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Scalar-tensor cosmologies
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A method is investigated which enables exact solutions to be found for vacuum and radiation-
dominated Friedmann universes of all curvatures in scalar-tensor theories with an arbitrary form for the
coupling, to(P), of the scalar field which determines the strength of the gravitational field. Particular
classes of solution are presented for specific representative choices of co(P), including the theories of
Brans and Dicke, Barker, and Bekenstein, to illustrate the range of cosmological behaviors that are pos-
sible.
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I. INTRODUCTION

Renewed interest in the structure of scalar-tensor grav-
ity theories has been created by their possible relevance
to a period of inflationary expansion during the early
Universe. It has been shown that there are simple con-
formal interrelationships between general relativistic
cosmological models containing self-interacting scalar
fields and scalar-tensor gravity theories in vacuum [1]. In
addition, there have been proposals to revive the original
"old" inflationary universe models in which a phase tran-
sition is effected by the nucleation of bubbles of true vac-
uum by the use of the Brans-Dicke scalar-tensor theory
[2]. These models allow the phase transition to complete
because inflation is power law rather than exponential in
time (although any power-law inflationary universe
would allow this to happen [3] and there is no need to
depart from general relativity and adopt the Brans-Dicke
model). There have also been suggestions that the dark
matter problem might be resolved in the context of a
scalar-tensor cosmological model in which some forms of
matter couple with a different strength to gravitation
than does ordinary matter [4]. The author has also ar-
gued that primordial black holes formed during the first
10 s of a universe in which the strength of gravity
varies with time would evaporate today with different
Hawking temperatures to those predicted by general rela-
tivity [5].

The principal observational constraint upon scalar-
tensor theories is derived from considering effects upon
the synthesis of light elements during the early Universe
[6] and their manifestations in the standard solar system
test of general relativity [7]. The only exact solutions giv-
ing exact scalar-tensor cosmological models are for the
case of the Brans-Dicke theory, where to(P) =const or, in
the trivial cases, /= const, where the solutions are identi-
cal to those of general relativity [5]. In this paper we
show how to obtain exact solutions for homogeneous and
isotropic cosmological models in vacuum and with radia-
tion as the matter content for all values of the curvature.
The solutions can be given in terms of a single integral
over the coupling function co(P) which can be performed

exactly in many cases and numerically in all cases. The
vacuum solutions are of physical interest because, in gen-
eral, the Quid-filled Friedmann universes approach the
vacuum solution asymptotically as t ~0 for a wide range
of oi(P). We shall give solutions for the specific scalar-
tensor theories that have appeared in the literature as
well as other cases which cover a wide range of possible
behaviors for to(P). The general field equations are set up
in Sec. II; the Friedmann models are introduced in Sec.
III together with the most expedient choice of variables;
the vacuum solutions are given in Sec. IV, and the radia-
tion solutions are given in Sec. V, and the results are dis-
cussed in Sec. VI.

II. SCALAR-TENSOR GRAVITATION
THEORIES

oi(P)= —,
' f(f')

then (1) becomes

L~ = —(()R +P 'to(P)t), P t3'P+ 16rrL

(2)

(3)

The theory proposed by Brans and Dicke [7] arises in the
special case that co=const and f (4) c- @ . The relative
merits of adopting (1), as do La and Steinhardt [2], or (3),
as do Barrow and Maeda [1],have been discussed by Lid-
dle and Wands [10].

By varying the action associated with (3) with respect
to the space-time metric and the scalar field P, respective-
ly, we obtain the generalized Einstein equations and the
wave equation for P:

Scalar-tensor gravity theories have been formulated in
two different ways. Steinhardt and Accetta [8] take the
Lagrangian of the theory in the form

L = f (4)R + —,'c},@t)'—4&+16'
where 4 is a scalar field, f(tI&) is the coupling to the
four-curvature, and L is the Lagrangian of the remain-
ing matter fields. If we define a new scalar field P=f(@)
with a coupling
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+ab 2gab+ 8~4 +ab ~(0)'P I tabb 2gabdi '(t' ] 3a . P co'(P)
a 3+2co(P)

(12)

[3+2co(P)] ctp=8rrT co—'(P)cd;cd',

Tab =0;b

(5)

(6)

where an overdot denotes d /dt.
If we introduce a conformal time g through

a dg=dt,
where T' is the energy-momentum tensor of the matter
content of the theory.

Clearly if T, the trace of the energy-momentum tensor,
vanishes, and P is a constant, then (4)—(6) reduce to the
standard Einstein equations with a gravitational constant
6 =P '. Hence, any exact solution of Einstein's equa-
tions with a trace-free matter source will also be a partic-
ular exact solution of the scalar-tensor theory with P and,
hence co(P) constant. However, these particular solutions
will not necessarily constitute the general solution for the
prescribed matter content. We shall show how to find
classes of exact cosmological solutions in which iI) is not
constant for a given co(P).

then, denoting dldi) by a prime, (12) becomes

2a ', P' co'( P )

a 3+2co(P)

This integrates to give

P'a =3'~ A (2co+3) '~, A =const .

(14)

(15)

If we introduce the new variable employed by Lorenz-
Petzold [9],

y =4'a (16)

then this transforms the generalized Friedmann equation
(11) into the form

III. FRIEDMANN UNIVERSES

The Friedmann metric is given by

ds =dt a(t)[(1—kr )
—'dr +r d8 +r sin gdcti ],

y' = —4ky +41 y+iI)' a (3+2co),

which, upon using the integral (15), becomes

y' = —4ky +4I y+ 3

(17)

3p =p

Equations (6) and (7) then reduce to

p+3aa '(p+p) =0 .

Hence with (8) we have

Smp=3I a

(8)

(9)

(10)

where I ~0 is a constant. The case I =0 will define the
vacuum model in which p =p=0.

The metric (7) reduces (4) —(6) to the two equations

co(P) P
P a 6

where a (t) is the expansion scale factor and k is the cur-
vature constant which can be set equal to 0, +1, or —1

without loss of generality. The choice of k defines Rat,
closed, and open universes, respectively. We shall as-
sume that the material content of the Universe is black-
body radiation with the equation of state relating the
pressure p to the density p, as

To complete the solution of the problem we integrate (18)
to obtain y(g), divide (15) by y to obtain P /P, integrate
to obtain p(i)), and, hence, a(il) from (16) and a (t) from
(13). We now present a number of specific examples.

IV. VACUUM SOLUTIONS

It is most transparent to consider the vacuum and radi-
ation cases separately. The vacuum case is obtained by
solving the systeIn with I =0. Three types of solution ex-
ist according as k =0, +1, or —1. Solving (18) we have

y(g)= A (rI+r)o), k =0,

y(i))= —,'A sinh[2(ii+7)o)], k = —1,

y(i))= —,'A sin[2(il+qo], k =+1,

(19)

(20)

(21)

where we take the positive root without loss of generality
since 3 is arbitrary and go is a constant. To complete the
solution we need to determine P(i)) from (15), which
reduces to

&3 in(il+ i)o), k =0,
[2co ( rh ) +3

J ' dp= ~ &31n[tan(i)+go)], k =+1,
&3 ln[tanh(rl+ilo)], k = —1 .

(22)

(23)

(24)

To complete the solutions we need to specify the form of
co(P) so that the left-hand side of (22) can be calculated
explicitly. Some examples will be given here to illustrate
the general method.

This is the case of the Brans-Dicke theory and
(22) —(24) integrate to yield [9]
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k=+1,
where the constant P is defined by

W (q+q, )I', k =0,
P(21) = Potanh~(2)+2)o), k = —1,

wotan~(21 + halo),

(25)

(27) A (21+2lo)a'(2))=
[ ( tt + I )p

—13/3 ]1/( n + 1)
ln 1

/( n + ) )( 21 + 21 )
(39)

and hence the evolution of the expansion scale factor in
each of these cases is given by, for k =0,

P= [3/(2o3o+ 3)]'/ (28)

We shall restrict our attention to the case where P) 0.
Hence, since a =yP ' we have, for the scale factor

a (g), for k =0,

fork= —1,

A sinh(21+ rto)cosh(2)+2lo)
a (2))=

[(n +1)p '3/3]' '"+"ln' '"+' [tanh(21+21o]

(40)

a '(q) = ~ y (q+ q, )" t'), -

Z )/2y —1/2( + )(3—P)/2 @+3
ln(21+2)o), p=3 .

Hence,

(29)

(30)

(31)

and, for k =+1,
A sin(21+2lo) cos(21+21o)

a (21)=
[(n + I)P '3/3]' "+"ln' '"+ )[tan(21+21o)]

(41)

t(1 —(3)/(3 —l3) P~3
a(t) ~

ef P=3.
Fork= —1,

a (21)= Ago ' sinh' P(21+2)o)cosh'+~(2)+halo) .

For k =+1,
a (71)= A(t)o 'sin' ~(2)+halo) cos'+~(g+q(3) .

(32)

(33)

(34)

If we fix a =0 at g=0 then we can set go=0. In the
n = —

—,', k =0 case we can integrate (13) to obtain t (21 ) in

terms of the logarithmic integral function Li[x]
:—Jo( lnt) 'dt. We have

a (21)™(2)+halo)/ln(21+21o)

and t ~ Li[(21+21o) / ].

2(t0(()+}=3@P '"+",
(((, )0, constant

We choose this functional form for co to encompass a
wide range of power-law variations with P. Asymptoti-
cally, it resembles the power-law form used by Barrow
and Maeda [1] to study extended infiation in scalar-tensor
theories. In this case (22) —(24) give

(t)(2) )
—[(& + 1 )+ 1+3]1/(n+1) ln1/(n +1)f(21 )

where

(35)

We could choose go=0 if we wish to fix the origin of time
so that a =0 at 21=0 (we will have p ( 1 in practice).

G
G

3+2co

4+3'
G (t) 2''
G() (3+2'�) (42)

where Go is the present value of G(t). Hence, to ensure
G =0 and G (t) = Go we require

C. t0(p}=
—,'(4 —3p}/(p —1)

This particular form of o)(P) defines Barker's theory of
gravitation [11] and is chosen in order to ensure that
there is no time variation of the Newtonian gravitational
"constant" G. In the weak-field limit an co(P) theory will
give a time variation in G equal to [12]

q+go, k =0,
f (g) = tanh(21+ rto), k = —1,

tan(21+go), k =+1,

(36)

(37)

(38)

oi(p) =(4—3p)/(2(t —2) (43)

and this also ensures that the Nordtvedt parameter [7,12]
is zero. With this choice of o)(P) Eqs. (22) —(24) yield

3/3 1n[c(2)+2)o) ], k =0,
2 arctan[(P —1)' ] = V'3 ln[c tan(2)+halo)], k = + 1,

3/3 ln[c tanh(21+21o)], k = —1,

(45)

(46)

and so

sec'[ —,
) 3/3 inc (2) + 21o ) ],

P(21)= sec2I ) V31n[c tan(2)+2lo)] I, k =+1,
sec I

) &3 ln[c tanh(21+21o)] I, k = —1,

(47)

(48)

(49)
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where c is a constant. Fixing a (0)=0 the expansion scale factor is given by

A1) cos ( —,'&3 lnci)), k =0,

a (q)= —,
' A sin(2') cos [ —,'&31n(ctani))], k =+1,

—,
' A sinh(21))cos [—,'+31n(ctanh1))], k = —1 .

(50)

(51)

(52)

In the k =0 case it is possible to determine t (1)) explicitly
as

t =cA '
rj ~ [—,

' cos( —,'&31nci))+12 '~ sin( —,'&31nci))] .

(53)

2co(P)+3= —
—,
' f (P)[(1 6q)—qf —1][r+(1 r)qf]—

where the scalar field P is defined in terms off by

(54)

(55)
D. Bekenstein's scalar-tensor theory

This proposed modification of general relativity due to
Bekenstein [13,14] reduces to the study of a scalar-tensor
theory defined by

and where q and r are two undetermined constants which
define the theory. The predictions of the theory are close
to those of general relativity when q )0 and r (0. We
see that

»2 2 '
q

' Jx ' (x —1) '[(6q —1)x + 1]' dx
f [2'(P)+3]'

2 '~
q

'~ [(6q —1)J(f) 6qI(f)]—,
(56)

(57)

where we have set

and

—(1—6q) 1~ arcsin[2(6q —1)qf +1] if 6q ( I,
(6q —1) 1~2 lnI2(6q —I)'~ [(6q —1 )q f +qf ]'~ +2(qf —1)+12q —I] if 6q & 1,

(58)

(59)

(60)

, &2 2(6q)'~ I(6q —1)q f +qf ]' +(12q —1)qf+1I = 6q ln
q 1

(61)

These forms are rather cumbersome and so we just out-
line the final form of the solution. The scale factor a (1))
is given by

(62)

define scalar tensor theories of gravitation in terms of the
behavior of p '[2'(p)+3]'~ rather than by ai(p) or the
f(4) of Eq. (1). Once the integral in Eq. (20) is per-
formed the solutions can be completed as in Secs. A and
B mutatis mutandis.

where p (rI ) is given for the required value of k =0, + 1 by
(19)—(21) and f is given implicitly in terms of 11 by (57),
(60), and (61) using (22) —(24).

Clearly, other choices for ai(p) could be made for
which the left-hand side of (20) is integrable. In fact, we
see that it is most efficient for cosmological studies to

V. RADIATION SOLUTIONS

A similar strategy enables the radiation-dominated
Friedmann models to be found for all values of k. In-
tegrating (18), we may determine y(i) ) prior to specifying
the form of co(P):

I (1)+BIO) —A /4r, k =0,
y(i))= . —,'I + —,'(I 2+ A2)'~ sin[2(1)+1)o)], k =+1,

—,'r+-,'(A' —r')'"slnh[2(77+7] )], A'&r', k = —1.

Now, integrating (15) we obtain

(63)

(64)

(65)
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2rq+2rq, —W
&3 ln k=0,

2I g+ 2I go+ A

I tan g+go + I +3
dP= &3 ln +1

I tan(q+g )+(1 + A )' + A

(66)

(67)

2v'3arctanh
—I tanh(g+go) —(A —I )'

(68)

where we will only write the 3 + I expressions for the
k = —1 models. To complete the solution by specifying
co, again we consider two specific examples of the cou-
pling function co(P) for which the integration on the left-
hand side of (66)—(68) can be performed.

A. co(P) =coo=const

The radiation Friedmann solutions for the Brans-Dicke
theory are given by, for k =0,

(69)

(70)

where P is given by (28). If we fix the origin of time so
that a (0)=0 then 2I go= A and so we have the simple
forms

a'(~) =ry ~' ~(~+2~,)'+~,

0(n)=Non (n+2no)

(71)

(72)

These solutions are included in the collection of k =0
perfect Auid Friedmann models given by Gurevich, Fink-
elstein, and Ruban [15]; for k =+1 solutions also see
Refs. [9,16].

For k =+1,

I tan(g+g )+(I +2 )' —A
/=goin

I tan(g+g )+(I + A )' + A

a = —
Po '[I +(I + 3 )' sin2(g+go)] ln2 1 1

For k = —1,

(2 —I )'~ exp[2(g+go)] —I —A

( A —1 )' exp[2(g+go)] —I + 3

I tan(g+go)+(r + A )'

I tan(q+g )+(I + A )' + A

(73)

(74)

(75)

2 1 —1 2 2 1/2 ( 3 —I ' exp[2(g+go)] —I —A
a = —

(ho '[ —I +(A —I )' sinh2(g+go)]
2 ( 3 —I )'~ exp[2(g+ r)o) ]

—I + 2 (76)

B. 2ro{$) +3= pP
'"+'', p const

As before, the radiation solutions are given as follows.
For k =0,

21 (rI+go) —2P"+'=p '(n +1)&3ln
2I (g+ rIo)+ 3 +p '(n + 1)go&3,

a =g(r7)+ A)[(n +1)p &3] '" » " [/or'r)~(r'9+ ~)] .

Fork= —1,

(77)

( g ~ —I 2)'~~ exp(2g+2go) —2 —rP"+'=p '(n +1)V'31n
(A —I )' exp(2g+2go)+ & —r +p '(n +1)go&3, (79)
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a =
—,'[ —I +(A —I )' sinh2(g+go)][(n +1)p 'v'3]

( A —I )' exp(2r)+2go) —A —I

(A —I )'~ exp(2g+2qo)+A —I

For k =+1,

y" +'=& '(-n +1)v'3 ln
(A +I )'~ +1 tan(q+qo) —A

(A +I )' +I tan(q+g )+A +p '(n +1)(bov 3, (81)

(A +I )' +I tan(g+g )
—A'= [r+(A'+r')'". 2( +,)][( +1) -'v3] '""+"1

(A'+r')'"+r tan(q+q, )+ A
(82)

C. a)(P)= ~(4—3P)/(P —1)

1/2
v'3

cos ln
2

1a(g)= Iq + —q2
C'g

q+ Wr-' (83)

Using the forms for y (g) in (63)—(65) the solutions for the scale factor are as follows [P(g) can be obtained from the
relation a =y P

' if required].
For k =0,

r

For k =+1,

a (q)= [[—,'I + —,'(I + A )' ]sin[2(r)+7)o)]] cos ln
v'3

Fork= —1,

a'(Z) =
[
—

—,'r+-,'(A ' —r')'" slnh[2('g+'go]] cos ln
v'3

c[(A +I )' —A +I tan(g+go)]
(A'+r')'"+ A+r tan(q+q, )

c[(A I )'~ exp[2(g+qo)] —A —I ]

(A —I )'~ exp[2(g+go)]+A —I

(84)

(85)

An analogous analysis can be performed for the case of
the Bekenstein scalar-tensor theory as was given for the
vacuum case in the previous section. The solutions are
straightforwardly obtained but are extremely lengthy and
so we shall not present them explicitly here.

VI. DISCUSSION

The aim of this paper has been to show how exact
cosmological solutions can be found which model the ra-
diation or vacuum-dominated period the evolution of the
early Universe for general scalar-tensor gravity theories
by generalizing a method used by Lorenz-Petzold to
study Brans-Dicke models [17]. We have shown how, by
an appropriate choice of variables, the problem can al-
ways be reduced to the solution of a single integral over
co(P). We have displayed some particular solutions for
interesting classes of scalar-tensor theory but it is

straightforward to apply the method to a wide range of
other specifications for co(P). There is no preferred gen-
eral form at present for the function co(P ) although
specific forms will be imposed in particular problems and
we have discussed the particular theories derived by
Brans and Dicke [7], Barker [11],and Bekenstein [13,14]
for illustration. Most past interest has been focused upon
the Brans-Dicke theory in which co(P) is a constant.

One important constraint upon the forms of co(P) that

a)'co o- (n + 1)(5 (86)

and so the general relativity results are approached in the
weak-field limit when n & —1 and if n & ——'. However,
the weak-field predictions diverge from those of general
relativity in the co~ ~ limit if ——'&n & —1. The case
with n = —1, and hence co constant, corresponds to
Brans-Dicke theory. A detailed study of the cases where
co'~ ~0 as co~ ~ allows us to place constraints upon

are appropriate in cosmological problems comes from
considering the weak-field limit of the gravity theory
defined by co(P). It is well known that the general rela-
tivity limit of the Brans-Dicke theory arises when co —+ ~,
but the general relativity limit of an co', P) theory requires
co(P) —+ oo and

(4+3co) '(3+2co) a)'(P) —+0

to hold simultaneously [12] [a closely related expression
determined the rate of change of G in Eq. (42) above].
Thus in the co~ oo limit we require that co'/co ~0 for ac-
cord with the predictions of general relativity. This will
ensure that the solar system tests of general relativity
maintain their agreement between theory and observa-
tion. If we apply this consideration to the example
theory (B) with 2'(P)+3=p P '"+", used above, we
then see that, for large ~,
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the allowed form of to(P) using both the solar system tests
and the consequences for the evolution of the very early
Universe. These questions will be examined in a subse-
quent paper.

ACKNOWLEDGMENTS

I would like to thank Jose Mimoso for many helpful
drscussrons.

[1]J. D. Barrow and K. Maeda, Nucl. Phys. B341, 294 (1990).
[2] D. La and P. J. Steinhardt, Phys. Rev. Lett. 62, 376 (1989);

C. Mathiazhagen and V. B. Johri, Class. Quantum Grav.
1, L29 (1984); D. La, P. J. Steinhardt, and E. W. Bert-
schinger, Phys. Lett. B 231, 231 (1989); F. S. Accetta and
J. J. Trester, Phys. Rev. D 39, 2854 (1989); E. Weinberg,
ibid. 40, 3950 (1989).

[3] J. D. Barrow, E. Copeland, E. Koib, and A. Liddle, Phys.
Rev. D 43, 984 (1991);46, 645 (1992).

[4] T. Damour, G. W. Gibbons, and C. Gundlach, Phys. Rev.
Lett. 64, 123 (1990); T. Damour and C. Gundlach, Phys.
Rev. D 43, 3873 (1991).

[5] J. D. Barrow, Phys. Rev. D 46, 3227 (1992).
[6] G. Greenstein, Astrophys. Space Sci. 2, 155 (1968); J. D.

Barrow, Mon. Not. R. Astron. Soc. 184, 677 (1978); A. A.
Meisels, Astrophys. J. 252, 403 (1982); R. Dominguez-
Tenreiro and G. Yepes, Astron. Astrophys. 177, 5 (1987);
A. Serna, R. Dominguez-Tenreiro, and G. Yepes, Astro-
phys. J. 391,433 (1992).

[7] C. Will, Theory and Experiment in Gravitation Physics
(Cambridge University Press, Cambridge, England, 1981);
P. G. Bergmann, Int. J. Theor. Phys. 1, 25 (1968);C. Brans
and R. H. Dicke, Phys. Rev. 124, 925 (1961).

[8] P. J. Steinhardt and F. S. Accetta, Phys. Rev. Lett. 64,

2740 (1990).
[9] A similar method was employed to find the vacuum and

radiation Friedmann models for the Brans-Dicke model
by D. Lorenz-Petzold, Astrophys. Space Sci. 96, 451
(1983); 98, 249 (1984). The vacuum solutions were first
found by J. O'Hanlon and B. O. J. Tupper, Nuovo Cimen-
to 137, 305 (1970).

[10]A. R. Liddle and D. Wands, Phys. Rev. D 45, 2665 (1992).
[11]B.M. Barker, Astrophys. J. 219, 5 (1978).
[12] K. Nordtvedt, Astrophys. J. 161, 1059 (1970); R. V.

Wagoner, Phys. Rev. D 1, 3209 (1970).
[13]J. Bekenstein, Phys. Rev. D 15, 1458 (1977).
[14] A. Meisels, Astrophys. J. 252, 403 (1982); J. D. Bekenstein

and A. Meisels, Phys. Rev. D 18, 4378 (1978); 22, 1313
(1980).

[15] L. E. Gurevich, A. M. Finkelstein, and V. A. Ruban, As-
trophys. Space Sci. 22, 231 (1973). When go=0 these solu-
tions reduce to those of general relativity since P is con-
stant.

[16]R. E. Morganstern, Phys. Rev. D 4, 278 (1971).
[17]The method we have employed makes explicit use of the

conformal relationship between general relativity and
co((()) theories which were discussed more fully in Ref. [1].


