundary conditions for matter energy.
The matter carrying this rejected energy consists of both
coherent and incoherent f fields and cosmic censorship
alone does not allow us to distinguish between the two
components. It is nevertheless strong enough to uniquely
determine the semiclassical evolution of the geometry
and dilaton field for a given distribution of low-energy in-
coming matter and we have checked that energy is con-
served in that evolution. Other boundary conditions
which do not rule out extended naked singularities

(3.27)

These relations can be obtained by integrating the expres-
sions for t)+Q(x) and t) Q(x) given above.

presumably lead to instability. They could allow a black
hole to evolve into an object carrying an arbitrary
amount of negative energy and it could then continue to
radiate forever happily. If we implement boundary con-
ditions consistent with cosmic censorship an evaporating
black hole returns to the vacuum configuration after a
finite proper time and the Hawking emission stops [13].

The expression for the curvature (3.5) takes a simple
form on the apparent horizon of a black hole:

4A,R la y=p=+ 1 —(a/4)e ~2
(4.1)
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From this it is clear that the curvature on the apparent
horizon diverges as it approaches the singularity curve
and therefore cosmic censorship is violated at the end
point of the evaporation process. If the boundary condi-
tions we have advocated here are adopted, the violation
of cosmic censorship is minimal in that the naked singu-
larity is an isolated event.

At the semiclassical level it appears that information
loss can be avoided in the low-energy sector of the theory
by imposing rejecting boundary conditions directly on
the matter fields. This is a desirable feature of any model
of real low-energy physics. If, on the other hand, the in-
coming energy Aux is above the threshold for forming a
black hole we see no way to recover any information
about the initial state, except its total energy, in this
semiclassical theory. It remains an interesting open ques-
tion whether quantum fluctuations cause the boundary to
go spacelike even in the low-energy sector and whether
this leads to disastrous loss of quantum coherence [21].
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